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Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions:
Particle rotations and orientational ordering
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We use numerical simulations to study the flow of a bidisperse mixture of athermal, frictionless, soft-core
two-dimensional spherocylinders driven by a uniform steady-state simple shear applied at a fixed volume and
a fixed finite strain rate γ̇ . Energy dissipation is via a viscous drag with respect to a uniformly sheared host
fluid, giving a simple model for flow in a non-Brownian suspension with Newtonian rheology. Considering a
range of packing fractions φ and particle asphericities α at small γ̇ , we study the angular rotation θ̇i and the
nematic orientational ordering S2 of the particles induced by the shear flow, finding a nonmonotonic behavior as
the packing φ is varied. We interpret this nonmonotonic behavior as a crossover from dilute systems at small φ,
where single-particle-like behavior occurs, to dense systems at large φ, where the geometry of the dense packing
dominates and a random Poisson-like process for particle rotations results. We also argue that the finite nematic
ordering S2 is a consequence of the shearing serving as an ordering field, rather than a result of long-range
cooperative behavior among the particles. We arrive at these conclusions by consideration of (i) the distribution
of waiting times for a particle to rotate by π , (ii) the behavior of the system under pure, as compared to simple,
shearing, (iii) the relaxation of the nematic order parameter S2 when perturbed away from the steady state, and
(iv) by construction, a numerical mean-field model for the rotational motion of a particle. Our results also help
to explain the singular behavior observed when taking the α → 0 limit approaching circular disks.
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I. INTRODUCTION

In a system of athermal granular particles with only repul-
sive contact interactions, as the packing fraction of particles
φ increases, the system undergoes a jamming transition [1,2]
at a critical φJ . For φ < φJ the system behaves similarly to a
liquid, while for φ > φJ the system behaves like a rigid but
disordered solid. One way to probe the jamming transition
is through the application of a simple shear deformation to
the system. For an infinite system in the thermodynamic limit,
if one applies a simple shear stress σ no matter how small,
then if the system is below φJ the system responds with a
simple shear flow, with a velocity profile that varies linearly in
the direction transverse to the flow. Above φJ , the application
of a small shear stress causes the system to have an elastic
shear distortion determined by the finite shear modulus of the
solid phase; the system does not flow. However, if σ exceeds
a critical yield stress σ0, then plastic deformations cause the
solid to flow. The point where this yield stress σ0(φ) vanishes
upon decreasing φ then determines the shear-driven jamming
transition φJ [3–5]. For frictionless particles, such as those
considered in this work, σ0 vanishes continuously [3,4] as
φ → φJ from above.

Many numerical studies of the jamming transition, and
granular materials more generally, have used spherically
shaped particles for simplicity. It is therefore interesting to
ask how behavior is modified if the particles have shapes
with a lower rotational symmetry [6]. In a recent work [7] we
considered the shear-driven jamming of athermal, bidisperse,

overdamped, frictionless spherocylinders in two dimensions,
uniformly sheared at a fixed strain rate γ̇ . In that work we
considered the global rheology of the system, investigating
how pressure, deviatoric shear stress, and macroscopic fric-
tion vary with particle packing fraction φ, shear strain rate
γ̇ , and particle asphericity α. We determined the jamming
packing fraction φJ (α) as a function of the spherocylinder
asphericity and the average number of contacts per particle
at jamming ZJ (α). We also studied the probability for an
interparticle contact to form at a particular angle ϑ along the
surface of the spherocylinder and argued that the α → 0 limit
approaching a circular particle was singular; we found that the
total probability for a contact to form somewhere on one of the
flat sides of the spherocylinder stays constant as α → 0, even
as the length of those flat sides becomes a vanishing fraction
of the total particle perimeter.

In the present work we continue our studies of this two-
dimensional (2D) spherocylinder model, but now concentrat-
ing on the rotational motion of particles and their orienta-
tional ordering. As this work is a continuation of our work
in Ref. [7], the introduction and description of the model
presented here are abbreviated. We therefore refer the reader
to Ref. [7] for a discussion of the broader context of, and
motivation for, our model, a more complete list of references,
and more details of the derivation of our equations of motion.
Some of our results in the present work have been presented
previously [8]; here we broaden these prior investigations and
present greater detail.
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When sheared, aspherical particles are known to undergo
orientational ordering due to the torques induced on the
particles by the shear flow. Several numerical works focused
on this shear-induced orientational ordering of ellipsoids [9]
and rod-shaped particles [10,11] of different aspect ratios in
three dimensions approaching, but staying below, jamming.
They found that orientational order increased with increas-
ing packing φ and that particles were preferentially oriented
at a finite angle θ2 > 0 with respect to the direction of
the shear flow. Experiments and simulations of rod-shaped
particles in three dimensions [12–15] found similar results
while also studying the rotation of particles in steady-state
simple shear and the transient approaches to the steady state.
Other experimental works have studied the transient behav-
ior of orientational ordering and pressure p of ellipses in
two dimensions under quasistatic shearing [16,17]. Numer-
ical simulations, measuring rheological properties as well
as orientational ordering in the hard-core limit below jam-
ming, have been carried out for frictional 3D spherocylin-
ders sheared by biaxial compression [18,19], frictionless 3D
spherocylinders in steady-state simple shear [20], and for both
frictionless and frictional 2D ellipses in steady-state simple
shear [21]. The rheology of 3D frictional and frictionless
spherocylinders in steady simple shear has also recently been
simulated [22].

In this work work we consider the uniform steady-state
simple shearing of a system of 2D spherocylinders, consid-
ering a broad range of particle asphericities, from moder-
ately elongated to very nearly circular. The above previous
works [9–15,18–22] modeled dry granular materials, in which
energy is dissipated in particle collisions, rheology is Bag-
noldian, and there may be microscopic interparticle Coulom-
bic friction. In contrast, here we model particles in suspen-
sion, where the rheology is Newtonian at small strain rates
below jamming. We use a simple model that has been widely
used in studies of the shear-driven jamming of spherical and
circular particles [3,4,7,8,23–31]. In this model, particles are
frictionless with a soft-core, one-sided, harmonic repulsive
interaction and energy is dissipated by a viscous drag with
respect to an affinely sheared host medium. Particles obey an
overdamped equation of motion and inertial effects are thus
ignored.

Our simple model omits several physical processes that
may be relevant to real physical suspensions, such as hy-
drodynamic forces [32], lubrication forces [33–35], inertial
effects [36], and frictional contact interactions which have
recently been proposed as a possible mechanism for shear
thickening [37–43]. However, the greater simplicity of our
model allows a more thorough investigation over a wide range
of the parameter space, in particular going to smaller values of
the strain rate γ̇ and smaller values of the particle asphericity
α. Our work is carried out in the spirit that it is useful to first
understand the behavior of simple models before adding more
realistic complexities.

The remainder of this paper is organized as follows. In
Sec. II we define our model and give details of our numerical
simulations. In Sec. III we consider the behavior of an isolated
spherocylinder in an affinely sheared host medium, consider-
ing the rotational motion and the probability for the particle to
be at a particular orientation. Understanding the motion of an
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FIG. 1. Isolated spherocylinder indicating the spine half-length
Ai, end cap radius Ri, center of mass position ri, and angle of
orientation θi.

isolated single particle will help inform our understanding of
the many-particle system.

In Sec. IV we present our numerical results for the rota-
tional motion of particles and their orientational ordering as
the packing φ of particles increases through the jamming tran-
sition. We compute the average angular velocity of particles
scaled by the strain rate 〈θ̇i〉/γ̇ and the nematic orientational
order parameter S2. We addresses two basic questions in this
section: (1) What underlying physical processes are reflected
in the observed nonmonotonic behavior of both 〈θ̇i〉/γ̇ and
the magnitude of the nematic order parameter S2 as the
packing φ increases and (2) is the finite nematic ordering S2

a cooperative effect of multiparticle coherent motion or is it a
consequence of shearing acting like an ordering field? We ad-
dress these questions by considering (i) the time dependence
of particle rotations, (ii) the behavior of the system under pure,
as opposed to simple, shearing, and (iii) the relaxation of S2

when it is perturbed away from its steady-state value and (iv)
by constructing a numerical mean-field model for the rotation
of particles. We also use these results to explain the singular
behavior we previously found [8] as the particle asphericity
α → 0 and particles approach a circular shape.

In Sec. V we summarize our results. We find that the
nonmonotonic behavior of S2 and 〈θ̇i〉/γ̇ can be viewed as
a crossover from a single-particle-like behavior at small φ,
where the imposed simple shear results in a steady but nonuni-
form rotation of the particles, to a many-particle behavior
at large φ, where the geometry of the dense packing and
the decreasing free volume inhibits particle rotation, which
becomes more of a random Poisson-like process. We conclude
that the orientational ordering is a consequence of the shear
serving as an ordering field rather than due to cooperative
behavior among the particles.

Finally, in the Appendixes we consider several ancillary
matters. In Appendix A we consider the distribution of par-
ticle orientations in steady-state shear flow and relate that
distribution to the orientation of the nematic order parameter.
In Appendix B we present further analysis of the singular
α → 0 limit and explore how this limit is affected if we
consider a system of particles polydisperse in shape.

II. MODEL AND SIMULATION METHOD

Our model system is one of N two-dimensional, athermal,
frictionless spherocylinders, consisting of a rectangle with
two semicircular end caps, as illustrated in Fig. 1. The half-
length of the rectangle of particle i is Ai, the radius is Ri, and
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we define the asphericity αi as

αi = Ai/Ri (1)

so that α = 0 is a pure circular particle. The spine of the
spherocylinder is the axis of length 2Ai that goes down the
center of the rectangle. For every point on the perimeter of
the spherocylinder, the shortest distance from the spine is
Ri. The center of mass of the particle is ri and the angle
θi denotes the orientation of the spine with respect to the x̂
direction. Our system box has lengths Lx and Ly in the x̂ and ŷ
directions, respectively. We will in general take Lx = Ly ≡ L
unless otherwise noted. If Ai is the area of spherocylinder i,
the packing fraction φ is

φ = 1

L2

N∑
i=1

Ai. (2)

Unless otherwise stated, all our particles have equal aspheric-
ity α and are bidisperse in size with equal numbers of big and
small particles with length scales in the ratio Rb/Rs = 1.4.

The dynamics of our model has been described in detail
in Ref. [7]; here we summarize the main features. Periodic
boundary conditions are taken along x̂, while Lees-Edward
boundary conditions [44] are taken along ŷ to introduce a
simple shear strain γ . We take γ = γ̇ t to model simple shear
flow in the x̂ direction at a fixed finite strain rate γ̇ . Particles
interact with each other via elastic contact interactions. En-
ergy dissipation is due to a viscous drag between the particles
and an affinely sheared host medium,

vhost (r) = γ̇ yx̂, (3)

modeling the behavior of particles in a uniform non-Brownian
suspension.

Defining ri j as the shortest distance between the spines of
spherocylinders i and j [45] and di j = Ri + Rj , two sphero-
cylinders are in contact whenever ri j < di j . In this case there
is a repulsive harmonic interaction between the particles with
the force on i being given by

Fel
i j = ke

di j

(
1 − ri j

di j

)
n̂i j, (4)

where ke is the particle stiffness and n̂i j the unit vector
pointing normally inward to particle i at the point of contact
with j. The force Fel

i j acts at the contact point, which is located
a distance (Ri/di j )ri j from the spine of particle i, along the
cord ri j , and gives rise to a torque on particle i,

τel
i j = ẑτ el

i j = si j × Fel
i j, (5)

where si j is the moment arm from the center of mass of i to its
point of contact with j. The total elastic force and torque on
particle i are then

Fel
i =

∑
j

Fel
i j, τ el

i =
∑

j

τ el
i j , (6)

where the sums are over all particles j in contact with i.
The viscous drag between particle i and the host medium

gives rise to a dissipative force

Fdis
i =

∫
i
d2r fdis

i (r), (7)

where the integral is over the area of particle i and
the dissipative force per unit area acting at position r
on the particle is given by the local velocity difference be-
tween the particle and the host medium,

fdis
i (r) = −kd [vi(r) − vhost (r)], (8)

where kd is a viscous damping coefficient and vi(r) is the local
velocity of the particle at position r,

vi(r) = ṙi + θ̇iẑ × (r − ri ). (9)

Here ṙi = dri/dt is the center-of-mass velocity of the particle
and θ̇i is its angular velocity about the center of mass. The
corresponding dissipative torque is

τdis
i = ẑτ dis

i =
∫

i
d2r(r − ri ) × fdis

i (r). (10)

The above elastic and dissipative forces are the only forces
included in our model; there are no interparticle dissipative
or frictional forces. We will carry out our simulations in the
overdamped (low-particle-mass) limit, where the total force
and torque on each particle are damped to zero,

Fel
i + Fdis

i = 0, τ el
i + τ dis

i = 0. (11)

The resulting translational and rotational equations of motion
for particle i can then be written as [7]

ṙi = γ̇ yix̂ + Fel
i

kdAi
, (12)

θ̇i = −γ̇ f (θi ) + τ el
i

kdAiIi
, (13)

where Ai is the area of particle i, Ii is the trace of the particle’s
moment of inertia tensor, and

f (θ ) = 1
2 [1 − (
Ii/Ii ) cos 2θ ], (14)

where 
Ii is the absolute value of the difference of the two
eigenvalues of the moment of inertia tensor. We assume a
uniform constant mass density for both our small and big
particles.

For our simulations we take 2Rs = 1 as the unit of distance,
ke = 1 as the unit of energy, and t0 = (2Rs)2kdAs/ke = 1
as the unit of time. For simplicity, we take the damping
coefficient kd to vary with particle size, so kdAi = 1 for
all particles. We numerically integrate the equations of mo-
tion (12) and (13) using a two-stage Heun method with a step
size of 
t = 0.02. Unless otherwise stated, we begin each
shearing run in a finite-energy configuration at the desired
packing fraction φ with random initial particle positions and
orientations. To generate such initial configurations we place
the spherocylinders in the system one by one while rejecting
and retrying any time a new placement would lead to an
unphysical overlap where the spines of two spherocylinders
intersect. In general, we use N = 1024 particles. We have
found this to be sufficiently large to avoid any significant
finite-size effects for the behaviors discussed in this work.
Most of our simulations typically extend to strains of at least
γ ≈ 150. Discarding an initial 
γ ≈ 20 of the strain from the
averaging so as to eliminate transients effects, we find that our
steady-state averages are generally insensitive to the particular
starting configuration [46]. See the Supplemental Material to
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FIG. 2. For an isolated spherocylinder in a uniform shear flow,
(a) orientation θi vs net shear strain γ = γ̇ t and (b) probability
density P (θ ) vs θ for the spherocylinder to be oriented at an angle θ .
From bottom to top in (a) the curves are for spherocylinders with
asphericity α = 0.1, 0.5, 1.0, 2.0, and 4.0, and similarly for the
curves at θ = π in (b).

Ref. [8] for tests that these simulation parameters, in particular
N and 
t , are sufficient to obtain accurate results for particles
with our smallest asphericity α = 0.001. Note that we restrict
the strain coordinate γ used in our Lees-Edwards boundary
condition to the range γ ∈ (−Lx/2Ly, Lx/2Ly]; whenever it
exceeds this maximum it is reset by taking γ → γ − Lx/Ly,
allowing us to shear to arbitrarily large total strains.

III. ISOLATED PARTICLES: ROTATIONS AND
ORIENTATIONAL ORDERING

Although the main objective of this work is to study the
behavior of many interacting particles, it is of interest to first
consider the case of an isolated particle, for which Fel

i =
τel

i = 0. In this case Eq. (12) gives that the particle flows
with the local host velocity ṙi = γ̇ yix̂, while from Eq. (13)
the rotational motion obeys the deterministic equation θ̇i =
−γ̇ f (θi ), with f (θ ) as in Eq. (14). Since in general f (θ ) > 0,
the particle will rotate continuously clockwise, but with a
nonuniform angular velocity that is slowest at θi = 0 or π

where f (θi ) is at its minimum and fastest at θi = π/2 or 3π/2
where f (θi ) is at its maximum. This is analogous to the Jeffrey
orbits of ellipsoids in a viscous fluid [47]. The particle will
thus spend more time oriented at θi = 0, aligned parallel to
the flow direction x̂. We show this explicitly by integrating the
equation of motion and plotting θi(t ) vs γ = γ̇ t in Fig. 2(a) for
spherocylinders of several different α.

For such an isolated particle tumbling in the flow field of
the host medium, we can compute the probability density for
the particle’s orientation to be at a particular angle θ ,

P (θ ) = 1

T

∫ T

0
dt δ(θi(t ) − θ ) (15)

= 1

T

∫ 2π

0
dθi

δ(θi − θ )

|θ̇i|
= 1

T γ̇ f (θ )
, (16)

where T is the period of the rotation. We plot P (θ ) vs θ for
spherocylinders with different α in Fig. 2(b). Normalization
of P (θ ) then determines the period T and thus gives, for the
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FIG. 3. (a) Average scaled angular velocity −〈θ̇i〉/γ̇ and magni-
tude of the nematic order parameter S2 vs 
Ii/Ii for an isolated parti-
cle in a uniform shear flow. (b) Plot of 
Ii/Ii vs α for spherocylinders
of asphericity α.

average angular velocity,

−〈θ̇i〉
γ̇

= 2π

γ̇ T
= 1

2

√
1 − (
Ii/Ii )2. (17)

For a circular particle one has 
Ii/Ii = 0 and so −〈θ̇〉/γ̇ =
1/2. More generally, since 0 � 
Ii/Ii < 1, one then has 0 <

−〈θ̇〉/γ̇ � 1/2.
Since P (θ + π ) = P (θ ), corresponding to the fact that the

particle has neither a head nor a tail, orientational ordering
will be nematic. The direction of the nematic order parameter
S2 is θ2 = 0, aligned with the flow, while the magnitude is
given by

S2 =
∫ 2π

0
dθ P (θ ) cos 2θ = 1 −

√
1 − (
Ii/Ii )2

(
Ii/Ii )
. (18)

In Fig. 3(a) we plot −〈θ̇〉/γ̇ and S2 vs 
Ii/Ii for an isolated
particle, using Eqs. (17) and (18). We see, not surprisingly, an
anticorrelation between the two quantities; −〈θ̇〉/γ̇ decreases
as the particle becomes more aspherical, i.e., as 
Ii/Ii in-
creases, while S2 increases. For spherocylinders of asphericity
α we have


Ii

Ii
= 2α(4 + 3πα + 4α2)

3π + 24α + 6πα2 + 8α3
, (19)

which we plot in Fig. 3(b).
As the packing φ increases from zero, the above single-

particle behavior will be modified due to collisions that occur
between particles, giving rise to elastic forces and torques. It
is interesting to consider a naive model in which, at small φ,
we regard these collisions as introducing uncorrelated random
torques, as if the particle were at a finite temperature. We
therefore rewrite Eq. (13) as

θ̇i

γ̇
= dθi

dγ
= − f (θi ) + ζ (γ ), (20)

where ζ = τ el
i /kdAiIiγ̇ and we assume

〈ζ (γ )〉 = 0, 〈ζ (γ )ζ (γ ′)〉 = ε2δ(γ − γ ′). (21)

Numerically integrating Eq. (20), in Fig. 4(a) we plot the
resulting probability density P (θ ) for a spherocylinder of
α = 4 for various noise levels ε. We see several significant
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FIG. 4. (a) Probably density P (θ ) for a spherocylinder of as-
phericity α = 4 to be oriented at angle θ for various strengths ε of
uncorrelated random torque noise. (b) Orientation θ2 of the nematic
order parameter, (c) magnitude S2 of the nematic order parameter,
and (d) scaled particle angular velocity −〈θ̇i〉/γ̇ vs noise strength ε,
for spherocylinders of various α.

changes from the noiseless ε = 0 case. As ε increases, we
see that the amplitude of the variation in P (θ ) decreases and
the location of the peak shifts from θ = 0 to larger θ > 0.
This indicates that the magnitude of the nematic order S2 is
decreasing and the nematic director becomes oriented at a
finite positive angle with respect to the shear flow.

To quantify this observation, we compute the nematic
order parameter as follows: For a particle in two dimensions,
the magnitude S2 and orientation θ2 of the nematic order
parameter S2 are given by [48]

S2 = max
θ2

{〈cos[2(θ − θ2)]〉}, (22)

where 〈· · · 〉 denotes an average over time, or equivalently over
strain γ = γ̇ t . From this one can show

S2 =
√

〈cos 2θ〉2 + 〈sin 2θ〉2 (23)

and

tan 2θ2 = 〈sin 2θ〉/〈cos 2θ〉. (24)

In Fig. 4(b) we plot θ2 vs noise level ε for several different
spherocylinder asphericities α. The values of θ2 for α = 4
coincide with the locations of the peaks in P (θ ) in Fig. 4(a).
We see that there is no strong dependence of θ2 on α, except
at small ε, and that θ2 saturates to 45◦ as ε gets large; 45◦
corresponds to the eigendirection of expansion of the affine
strain rate tensor, and hence also the direction of minimal
stress.

In Fig. 4(c) we plot S2 vs ε for different α and see that
S2 decays to zero as ε increases; we find the large ε tail of
this decay to be well fit to an exponential ∼ exp(−ε/ε0), with
ε0 ≈ 1.16 for all α. Finally, in Fig. 4(d) we plot the scaled
average angular velocity −〈θ̇i〉/γ̇ vs ε for different α. As ε

increases, −〈θ̇i〉/γ̇ saturates to 1/2, the rotational velocity
of the affinely sheared host medium, as well as the value
expected for a circular particle. We find the large ε behavior to
be well fit to the form ∼ 1

2 [1 − c exp(−ε/ε′
0)], with ε′

0 ≈ 0.34
for all α. As in Fig. 3(a) we see that S2 and −〈θ̇i〉/γ̇ are
anticorrelated; as one increases, the other decreases.

These results are easy to understand. The nematic ordering,
in the isolated particle limit, is determined by how long the
particle spends at the preferred alignment θ = 0 or π , where
f (θ ) has its minimum. When a particle oriented near θ = 0
receives a random kick directed counterclockwise, the particle
deflects to positive θ , but then quickly relaxes back towards
θ = 0 under the influence of the driving term − f (θ ); however,
if the random kick is directed clockwise, the particle will
rapidly rotate through π , before relaxing towards the preferred
alignment at θ = π . This effect results in the particle spending
more time at angles θ > 0 than at corresponding angles θ < 0,
and as a consequence θ2 becomes finite and positive, growing
with the strength of the random kicks. At the same time,
the occurrence of clockwise directed random kicks serves to
shorten the time the particle spends in the preferred aligned
direction θ = 0 or π , resulting in an increase in the average
angular velocity −〈θ̇〉/γ̇ and a decrease in the magnitude of
the nematic ordering S2.

In the following sections we explore what happens as
the packing φ increases in a true model of N interacting
spherocylinders. We will see that, as φ increases from small
values, θ2 increases from zero in accord with the above naive
model. However, we will see that S2 and −〈θ̇i〉/γ̇ behave
qualitatively the opposite of this naive model; as φ increases
from small values, S2 increases while −〈θ̇i〉/γ̇ decreases. As
we will see in Sec. IV F, the reason for this difference is that,
while our naive model above assumed the collisions provided
no net torque 〈ζ 〉 = 0, in fact the collisions that occur due
to shearing create an orientation-dependent elastic torque on
a particle which on average is finite and counterclockwise,
thus slowing down the rotation of particles and increasing
orientational ordering.

IV. NUMERICAL RESULTS: ROTATIONS AND
ORIENTATIONAL ORDERING

At finite packing φ, particles will come into contact, τ el
i

will no longer be zero, and the isolated particle behavior of
the previous section will be modified. Here we report on our
numerical results for systems of particles with different as-
phericity from α = 0.001 to 4, for a range of packings φ from
dilute to jamming and above. We will look in greater detail at
the two specific cases of moderately elongated particles with
α = 4 and nearly circular particles with α = 0.01. In Fig. 5 we
show snapshots of typical steady-state configurations for these
two cases, sheared at a rate γ̇ = 10−6. For α = 4 we show a
dense configuration at φ = 0.905, close to its jamming φJ =
0.906; for α = 0.01 we show a configuration at its jamming
φJ = 0.85.
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(b)(a)

FIG. 5. Snapshot configurations in simple sheared steady state
with strain rate γ̇ = 10−6 for spherocylinders of asphericity
(a) α = 4 at packing φ = 0.905 near the jamming φJ = 0.906 and
(b) α = 0.01 at packing φJ = 0.845. For the nearly circular particles
at α = 0.01, the black line bisecting each particle indicates the
direction of the spherocylinder axis. Colors are used to help distin-
guish different particles and have no other meaning. Corresponding
animations, showing the evolutions of these configurations under
shearing, are available in the Supplemental Material [49].

When comparing results for systems of different α, we will
find it convenient to plot quantities in terms of a reduced
packing fraction φ/φJ (α), where φJ (α) is the shear-driven
jamming packing fraction for particles of that particular value
of α. For reference, in Fig. 6 we plot this φJ vs α, as we
have determined in our earlier work [7]. Note that this φJ (α)
monotonically increases with α for the range of α studied
here. This is in contrast to compression-driven jamming where
φJ (α) reaches a maximum near α ≈ 1 and then decreases as
α increases further [50]. This difference is because there is
no nematic ordering for athermal isotropic compression [50],
while (as we will see below) there is nematic ordering in the
sheared system; the orientational ordering of the sheared sys-
tem allows the particles to pack more efficiently and so results
in a larger φJ that continues to increases with increasing α.

A. Average angular velocity

We first consider the angular velocity of the particles’
rotational motion. For the coordinate system of our model, a
counterclockwise rotation is a positive angular velocity, while
a clockwise rotation is negative. Since our particles have a net

0.84
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0.9

0.92

10-3 10-2 10-1 100 101

J

FIG. 6. Critical packing fraction φJ for shear-driven jamming vs
spherocylinder asphericity α, from Ref. [7].
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FIG. 7. Average particle angular velocity scaled by strain rate
−〈θ̇i〉/γ̇ vs reduced packing fraction φ/φJ for spherocylinders of
different asphericity α. For each α we show results for two different
small strain rates γ̇1 (closed symbols) < γ̇2 (open symbols) (see
Table I for values). The vertical dashed line locates the jamming
transition φ/φJ = 1. The horizontal dashed line denotes the rotation
1/2 of the affinely sheared host medium.

rotation that is clockwise, it is therefore convenient to consider
−θ̇i. It will also be convenient to measure in dimensionless
units, which we will find gives a finite value in the quasistatic
limit γ̇ → 0. Hence, when we refer to the angular velocity of
particle i, we will generally mean −θ̇i/γ̇ .

From Eq. (13) we can write, for the average angular
velocity of individual particles,

−〈θ̇i〉
γ̇

=
〈

1

N

N∑
i=1

[
f (θi ) − τ el

i

γ̇ kdAiIi

]〉
, (25)

where 〈· · · 〉 indicates an average over configurations in
the steady state. In an earlier Letter [8] we plotted the
resulting −〈θ̇i〉/γ̇ vs the packing fraction φ for sphero-
cylinders of different asphericity. In Fig. 7 we reproduce
those results for asphericities α = 0.001 to 4, but now plot-
ting vs the reduced packing fraction φ/φJ so as to more
easily compare behaviors near the α-dependent jamming
transition.

For each α we show results at two different small strain
rates γ̇1 < γ̇2 in order to demonstrate that our results, except
for the largest φ near and above jamming, are in the qua-
sistatic limit where 〈θ̇i〉/γ̇ is independent of γ̇ . The values
of γ̇1 and γ̇2 used for each α are given in Table I. That
−〈θ̇i〉/γ̇ > 0 indicates that the particles continuously rotate
in a clockwise direction, and such rotation persists even in
dense configurations above jamming. Here, and in subsequent
plots, error bars represent one standard deviation of estimated

TABLE I. Strain rate values used for data in Figs. 7, 12, and 15.

α γ̇1 γ̇2

0.001 1 × 10−7 4 × 10−7

0.01 4 × 10−7 1 × 10−6

α � 0.06 1 × 10−5 4 × 10−5
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FIG. 8. Average particle angular velocity −〈θ̇i〉/γ̇ vs packing φ

for different strain rates γ̇ for spherocylinders of asphericity (a) α =
4 and (b) α = 0.01. Vertical dashed lines indicate the location of the
jamming transitions φJ = 0.906 and φJ = 0.845, respectively.

statistical error; when error bars are not visible, they are
smaller than the size of the symbol representing the data
point.

In Fig. 8 we similarly plot −〈θ̇i〉/γ̇ vs φ, but now showing
results for multiple different strain rates γ̇ , for the two particu-
lar cases of moderately extended rods, with α = 4, and nearly
circular particles, with α = 0.01. We see, as mentioned above,
that the γ̇ dependence of the angular velocity increases as one
approaches and goes above φJ , but seems to be approaching a
finite limiting value as γ̇ → 0.

There are several obvious features to note in Figs. 7 and 8.
(i) The angular velocity −〈θ̇i〉/γ̇ is nonmonotonic in φ, ini-
tially decreasing as φ increases from the dilute limit, reaching
a minimum at a φθ̇ min close to but below the jamming φJ ,
and then increasing again as φ further increases towards φJ

and goes above. As α decreases, this variation in −〈θ̇i〉/γ̇
gets squeezed into a narrower range of φ, closer to φJ . One
of our main objectives in this work will be to understand
the physical origin of this nonmonotonic behavior. (ii) For
small α, at both small φ and large φ > φJ , the angular veloc-
ity −〈θ̇i〉/γ̇ ≈ 1/2, the value expected for perfectly circular
particles. However, even for the very nearly circular particles
with α = 0.001, the dip in −〈θ̇i〉/γ̇ at φθ̇ min remains sizable,
about 20% below 1/2. The main result of our earlier Letter [8]
was to argue that this dip remains finite in the α → 0 limit
approaching circular disks. In this work we will provide
further understanding of what causes this singular behavior as
α → 0. (iii) In the dilute limit at small φ, the angular velocity
−〈θ̇i〉/γ̇ is decreasing as φ increases, which is the opposite of
the behavior seen in Fig. 4(d) for the noisy isolated particle
model. Thus one should not regard the elastic collisions in
the dilute “gas” limit as behaving simply like an effective
temperature.

Finally, we make one last point concerning the angular
velocity. Since our system is bidisperse in particle size, one
can separately compute the average angular velocity for big
particles as compared to small particles. In Figs. 9(a) and 9(b)
we plot these for spherocylinders with α = 4 and 0.01, respec-
tively. Not surprisingly, we see that big particles rotate more
slowly than the average, while small particles rotate more
quickly.
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FIG. 9. Average angular velocity −〈θ̇i〉/γ̇ vs φ for big and small
particles separately, for spherocylinders with (a) α = 4 at γ̇ = 10−5

and (b) α = 0.01 at γ̇ = 10−6. The average over all particles is given
by the dashed line.

B. Nematic orientational ordering

In this section we consider the orientational ordering of
the interacting particles. For a system in d dimensions, the
nematic order parameter S2 can be obtained from the traceless,
symmetric, ordering tensor of an N-particle configuration

T = d

(d − 1)N

N∑
i=1

[
�̂i ⊗ �̂i − 1

d
I
]
, (26)

where �̂i is a unit vector that lies along the spine of particle i
and I is the identity tensor. The magnitude S2 of the nematic
order parameter is given by the largest eigenvalue of T and
the corresponding eigenvector �̂2 gives the orientation of the
nematic director. We will define the nematic order parameter
as S2 = S2�̂2. For our system in d = 2 dimensions, the angle
of �̂2 with respect to the flow direction x̂ will define the
orientation angle θ2 of the nematic director.

We define the instantaneous nematic order parameter,
given by S2(γ ) and θ2(γ ), in terms of the tensor T(γ ) for the
specific configuration of the system after a total strain γ . We
define the ensemble-average nematic order parameter, given
by S2 and θ2, in terms of the ensemble-average tensor 〈T〉,
which is an average over configurations in the steady state.
Note that while 〈T〉 is a linear average over the instantaneous
T(γ ), the same is not in general true of S2 and θ2 because
of variations in the eigenvector directions of T(γ ), due either
to fluctuations about a steady state or to possible systematic
variations of T(γ ) with γ .

For a (d = 2)-dimensional system, one can show that the
above definitions for S2 and θ2 are equivalent to generaliza-
tions of Eqs. (22)–(24). For a given configuration after total
strain γ we have, for the instantaneous order parameter,

S2(γ ) = max
θ ′

[
1

N

N∑
i=1

cos[2(θi − θ ′)]

]
, (27)

with θ2(γ ) being the maximizing value of θ ′. From this one
can show [48] that

S2(γ ) =

√√√√[
1

N

N∑
i=1

cos 2θi

]2

+
[

1

N

N∑
i=1

sin 2θi

]2

(28)
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FIG. 10. For spherocylinders of asphericity α = 4 at γ̇ = 10−5,
instantaneous (a) magnitude S2(γ ) and (b) orientation θ2(γ ) of the
nematic order parameter vs total strain γ = γ̇ t , for several different
packing fractions φ. Horizontal dotted lines indicate the ensemble-
average values of S2 and θ2.

and

tan 2θ2(γ ) =
[

1

N

N∑
i=1

sin 2θi

]/[
1

N

N∑
i=1

cos 2θi

]
. (29)

The ensemble-average order parameters, given by S2 and θ2,
are similarly obtained, except by replacing the large square
brackets in Eqs. (27)–(29), which represent sums over parti-
cles in a particular configuration, by ensemble averages 〈· · · 〉
over the many different configurations in the steady state.

1. Time dependence of nematic ordering

The athermal shearing of aspherical rod-shaped particles
has been compared to the thermalized shearing of nematic
liquid crystals [12–14]. In the latter case, several different
types of behavior may occur depending on material param-
eters [51–54]. The system may settle into a steady state
with constant S2 and θ2; the system may “tumble,” with the
orientation of the nematic director θ2 rotating through π over
a well defined period; or the system might show “wagging,” in
which θ2 has periodic variations back and forth within a fixed
interval without rotating. We thus wish to investigate whether
such time-varying behavior exists in our athermal system.
Given that we do find that individual particles continue to
rotate even as the system gets dense, is there any coherent
rotation of particles that would lead to a systematic variation
of S2(γ ) with γ ? For our 2D spherocylinders we do indeed see
both tumbling and wagging of the nematic director; however,
we believe that these occur only as a transient effect due
to poor equilibration of the rotational degrees of freedom,
either because the density φ is so small that collisions are
rare or because α is so small that small moment arms lead
to small elastic torques and so take long times to reach proper
equilibration.

In Fig. 10 we plot the instantaneous S2(γ ) and θ2(γ ) vs
total strain γ = γ̇ t for spherocylinders of α = 4 at γ̇ = 10−5

for a few different packings φ. Our shearing starts from a
random initial configuration for which S2(0) ≈ 0. For the very
small φ = 0.1 we see damped oscillations in both S2(γ ) and
θ2(γ ) with a period 
γ ≈ 16.1, almost equal to the period
16.04 of an isolated particle. The behavior of θ2(γ ) identifies
this as a wagging of the order parameter. As γ increases,
the amplitude of these oscillations decays, but the periodicity
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FIG. 11. For spherocylinders of asphericity α = 0.01 at γ̇ =
10−6, instantaneous (a) magnitude S2(γ ) and (b) orientation θ2(γ )
of the nematic order parameter vs total strain γ = γ̇ t for several
different packing fractions φ. Horizontal dotted lines indicate the
ensemble-average values S2 and θ2; for φ = 0.77 this average is taken
only over the latter part of the run γ > 125.

remains. For φ = 0.3, the behavior at small γ is similar to
that at φ = 0.1, but the amplitude of the oscillations dies out
faster. At larger γ there is no longer any remnant of the initial
periodic behavior and S2(γ ) and θ2(γ ) show only random
fluctuations about the ensemble-average values S2 and θ2. For
larger φ, the initial transient dies out even more quickly.

In Fig. 11 we show similar plots of S2(γ ) and θ2(γ ), but
now for particles of α = 0.01 at γ̇ = 10−6. For the smallest
φ = 0.77 shown we see strong oscillations in S2(γ ), and θ2(γ )
initially makes full clockwise rotations with a period 
γ ≈
6.7, close to the period 6.28 for an isolated particle. As γ

increases, the rotations become a wagging and the amplitude
of the oscillations in S2(γ ) decreases, but there remains a
clear periodic behavior. For φ = 0.81 there are no longer any
initial rotations, but the wagging continues with a small erratic
amplitude but definite periodicity out to the largest γ . For
φ = 0.83 and above, we see only random fluctuations about
the ensemble-average values. We conclude from Figs. 10
and 11 that the rotating and wagging of the nematic order
parameter S2 are only transient effects that should die out if
the simulation is run long enough, rather than being stable
periodic motions of the macroscopic order parameter.

2. Ensemble-average nematic ordering

Having argued in the preceding section that we expect no
coherent time variation of the instantaneous nematic order
parameter S2(γ ) in a well equilibrated system, we turn now
to consider the ensemble-average nematic order parameter,
given by its magnitude S2 and orientation angle θ2. In an
earlier Letter [8] we plotted the ensemble-average S2 vs the
packing φ for spherocylinders of different aspect ratios. In
Fig. 12 we reproduce those results for asphericities α = 0.001
to 4, but now plotting vs the reduced packing fraction φ/φJ .
For each α we show results at two different strain rates
γ̇1 < γ̇2, whose values are given in Table I, to demonstrate
that our results are in the quasistatic limit where S2 becomes
independent of γ̇ , except for the largest φ approaching and
going above jamming. In Fig. 13 we similarly plot S2 vs φ,
but now showing results for a wider range of strain rates γ̇ ,
for the two particular cases α = 4 and α = 0.01. We see that
the dependence of S2 on γ̇ is strongest near the jamming
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FIG. 12. Magnitude of the ensemble-average nematic order pa-
rameter S2 vs reduced packing fraction φ/φJ for spherocylinders of
different asphericity α. For each α we show results for two different
small strain rates γ̇1 (closed symbols) < γ̇2 (open symbols) (see
Table I for values). The vertical dashed line locates the jamming
transition φ/φJ = 1.

transition, but that S2 appears to be approaching a finite limit
as γ̇ → 0.

Similar to what we observed for the angular velocity
−〈θ̇i〉/γ̇ in Figs. 7 and 8, our results for S2 show several
significant features. (i) As was found for −〈θ̇i〉/γ̇ , S2 is
nonmonotonic in φ, reaching a maximum at φS2 max somewhat
below the jamming φJ . As was found for an isolated particle
in Fig. 3(a), comparing Figs. 7 and 12 we see an anticorrela-
tion between angular velocity and nematic ordering; roughly
speaking, when −〈θ̇i〉/γ̇ decreases S2 increases and vice
versa. In Fig. 14 we plot φS2 max, the location of the maximum
in S2, and φθ̇ min, the location of the minimum in −〈θ̇i〉/γ̇ , vs
α. We see that they are close and become roughly equal for
α � 0.5. (ii) As α decreases, the variation in S2 gets squeezed
into an increasingly narrow range of φ, closer to φJ , and
the degree of ordering S2 decreases. However, even for the
very nearly circular particles with α = 0.001, the maximum
value S2 max = 0.33 remains relatively large. This is another
reflection of the singular α → 0 limit, discussed above in
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FIG. 13. Magnitude of the ensemble-average nematic order pa-
rameter S2 vs packing fraction φ at different strain rates γ̇ for
spherocylinders of asphericity (a) α = 4 and (b) α = 0.01. Vertical
dashed lines locate the jamming transitions φJ = 0.906 and φJ =
0.845, respectively.
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FIG. 14. Location φS2 max of the maximum in the nematic order
parameter S2 of Fig. 12 and location φθ̇ min of the minimum in the
angular velocity −〈θ̇i〉/γ̇ of Fig. 7, vs particle asphericity α.

connection with the angular velocity −〈θ̇i〉/γ̇ and reported in
our earlier Letter [8]. (iii) In the dilute limit at small φ, we
see S2 is increasing as φ increases, which is the opposite of
the behavior seen in Fig. 4(c) for the noisy isolated particle.
Thus, as we concluded also from the behavior of −〈θ̇i〉/γ̇ ,
one cannot regard the elastic collisions in the dilute gas limit
as behaving similarly to an effective temperature. In subse-
quent sections we will develop an understanding of behaviors
(i) and (ii).

Next we consider the orientation angle θ2 of the nematic
director. In Fig. 15 we plot θ2 vs the reduced packing φ/φJ

for different asphericities α, showing results for the two
values of strain rate γ̇1 < γ̇2 (see Table I for values). For an
isolated particle, θ2 = 0, indicating average alignment parallel
to the flow direction x̂. As φ increases from this small φ

isolated particle limit, we see that θ2 initially goes negative.
Increasing φ further, θ2 increases, becomes positive, and upon
approaching φJ saturates to a value that increases towards 45◦
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FIG. 15. Orientation of the ensemble-average nematic order pa-
rameter θ2 vs reduced packing fraction φ/φJ for spherocylinders of
different asphericity α. For each α we show results for two different
small strain rates γ̇1 (closed symbols) < γ̇2 (open symbols) (see
Table I for values). The vertical dashed line locates the jamming
transition φ/φJ = 1, the horizonal dashed line denotes θ2 = 45◦, and
the horizontal solid line denotes θ2 = 0.
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FIG. 16. Difference between nematic order parameter orienta-
tion θ2 and the orientation of the minimal stress eigenvector θ−,
vs reduced packing fraction φ/φJ for spherocylinders of different
asphericity α at small strain rates γ̇1 (see Table I for values). The
vertical dashed line locates the jamming transition φ/φJ = 1, the
horizonal dashed line denotes θ2 − θ− = −45◦, and the horizontal
solid line denotes θ2 − θ− = 0.

as α decreases; as φ gets close to and goes above φJ , we see a
slight decrease in θ2.

While at very small packing φ the particles tend to align
with the flow direction, one might think that, as the particle
packing increases, the nematic director would align with the
direction of minimal stress. However, we find that this is in
general not so. If p is the pressure and σ is the deviatoric
shear stress, the orthogonal eigenvectors of the stress tensor,
corresponding to eigenvalues p ± σ , are oriented at angles θ±
with respect to the flow direction x̂. In an earlier work [7] we
computed the angle of the minimum stress eigenvector, θ−.
At small φ for any α we find θ− ≈ 45◦, as it would be for
a uniformly sheared continuum. At dense φ, near and above
jamming, we find that θ− → 45◦ as α → 0, but otherwise
decreases from 45◦ as α increases. In between, θ− can vary
nonmonotonically as φ increases. In Fig. 16 we plot θ2 − θ−
vs φ for different α at the strain rate γ̇1 (see Table I for
values). We see that only for the smaller values α � 0.25 and
only approaching φJ and going above do we find θ2 ≈ θ−, i.e.,
the nematic order parameter is aligning close to the minimum
stress direction.

In Appendix A we discuss further properties of particle
orientations. By considering the distribution of particle orien-
tations P (θi ), we show that the angle θ2 of the nematic order
parameter is in general not equal to the most likely particle
orientation, determined by the maximum in P (θi), although
the two are close.

C. Time dependence of particle rotations

A principle result of the preceding two sections is the
observation that −〈θ̇i〉/γ̇ and S2 both vary nonmonotonically
as the packing φ increases. In this section we provide a
physical understanding of this behavior by demonstrating
that the minimum in −〈θ̇i〉/γ̇ represents a crossover from
small packings φ, where particle rotations are qualitatively
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FIG. 17. For spherocylinders of asphericity α = 4 at strain rate
γ̇ = 10−5, particle orientation θi vs net strain γ = γ̇ t for six ran-
domly selected particles at packings (a) φ = 0.50, (b) φ = 0.80,
(c) φ = 0.905 ≈ φJ , and (d) φ = 0.95. In each case particles 1, 2,
and 3 are big particles, while 4, 5, and 6 are small particles. The
diagonal dashed lines indicate the average rotation θi = (〈θ̇i〉/γ̇ )γ .

like the periodic rotations of an isolated particle (perturbed
by interparticle collisions), to large packings φ, where the
geometry of the dense packing becomes the dominant factor
influencing rotations, which then behave similar to a random
Poisson process. We will show this by considering the distri-
bution of strain intervals 
γ between successive rotations of a
particle by π .

In Sec. IV A we discussed the average angular velocity of
individual particle rotations, −〈θ̇i〉/γ̇ . Now we consider the
time evolution of a particle’s rotation. We consider first the
case of elongated particles with α = 4. In Fig. 17 we plot
θi(γ ) vs γ = γ̇ t for six randomly selected particles, three big
and three small, at several different packing fractions φ and
γ̇ = 10−5. The average motion θi = (〈θ̇i〉/γ̇ )γ is indicated
by the dashed diagonal line. Comparing Fig. 17 with the
corresponding curve for a isolated particle shown in Fig. 2(a),
we see a general similarity: There are plateaus near integer
values θi = −nπ , separated by regions where θi rapidly tran-
sitions by an amount −π , representing a clockwise flipping
of the orientation of the particle. Upon further inspection,
however, there are two important differences. For the case of
the isolated particle in Fig. 2(a), the plateaus show a small
downward slope due to the finite angular velocity θ̇i/γ̇ =
dθi/dγ = − f (0) = −[1 − (
Ii/Ii )]/2 when the particle is
oriented parallel to the flow. In Fig. 17, however, the plateaus
appear on average to be mostly flat. For the isolated particle,
the jumps in θi by −π , as the particle flips orientation, occur
in a perfectly periodic fashion. In Fig. 17, however, the timing
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FIG. 18. For spherocylinders of asphericity α = 4 at strain rate
γ̇ = 10−5, (a) distribution Pγ (
γ ) of the strain interval 
γ = γ̇ 
t
between successive clockwise rotations of a particle by π for differ-
ent packings φ. (b) With 
γ0 obtained from fitting the exponentially
decaying large 
γ tail of Pγ to exp(−
γ/
γ0 ), a comparison of
π/
γ0 vs the average particle angular velocity −〈θ̇i〉/γ̇ . The vertical
dashed line locates the jamming φJ .

between such jumps appears to be more random. In the
densest system at φ = 0.95 > φJ , shown in Fig. 17(d), we
also see that particle 1 makes a counterclockwise flip of +π

at small γ ; however, for α = 4 these counterclockwise flips
are rare events, occurring infrequently for φ = 0.95, and even
less so for smaller φ, over the length of our simulations.

In Fig. 17 we see that the average value of θi on these
plateaus lies slightly above the values −nπ at the larger
values of φ; the particles are thus at some small finite angle
θimodπ > 0 with respect to the flow direction. This is a
consequence of the increasing orientation angle of the nematic
director θ2 as φ increases, as shown in Fig. 15. We also see
that the fluctuations about the plateaus tend to increase as
φ increases. This is a consequence of the broadening of the
distribution of orientations P (θi ) as φ increases, as shown in
Appendix A.

Measuring the strain 
γ between two successive rotational
flips of a particle by −π , we plot the distribution Pγ (
γ )
vs 
γ for different φ at fixed γ̇ = 10−5 in Fig. 18(a). For
the smaller values of φ we find that Pγ peaks at the value

γ ≈ 16, which is the same as the strain interval between
the periodic flips by −π for an isolated particle, as seen in
Fig. 2(a); however, as φ increases, the distribution broadens
and is increasingly skewed towards values on the large 
γ

side of the peak. As φ increases further, we see that the
location of the peak in Pγ steadily shifts to smaller values
of 
γ and the large 
γ tail of the distribution becomes
exponential, as seen by the roughly linear decrease of the
distributions on our semilogarithmic plot. This exponential
waiting time between flips 
t = 
γ/γ̇ suggests that at large
φ particle flips are a Poisson-like process and that, aside from
an initial waiting time corresponding to the rise of Pγ to its
peak, the time until the next particle flip is independent of how
long the particle has spent since its last flip. Thus, unlike the
case of an isolated particle for which the particle undergoes
periodic rotation with a nonuniform angular velocity, here our
results suggest a scenario in which, as the particle density
increases, the reduced free volume between particles blocks
particle rotations, leaving particles to spend most of their time

having small angular deflections about a fixed value. Then,
after some random strain 
γ , a local rearrangement appears
that allows the particle to rotate rapidly through 
θi = −π .
The exponential distribution of the waiting times implies that
the appearance of such local rearrangements is uncorrelated,
except for a minimal waiting time.

Fitting the large 
γ tail of the distribution to Pγ ∝
exp(−
γ/
γ0), we determine the rate of particle flips
1/
γ0. This rate, which is just the slope of the lin-
early decreasing distributions in the semilogarithmic plot of
Fig. 18(a), is seen to be nonmonotonic in φ, reaching a
minimum value near φ ≈ 0.80. In Fig. 18(b) we plot this rate
as π/
γ0 vs φ and compare it to the average angular velocity
−〈θ̇i〉/γ̇ , shown previously in Fig. 8(a). If the Pγ were exactly
exponential distributions, these two curves would be equal,
but Pγ is not precisely exponential, due to the waiting time
represented by the rise of Pγ to its peak value. Because of
this waiting time we expect 〈
γ 〉 > 
γ0, and so −〈θ̇i〉/γ̇ =
π/〈
γ 〉 will lie below π/
γ0, as we indeed find to be the
case. Nevertheless, we see that at the larger φ, π/
γ0 behaves
qualitatively the same as −〈θ̇i〉/γ̇ , with a similar minimum
around φθ̇ min ≈ 0.80; the difference between the two curves
becomes greatest as φ decreases below the minimum.

We thus form the following picture. At small φ particles
behave similarly to isolated particles, with the typical strain

γ between particle flips being roughly equal to that of an
isolated particle, but with random fluctuations due to particle
collisions; these fluctuations are skewed to larger 
γ , thus
causing the decrease in −〈θ̇i〉/γ̇ . The average 〈
γ 〉 at these
small φ is significantly different from the 
γ0 that describes
the large 
γ tail of the distribution. As φ increases, however,
the flips become more of a Poisson-like process in which the
average time until the next particle flip is independent of the
time since the last flip. The exponential part of the distribution
Pγ dominates the behavior and 
γ0 gives a qualitative expla-
nation for the average angular velocity −〈θ̇i〉/γ̇ in the range
of φ approaching the minimum φθ̇ min and going above.

Note that, although we described the rotations by π in
Figs. 17(c) and 17(d) as “rapid,” this is meant as rapid relative
to the strain interval 
γ between successive particle rotations.
Upon closer examination, a particle rotation takes place over a
typical strain scale of δγ ∼ 5; this is roughly the strain needed
for particles of tip-to-tip length 5Ds, in neighboring rows
parallel to the flow direction, to slide past one another. Thus
the entire configuration has undergone substantial change over
the time it takes the particle to rotate; moreover, although,
as we will argue later, there is no long-range coherence
in particle motion, there are strong correlations in particle
motion on short length scales. It is therefore not obvious
to visually identify the particular configurational fluctuations
that facilitate particle rotations.

Next we consider the case of nearly circular particles with
α = 0.01. For an isolated particle, 
Ii/Ii = 0.0085 is so small
that a plot of θi vs γ would look like a straight line of slope
−1/2; no plateaus are observable to the eye. In Fig. 19 we plot
θi(γ ) vs γ = γ̇ t for six randomly selected particles, three big
and three small, at several different packing fractions φ and
γ̇ = 10−6. The average motion θi = (〈θ̇i〉/γ̇ )γ is indicated by
the dashed diagonal line. For φ = 0.81, below the minimum
in −〈θ̇i〉/γ̇ at φθ̇ min [see Fig. 8(b)], we see in Fig. 19(a) small
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FIG. 19. For spherocylinders of asphericity α = 0.01 at strain
rate γ̇ = 10−6, particle orientation θi vs net strain γ = γ̇ t for six
randomly selected particles at packings (a) φ = 0.81, (b) φ = 0.83,
(c) φ = 0.84 ≈ φJ = 0.845, and (d) φ = 0.86. In each case particles
1, 2, and 3 are big particles, while 4, 5, and 6 are small particles. The
dashed lines indicate the average rotation θi = (〈θ̇i〉/γ̇ )γ .

fluctuations about the isolated particle behavior. For φ =
0.83 ≈ φθ̇ min in Fig. 19(b), near the minimum in −〈θ̇i〉/γ̇ ,
we see larger fluctuations, some small isolated plateaus where
particles stay at a fixed orientation, but for the most part
particles are rotating nearly uniformly. However, for φ = 0.84
in Fig. 19(c), just below the jamming φJ = 0.845, and for φ =
0.86 in Fig. 19(d), above φJ , we see dramatically different
behavior. Fluctuations are now extremely large and rotation
is highly nonuniform. Compared to Fig. 17 for α = 4, here
it is hard to identify clear plateaus and there is considerable
counterclockwise rotation (where θi increases with increasing
γ ) in addition to clockwise rotation (where θi decreases with
increasing γ ).

Nevertheless, we can still carry out an analysis of flipping
times in analogy with what we did for α = 4 in Fig. 18. If we
denote by γ1 the strain at which a given particle trajectory first
passes through θi = −(n + 1/2)π upon rotating clockwise
and by γ2 the strain at which it next passes through θi =
−(n + 3/2)π , then 
γ− = γ2 − γ1 can be taken as the net
strain displacement over which the particle has flipped its ori-
entation, rotating clockwise through an angle π . In a similar
way we can determine 
γ+, the net strain displacement for
the particle to flip its orientation rotating counterclockwise
through an angle π .

In Figs. 20(a) and 20(b) we plot the distributions P−
γ (
γ−)

for clockwise flips and P+
γ (
γ+) for counterclockwise flips,

respectively, for different packings φ at γ̇ = 10−6. De-
spite the qualitative differences in the trajectories θi(γ )
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FIG. 20. For spherocylinders of asphericity α = 0.01 at strain
rate γ̇ = 10−6, distributions (a) P−

γ (
γ−) for the strain interval

γ− between successive clockwise rotations of a particle by π for
different packings φ and (b) P+

γ (
γ+) for the strain interval 
γ+
between successive counterclockwise rotations of a particle by π for
different packings φ.

for α = 0.01, shown in Fig. 19, from those for α = 4, shown
in Fig. 17, the distribution P−

γ for α = 0.01 shows the same
qualitative behavior as the Pγ found for α = 4 in Fig. 18(a).
For small φ � 0.82, the peak in P−

γ lies close to 
γ− ≈
6.3, which is the same as the strain interval between the
periodic rotations by π of an isolated particle. However, as
φ increases, approaching the minimum in −〈θ̇i〉/γ̇ at φθ̇ min ≈
0.83, the distribution broadens and an exponential tail appears
on the large 
γ− side of the peak. As φ increases above 0.83
the location of the peak in P−

γ shifts towards smaller 
γ−
and the exponential tails grow, until at our largest values of
φ the distribution P−

γ is almost a pure exponential. Fitting
to the large 
γ− tail of P−

γ , we determine the exponential
rate 1/
γ0−, which is just the slope of the linearly decreasing
distributions in the semilogarithmic plot of Fig. 20(a). We see
that this rate is nonmonotonic, having its smallest value at φ ≈
0.83 ≈ φθ̇ min, where the average angular velocity −〈θ̇i〉/γ̇ is
minimum.

For counterclockwise rotations, we see that the distribu-
tions of P+

γ , shown in Fig. 20(b), are close to exponential,
with a rate that rapidly decreases as φ decreases from above
jamming towards the φθ̇ min ≈ 0.83 that locates the minimum
in −〈θ̇i〉/γ̇ . For φ < 0.835, counterclockwise rotations are
so rare over the length of our simulation runs that we are
unable to determine the distribution P+

γ at such small φ. For
φ � 0.835 we fit the large 
γ+ tails of P+

γ to determine the
exponential rate 1/
γ0+. In Fig. 21(a) we plot the clockwise
and counterclockwise rates as π/
γ0− and π/
γ0+ vs φ.
As found for π/
γ0 for α = 4 in Fig. 18(b), we see that
π/
γ0− has a minimum at φ = 0.83 ≈ φθ̇ min, where −〈θ̇i〉/γ̇
is minimum. In contrast, π/
γ0+ is getting small, and per-
haps vanishing, as φ → 0.83 from above.

If the distributions P−
γ and P+

γ were exactly exponential,
then the average angular velocity would just be (π/
γ0−) −
(π/
γ0+). In Fig. 21(b) we compare this quantity with the
exactly computed −〈θ̇i〉/γ̇ , plotting both vs the packing φ.
As for the case of spherocylinders with α = 4, shown in
Fig. 18(b), we see that these two curves qualitatively agree
upon approaching the minimum at φθ̇ min = 0.83 and going
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FIG. 21. For spherocylinders of asphericity α = 0.01 at strain
rate γ̇ = 10−6, (a) rates π/
γ0− and π/
γ0+ characterizing the
exponential tails of the distributions P−

γ and P+
γ for the wait

times for clockwise and counterclockwise rotations of a particle
by π and (b) average particle angular velocity −〈θ̇i〉/γ̇ compared
to (π/
γ0−) − (π/
γ0+) vs packing φ. The dashed vertical line
locates the jamming φJ .

above, but they quickly separate as φ decreases below 0.83.
As with α = 4, the difference between the two curves results
from the fact that the distributions P−

γ and P+
γ are not exactly

exponential, with 〈
γ±〉 > 
γ0± due to the rise of the distri-
butions to their peak at a finite 
γ±; this difference becomes
most pronounced at the smaller φ < 0.83.

Our analysis of spherocylinders with both α = 4 and α =
0.01 thus points to a common scenario. The minimum in
−〈θ̇i〉/γ̇ at φθ̇ min results from a crossover between two dif-
ferent types of behavior as φ varies. For φ 
 φθ̇ min, particles
behave qualitatively like isolated particles. While an isolated
particle will have perfectly periodic rotations by π given by a
strain period of 
γ̄ = 2π/

√
1 − (
Ii/Ii )2 [see Eq. (17)], the

interacting particles will have a distribution of 
γ that peaks
near 
γ̄ but has a finite width, with a skew to the large 
γ

side of the peak; the width of the distribution and the skew in-
crease as φ increases, giving a decreasing −〈θ̇i〉/γ̇ . This effect
is presumably a result of the reduction in free volume between
the particles as φ increases, thereby inhibiting rotations. For
φ � φθ̇ min, however, the distribution peak shifts down towards
zero and the distribution becomes increasingly exponential
as φ increases. This exponential distribution suggests that
rotations by π become a Poisson-like process; particles in
general fluctuate about fixed orientations, while flips with a
π rotation occur at uncorrelated random times set by a rate
1/
γ0. The time until the next flip is largely independent of
the time since the last flip, except for a minimum waiting time.
As φ increases above φθ̇ min, the flipping rate 1/
γ0 increases
and so −〈θ̇i〉/γ̇ increases.

D. Pure vs simple shearing

In this section we present another analysis that again sug-
gests that the nonmonotonic behavior of −〈θ̇i〉/γ̇ and S2, as
φ increases, results from a crossover from single-particle-like
behavior to behavior dominated by the geometry of the dense
packing. Our analysis here focuses on the magnitude of the
nematic order parameter S2. Our results will also offer an
explanation for the singular behavior reported in our earlier
Letter [8], in which we found, for simple shearing, that as

α → 0 and particles approach a circular shape, S2 vanishes
for φ < φJ but S2 remains finite at and just above φJ .

All the results elsewhere in this paper involve the behavior
of our system under simple shearing. Here, however, we
consider the behavior of our system under pure shearing. As
we discuss below, the behavior of an isolated single particle is
dramatically different under pure vs simple shearing. We will
find that the behavior of S2 of our many-particle system is
similarly qualitatively different for pure vs simple shearing at
small packings, but that they are qualitatively the same at large
packings, thus suggesting the crossover described above.

In our model, dissipation arises due to a viscous drag
between the local velocity of the particle and the local velocity
vhost (r) of the suspending host medium. For simple shear
in the x̂ direction, vhost (r) = γ̇ yx̂. For a more general linear
deformation of the host medium we can write

vhost (r) = �̇ · r, (30)

with �̇ the strain rate tensor. For simple shear we can write

�̇ss =
[

0 γ̇

0 0

]
=

[
0 γ̇ /2

γ̇ /2 0

]
+

[
0 γ̇ /2

−γ̇ /2 0

]
. (31)

The first term on the rightmost side of Eq. (31) represents a
pure shear distortion, in which the host medium is expanded
in the x̂ + ŷ direction, while being compressed in the x̂ − ŷ
direction, both at a rate γ̇ /2, so as to preserve the system area.
The second term represents a clockwise rotation (−γ̇ /2)ẑ ×
r, with angular velocity −γ̇ /2. Thus a simple shear can be
viewed as the sum of a pure shear and a rotation. It is this
rotational part which gives rise to the constant term 1/2 in the
angular driving function f (θ ) of Eq. (14), while the pure shear
part gives rise to the cos 2θ term. It is the rotational part that
drives the continuous rotation of particles under simple shear,
resulting in the finite −〈ωzi〉/γ̇ > 0 found in steady state, as
seen in Fig. 7. Studying pure shear thus allows us to study
the orientational ordering of the system in the absence of the
rotational drive.

For our pure shear simulations we choose x̂ as the ex-
pansive direction and ŷ as the compressive direction, using
periodic boundary conditions in both directions. In this case,
the translational and rotational equations of motion for pure
shear become

ṙi = γ̇

2
(xix̂ − yiŷ) + Fel

i

kdAi
, (32)

θ̇i = − γ̇

2


Ii

Ii
sin 2θi + τ el

i

kdAiIi
. (33)

For an isolated particle, where τ el
i = 0, one can solve the

rotational equation of motion analytically,

|tan θi(t )| = e−γ̇ t
Ii/Ii |tan θi(0)|. (34)

An isolated particle will relax exponentially to θi = 0 or
π with a relaxation time trelax set by a total strain γrelax =
γ̇ trelax = Ii/
Ii. Unlike simple shearing, there is no contin-
uing rotation of the particle. Thus, for an isolated particle
under pure shearing, we find perfect nematic ordering with
S2 = 1 and θ2 = 0 for particles of any asphericity α. This is
in contrast to the behavior under simple shearing, where, due
to continuing particle rotation, Eq. (18) gives S2 < 1.
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This difference between pure and simple shearing is most
dramatic for the case of a nearly circular particle with small
α. For small α, Eq. (19) gives a small 
Ii/Ii ∼ α. For pure
shearing, an isolated particle will relax to perfect ordered
alignment with the minimal stress direction, S2 = 1 and θ2 =
0, although the relaxation strain to achieve that ordered state,
γrelax = Ii/
Ii ∼ 1/α, grows large as α decreases. For simple
shearing, however, an isolated particle with small α will
continue to rotate, with a nearly uniform angular velocity
θ̇i ≈ −γ̇ /2, so that Eq. (18) gives S2 ∼ 
Ii/Ii ∼ α, which
thus vanishes as α decreases to zero.

To investigate the response to pure shear at a finite packing
φ, in particular near and above jamming, we carry out numeri-
cal simulations. Unlike simple shear, where the system lengths
Lx and Ly remain constant as the system strains, under pure
shear these lengths change with the total strain γ according to
Lx(γ ) = Lx(0)eγ /2 and Ly(γ ) = Ly(0)e−γ /2. Thus a practical
limitation of pure shear simulations is that, unlike for simple
shear, there is a limit to the total strain γ that can be applied
to a finite numerical system before the system collapses to
a narrow height of order one particle length. Therefore, to
increase the total possible strain γ , we use systems with
an initial system aspect ratio of Ly(0)/Lx(0) = β and shear
to a strain γ such that Ly(γ )/Lx(γ ) = 1/β, thus allowing a
maximum strain of γmax = 2 ln β. The value of β and the
number of particles N are varied with α, so the final system
height after the maximal strain is comparable to the fixed
system length of our simple shear simulations. In particular,
for α � 0.01 we use β = 12 and N = 4096; for 0.01 < α < 4
we use β = 16 and N = 8192; for α = 4 we use β = 20 and
N = 16 384. All our results below use a fixed strain rate γ̇ =
10−6 and start from random initial configurations, constructed
in the same manner as for our simple shear simulations.

In Fig. 22(a) we plot S2 vs strain γ at several different
packings φ for our elongated particles with α = 4. We see that
as γ increases, S2 rises from its near zero value in the initial
random configuration and saturates to a constant steady-state
value at large γ . As φ increases, this steady-state value of
S2 decreases, as the decreasing free volume associated with
the increasing particle density blocks particles from perfect
alignment. In Fig. 22(b) we plot the corresponding orientation
of the nematic order parameter θ2 vs γ . We see that θ2 starts at
some finite value, depending on the small, randomly directed,
residual S2 in the initial random configuration, and then
rapidly decays to θ2 = 0 as γ increases. Thus, as expected,
the pure shearing orders the particles with a nematic order
parameter oriented parallel to the minimal stress direction.
Our results in Figs. 22(a) and 22(b) are from a single pure
shear run at each φ.

In Figs. 22(c) and 22(d) we show corresponding results for
S2 and θ2 vs γ for the case of nearly circular particles with
α = 0.01. Again we see that S2 increases from zero to saturate
at a steady-state value as γ increases. Unlike the very slow
relaxation γrelax ∼ 1/α we expect for an isolated particle, here
we see that relaxation to the steady state is relatively rapid at
large packings φ; the frequent collisions between particles at
large densities act to quickly equilibrate the system. However,
as φ decreases, the relaxation strain γrelax increases, and at our
smallest packing φ = 0.82, S2 fails to saturate to the steady-
state value within our maximum strain γmax = 2 ln 12 ≈ 5.
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FIG. 22. For a pure shear deformation, (a) and (c) show the
magnitude of the nematic order parameter S2 vs total strain γ = γ̇ t
at different packing fractions φ for particles of asphericity α = 4 and
0.01, respectively; (b) and (d) show the corresponding orientation θ2

of the nematic order parameter. Results are for a strain rate γ̇ = 10−6

with the number of particles N as indicated in each panel. Solid lines
connect data points; symbols are shown only on a dilute set of the
data points so as to aid identification of the different curves. The
jamming packing fraction is φJ = 0.906 for α = 4 and φJ = 0.845
for α = 0.01.

We previously reported similar results for α = 0.001 in the
Supplemental Material to Ref. [8]. Our results in Figs. 22(c)
and 22(d) are from the average of two independent runs at
each φ.

We note that similar simulations have been carried out by
Azéma and Radjaï in Ref. [18] for frictional 2D spherocylin-
ders near the jamming packing, but using a constant lateral
pressure rather than a constant volume and shearing only to
much smaller total strains than we do here. They similarly find
that particles orient parallel to the minimal stress direction as
they are sheared, but they seem to reach the large strain steady
state only for relatively small particle asphericities.

In Fig. 23 we plot the pure shear steady-state value
of S2 vs φ (solid symbols, dotted lines) at several of our
smaller α, showing only results where S2(γ ) has saturated
to the large γ steady-state value. We see that as φ de-
creases, S2 monotonically increases. Based on the behav-
ior of an isolated particle, given by Eq. (34), we believe
that S2 will continue to increase and approach unity as
φ → 0; however, we cannot see this explicitly since we
would need larger strains γ to reach the steady state as φ

decreases.
For comparison, we also show in Fig. 23 our results for the

steady-state value of S2 vs φ obtained from simple shearing
(open symbols, solid lines). For α = 0.001 and 0.01 we show
results for γ̇ = 10−6, the same rate as we used in the pure
shear simulations. For α = 0.06 we use γ̇ = 4 × 10−6 and for
α > 0.06 we use γ̇ = 10−5; however, in these cases the results
of Fig. 12 show that these larger γ̇ have already reached the
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FIG. 23. Magnitude of the steady-state nematic order parame-
ter S2 vs packing φ for pure shear (closed symbols, dotted lines)
compared to simple shear (open symbols, solid lines), for several
small values of particle asphericity α. For pure shear the strain rate
is γ̇ = 10−6. For simple shear γ̇ = 10−6 for α = 0.001 and 0.01; for
larger α a larger γ̇ is used, but one that is still in the quasistatic limit
where S2 becomes independent of γ̇ .

quasistatic limit, where S2 becomes independent of γ̇ , for the
range of φ of interest.

While at the largest φ we see that S2 from pure shearing is
somewhat smaller than that from simple shearing, the two are
qualitatively similar and remain so as φ decreases. However,
as φ approaches and decreases below φS2 max, the location of
the peak in S2 for simple shearing, we see that S2 for pure
shearing continues to increase while S2 for simple shearing
reaches its maximum and then decreases. Thus, above φS2 max

pure and simple shearing induce qualitatively similar orienta-
tional ordering, while below φS2 max they become dramatically
different.

The nonmonotonic behavior of S2 under simple shearing
can thus be understood as a competition between rotational
drive and free volume. At large φ, the small free volume
inhibits particles from aligning. As φ decreases, the free
volume increases, allowing a better particle alignment and
a larger S2. In such dense configurations, particles undergo-
ing simple shear still rotate with a finite 〈θ̇i〉/γ̇ ; however,
according to the results of Sec. IV C, these rotations occur
randomly as a Poisson-like process with the average rotation
rate being determined by the long waiting time tails of the
distribution [see Figs. 18(a) and 20(a)]; particle orientations
are driven primarily by the interactions with other particles.
As φ decreases below φS2 max, the rotational drive of the
simple shear becomes dominant and particle rotation becomes
more similar to the periodic rotations of an isolated particle,
but with random perturbations due to particle collisions [see
Sec. IV C, particularly Figs. 18(a) and 20(a)]. In this case, the
particle rotations act to reduce the orientational ordering (and
destroy it as α → 0) and S2 decreases; this is unlike the case
of pure shearing where there is no such rotational driving term
[i.e., the second term on the right-hand side of Eq. (31)] and
S2 continues to increases as φ decreases.

The above scenario also helps to understand the singular
α → 0 behavior under simple shearing, discussed in our
recent Letter [8], in which as particles approach a circular

shape, S2 vanishes for φ < φJ but S2 remains finite at and
just above φJ . Such singular behavior is suggested in Fig. 23,
where we see that, for nearly circular particles with α = 0.001
undergoing simple shearing, the peak value of S2 max ≈ 0.3 re-
mains relatively large, even though the fraction of the particle
perimeter occupied by the two flat sides is only 0.064%. In
Appendix B we present further analysis to determine the φ

dependence of both S2 and −〈θ̇i〉/γ̇ in the α → 0 limit (see
Fig. 38).

For nearly circular particles with small α, at small φ well
below φS2 max, the rotational drive causes the particles to rotate
almost uniformly with −〈θ̇i〉/γ̇ ≈ 1/2, which by Eqs. (18)
and (19) results in a small S2 ∝ α. Particle collisions that give
significant torques that increase S2 only occur as the particle
density increases to φS2 max, which itself increases to the α = 0
jamming fraction φ

(0)
J as α → 0 [8]. Thus we expect that as

α → 0, S2 ∝ α → 0 for all φ < φ
(0)
J . Above φ

(0)
J , however,

particle interactions dominate over the rotational drive and S2

behaves as it would under pure shearing, with a finite S2 that
decreases as φ increases. Moreover, as α → 0, we found in
Fig. 15 that the orientation of the nematic order parameter
becomes θ2 ≈ 45◦ above φ

(0)
J ; hence S2 is aligning along the

minimal stress direction (see also Fig. 16), again just as it
does under pure shearing. Thus the singular behavior of S2

as α → 0 for simple shearing is due to a sharp transition from
the domination by rotational drive at φ < φJ to domination by
geometric effects of the dense packings at φ > φJ .

We have thus explained the nonmonotonic behavior we
have found for S2 in terms of the competition between
rotation and free volume. However, recent simulations by
Trulsson [21], on the simple shearing of 2D ellipses, found
that the nonmonotonic behavior of S2, seen for frictionless
particles as φ increases, goes away once interparticle frictional
forces are added. Instead of S2 decreasing as φ increases above
some φS2 max, for frictional particles S2 seems to saturate to a
constant value as φ increases. However, Trulsson simulates
in the hard-core particle limit and so all his simulations take
place for φ � φJ (μp), where φJ (μp) is the jamming packing
fraction for particles with interparticle frictional coefficient
μp. For frictional particles, the additional frictional forces act
to stabilize particle packings at smaller densities than the ge-
ometric jamming limit found for frictionless particles [55,56]
and so φJ (μp) < φJ (μp = 0). The difference between φJ (μp)
and φJ (μp = 0) increases as α increases [21]. Whereas for
simple shear-driven jamming φJ (μp = 0) seems to mono-
tonically increase as α increases, φJ (μp) initially increases,
reaches a maximum, and then decreases; the difference in
φJ between the frictionless and the frictional cases becomes
more dramatic as μp increases (see Fig. 6 of Ref. [21]). Thus
Trulsson’s simulations do not probe the large density limit
approaching geometric random close packing and so might
not reach the dense limit where free volume effects are domi-
nating the behavior of S2. Fixed-volume simulations with soft-
core frictional particles, allowing one to investigate the range
of φ above φJ (μp), might thus help to clarify the situation.

E. Relaxation to the steady state

In this section we address a second issue concerning
the nematic orientational ordering of aspherical particles in
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simple shear flow. Since there is a finite orientational order S2

even for an isolated single particle, is the finite S2 observed
in the many-particle system just a consequence of shearing
acting like an ordering field? Or is the macroscopic S2 in the
many-particle system a consequence of cooperative behavior
among the particles, as in an equilibrium ordering transition?
In this section we investigate this question by considering
the relaxation of the system when perturbed away from the
steady state.

In Sec. IV B 1 we argued that the nematic order parameter
S2 does not show any coherent time-dependent behavior,
but rather has a constant value in the sheared steady state.
However, if S2 is perturbed away from this steady-state value
by a coherent rotation of all particles, it will relax back to
the steady state. In Ref. [14] Wegner et al. suggested, by
analogy with behavior in ordered nematic liquid crystals, that
the relaxation of S2 should obey a macroscopic equation of
motion that can be written in the form

θ̇2 = −γ̇C(1 − κ cos 2θ2). (35)

If such an equation holds, it would suggest that S2 reflects a
macroscopic ordering resulting from the coherent interaction
of many particles.

The macroscopic equation (35) is similar to Eq. (13) for the
rotation of an isolated particle, except now it is assumed that
κ > 1. This gives a stable steady-state equilibrium value of
θ ss

2 = 1
2 arccos(1/κ ) and an unstable equilibrium value (θ̇2 =

0) at θ2 = −θ ss
2 . One can then rewrite Eq. (35) as

θ̇2 = −γ̇C

(
1 − cos 2θ2

cos 2θ ss
2

)
. (36)

Defining θ2 ∈ (−π/2, π/2], the above equation of motion
predicts that when |θ2| < θ ss

2 , then S2 will relax to the steady
state by rotating counterclockwise to approach θ ss

2 ; however,
when θ2 lies outside this interval, S2 will relax to the steady
state by rotating clockwise to approach θ ss

2 .
To test this prediction we prepare numerical samples in

which the steady state S2 is rotated clockwise by a predeter-
mined amount and then measure the relaxation of S2 and θ2

back to the steady state as the system is sheared. To create
these samples with rotated S2 we use the method illustrated
in Fig. 24. A system with shear strain γ , sampled from
our steady-state ensemble, is rotated clockwise by the angle
ψ = cot−1γ so that the two sides of the system boundary
which were previously slanted now become the horizontal
sides parallel to the flow direction. We then continue to shear
the system in the horizontal direction.

Such a rotation preserves the boundary conditions of the
original configuration; the periodic boundary condition pre-
viously obeyed at the slanted sides now becomes the Lees-
Edwards boundary condition at the new horizontal sides and
vice versa, as illustrated by the shaded circles and squares on
the various sides in Fig. 24. If the original configuration had
a length Lx and a height Ly, the new rotated configuration has
length Ly

√
1 + γ 2 and height Lx/

√
1 + γ 2. If the original S2

was at an angle θ2, close to but not necessarily exactly equal
to θ ss

2 because of fluctuations, the new S2 will be at an angle
θ2 − ψ . By choosing different strains γ at which to make this
system rotation, we wind up with configurations in which the

Lx

L
y

γLy

S2

S2

Lx = Ly 1 + γ2

L
y

=
L

x

1
+

γ
2

ψ

θ2

θ2 − ψ

FIG. 24. Schematic of the procedure to construct a configuration
in which the nematic order parameter S2 is rotated clockwise by
an angle ψ . Start with a configuration with a net shear strain γ =
cot ψ (left figure) and rotate by ψ to create the new configuration
(right figure). Under this transformation the configuration boundary
conditions are preserved, as indicated by the shaded circles and
squares on the various sides of the system boundary, but the system
aspect ratio changes, Ly/Lx → Lx/Ly(1 + γ 2).

original steady-state S2 has been rotated by various angles
ψ = cot−1 γ . To avoid a too elongated system when we rotate
at a large γ (so as to produce a small rotation angle ψ), we
start with an initial system in which Lx > Ly, instead of our
usual Lx = Ly.

We first consider the relaxation of a system of moderately
elongated spherocylinders with asphericity α = 4. Using a
system sheared at a strain rate γ̇ = 10−5, Fig. 25 shows the
relaxation of the rotated nematic order parameter S2 back to
the steady state. In Figs. 25(a) and 25(b) we show the relax-
ation of the orientation θ2 vs net strain γ = γ̇ t , at packing
fractions φ = 0.80 and 0.95, respectively; φ = 0.80 is the
packing that gives the minimum in −〈θ̇i〉/γ̇ , while φ = 0.95
is above the jamming φJ = 0.906. Figures 25(c) and 25(d)
show the corresponding relaxation of the magnitude S2. For
each φ we show results for rotations through several different
angles ψ , giving different initial values of θ init

2 = θ ss
2 − ψ . For

ease of comparison, for each curve the strain axis has been
shifted so that the point where θ2 = 0 occurs at γ = 0; this
also corresponds to the point where |dθ2/dγ | is largest (for
the cases with the smallest θ init

2 , where particles relax by a
pure clockwise rotation, this point corresponds to where θ2,
consistent with our definition of θ2 ∈ (−π/2, π/2], takes a
discontinuous jump from −90◦ to +90◦).

Denoting the values of ±θ ss
2 by horizontal dashed lines, in

Figs. 25(a) and 25(b) we see that for θ init
2 sufficiently more

negative than −θ ss
2 , the order parameter angle θ2 does relax

back to the steady state by rotating clockwise, in agreement
with Eq. (36). Similarly, for −θ ss

2 < θ init
2 < 0 we see that θ2

relaxes by rotating counterclockwise, again in agreement with
Eq. (35). However, there exists a region of θ init

2 � −θ ss
2 where

the order parameter starts rotating clockwise, then reverses
direction to rotate counterclockwise, overshoots θ ss

2 , and then
reverses direction again, rotating clockwise to relax back to
θ ss

2 . The two curves that separate the region where θ2 relaxes
in a purely clockwise fashion from the region where it starts
clockwise but then reverses to counterclockwise are indicated
by thicker lines in the figures. Since Eq. (36) predicts a
monotonic increase (i.e., counterclockwise rotation) or mono-
tonic decrease (i.e., clockwise rotation) of θ2 as the system
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FIG. 25. For spherocylinders of asphericity α = 4 at strain rate
γ̇ = 10−5, (a) and (b) instantaneous angle θ2 and (c) and (d) instan-
taneous magnitude S2 of the nematic order parameter S2, vs shear
strain γ = γ̇ t , after a rotation of a configuration in the steady state
by different angles ψ as illustrated in Fig. 24. (a) and (c) are for
φ = 0.80 near the minimum in −〈θ̇i〉/γ̇ , while (b) and (d) are for φ =
0.95 above the jamming φJ = 0.906. In (a) and (b) the leftmost point
on each curve gives the initial value θ init

2 after the system rotation;
the horizontal dashed lines give the ensemble-average steady-state
values of ±θ ss

2 . In (c) and (d) the horizontal dashed line gives the
ensemble-average steady-state value of S2. For ease of comparison,
the strain axis has been shifted for each curve so that the point where
θ2 = 0 or 90◦ occurs at γ = 0. The two thicker curves denote (i) the
largest of our θ init

2 that results in a pure clockwise relaxation to the
steady state and (ii) the smallest of our θ init

2 that results in a mostly
counterclockwise relaxation.

relaxes, it cannot be describing the system well for such θ init
2 .

Moreover, being a first-order differential equation, Eq. (36)
would predict that θ2(γ ) would follow a fixed trajectory deter-
mined solely by the initial value θ init

2 . However, in Figs. 25(a)
and 25(b) we see curves that pass through the same value
of θ2 (for example, θ2 = 0) but do not then follow the same
trajectory as γ increases.

The reason for this more complex behavior lies in the
behavior of the magnitude of the order parameter, which in
Eq. (36) is presumed to stay constant. In contrast, we see in
Figs. 25(c) and 25(d) that the rapid change in θ2 at γ = 0
is accompanied by a pronounced drop in the magnitude of
the order parameter S2. The largest drop in S2, almost but
not quite to zero, occurs for those θ init

2 which give curves
that are on the border between a pure clockwise relax-
ation and where the relaxation reverses from initially clock-
wise to counterclockwise (indicated by the thicker curves in
the figure).

To understand this behavior of S2, in Fig. 26 we show an
intensity plot of the orientations θi of the individual particles,
as a function of the net shear strain γ = γ̇ t , as the system
relaxes following the rotation of a configuration sampled from
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FIG. 26. For spherocylinders of asphericity α = 4 at strain rate
γ̇ = 10−5 and packing φ = 0.80, intensity plot showing the number
of particles oriented at a particular angle θi vs net strain γ = γ̇ t ,
as the system relaxes back to steady state after an initial rotation
of a configuration sampled from the steady-state ensemble. The
nematic order parameter S2 is rotated to have the value of θ init

2 that
corresponds to the curve in Fig. 25(c) that has the largest drop in the
magnitude S2 at γ = 0. The strain scale γ has been shifted so that the
left edge of the figure corresponds to the initial configuration after
the rotation, while γ = 0 corresponds to the strain at which θ2 = 0.
Horizontal dashed lines indicate the values of ±θ ss

2 ; the vertical
dashed line indicates γ = 0.

the steady state. At each γ , the range of angles θi is binned
into 2◦ intervals and we count the number of particles with
orientation θi in each bin; this count is then imaged by the
grayscale as shown. We use the same system as in Figs. 25(a)
and 25(c), with α = 4 and γ̇ = 10−5 at packing φ = 0.80;
a rotation is chosen that corresponds to the curve with the
largest drop in S2 seen in Fig. 25(c). We see that some fraction
of the particles relax by rotating clockwise, while the others
relax by rotating counterclockwise. At γ = 0, corresponding
to the smallest value of S2, we see the broadest distribution
of values of θi. The sharp drop in S2 as the system relaxes
back to steady state is thus due to the lack of coherence in the
relaxation of the individual particles. We find qualitatively the
same behavior if we look at other packing fractions near and
above jamming. We note that similar results as in our Figs. 25
and 26 have been observed experimentally by Börzsönyi et al.
for the relaxation of shear-reversed dry granular 3D packings
of glass cylinders [13].

Finally, in Figs. 27 and 28 we show similar plots, but
now for nearly circular particles with α = 0.01. We see the
same qualitative features as were found for the more elon-
gated particles with α = 4. We thus conclude from these
relaxation simulations that the nematic ordering S2 in our
simple sheared system is a consequence of the shearing acting
as an ordering field and not due to large-scale cooperative
behavior among the particles. The sharp drop in the magnitude
S2 to small values, as the system relaxes back to steady
state, demonstrates that the relaxation takes place through
the incoherent rotation of individual particles, not a coherent
rotation of many particles that would preserve the magnitude
of the ordering. We will confirm the absence of long-range
coherence in particle orientations in a separate work [57],
where we directly compute the spatial correlation function of
S2 and find it to be short ranged.
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FIG. 27. For spherocylinders of asphericity α = 0.01 at strain
rate γ̇ = 10−6, (a) and (b) instantaneous angle θ2 and (c) and (d) in-
stantaneous magnitude S2 of the nematic order parameter S2, vs shear
strain γ = γ̇ t , after a rotation of a configuration in the steady state
by different angles ψ as illustrated in Fig. 24. (a) and (c) are for
φ = 0.83 near the minimum in −〈θ̇i〉/γ̇ , while (b) and (d) are for φ =
0.86 above the jamming φJ = 0.845. In (a) and (b) the leftmost point
on each curve gives the initial value θ init

2 after the system rotation;
the horizontal dashed lines give the ensemble-average steady-state
values of ±θ ss

2 . In (c) and (d) the horizontal dashed line gives the
ensemble-average steady-state value of S2. For ease of comparison,
the strain axis has been shifted for each curve so that the point where
θ2 = 0 or 90◦ occurs at γ = 0. The two thicker curves denote (i) the
largest of our θ init

2 that results in a pure clockwise relaxation to the
steady state and (ii) the smallest of our θ init

2 that results in a mostly
counterclockwise relaxation.

F. Numerical mean-field model

In the preceding section we argued that, although there is a
finite nematic ordering in the system, there is no macroscopic
coherence among the particles. In this section we therefore
explore whether one can make a mean-field-like model for
the rotation of a particle, which depends only on the state
of the individual particle itself, but reproduces reasonably the
observed ensemble averages for the nematic order parameter
S2 and the angular velocity −〈θ̇i〉/γ̇ , as time averages of the
single particle.

The rotational motion of a particle is governed by Eq. (13),
which we can rewrite as

θ̇i

γ̇
= dθi

dγ
= − f (θi ) + gi, (37)

where gi = τ el
i

kdAi Ii γ̇
gives the interaction with other particles

due to the torques from elastic collisions. We consider four
different approximations to gi, replacing the term from the
fluctuating collisional torques by

gi → ḡ = 〈gi〉 [approximation (i)], (38)
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FIG. 28. For spherocylinders of asphericity α = 0.01 at strain
rate γ̇ = 10−6 and packing φ = 0.83, intensity plot showing the
number of particles oriented at a particular angle θi vs net strain
γ = γ̇ t , as the system relaxes back to steady state after an initial
rotation of a configuration sampled from the steady-state ensemble.
The nematic order parameter S2 is rotated to have the value of
θ init

2 that corresponds to the curve in Fig. 27(c) that has the largest
drop in the magnitude S2 at γ = 0. The strain scale γ has been
shifted so that the left edge of the figure corresponds to the initial
configuration after the rotation, while γ = 0 corresponds to the strain
at which θ2 = 0. Horizontal dashed lines indicate the values of ±θ ss

2 ;
the vertical dashed line indicates γ = 0.

where we average over both different particles in a given
configuration and over different configurations in the steady-
state ensemble, and

gi → ḡ + δg(γ ) [approximation (ii)], (39)

where δg(γ ) is an uncorrelated Gaussian white noise with

〈δg(γ )〉 = 0, (40)

〈δg(γ )δg(γ ′)〉 = [δg]2δ(γ − γ ′), (41)

with [δg]2 = var[gi], where the variance is computed from the
steady-state ensemble.

In the mean-field models (i) and (ii) the elastic torque that
the particle experiences is independent of the orientation of
the particle. As a next level of approximation, we consider
mean-field models in which the elastic torque will be a
function of the particle’s orientation θ ,

gi → ḡ(θ ) = 〈gi〉θ [approximation (iii)], (42)

where now the average is restricted to particles oriented at a
particular angle θ ,

gi → ḡ(θ ) + δg(θ ; γ ) [approximation (iv)], (43)

where δg(θ ; γ ) is an uncorrelated Gaussian white noise with

〈δg(θ ; γ )〉 = 0, (44)

〈δg(θ ; γ )δg(θ ; γ ′)〉 = [δg(θ )]2δ(γ − γ ′), (45)

with [δg(θ )]2 = var[gi]θ , where the variance is taken only
over particles with orientation θ . These different approxima-
tions allow us to examine the relative importance of average
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FIG. 29. For mean-field models (i) and (ii), average elastic torque
ḡ = 〈τ el

i /kdAiIiγ̇ 〉 and associated noise magnitude δg vs packing φ

for (a) α = 0.01 at γ̇ = 10−6 and (b) α = 4 at γ̇ = 10−5. Horizontal
dashed lines fmin and fmax denote the minimum f (0) and maxi-
mum f (π/2) values of f (θ ) = (1 − [
Ii/Ii] cos 2θ )/2 in Eq. (14);
note that for α = 0.01 these two are nearly indistinguishable since

Ii/Ii = 0.00847 is so small. Vertical dashed lines locate the jam-
ming packings φJ = 0.845 for α = 0.01 and φJ = 0.906 for α = 4.

torque vs torque noise and the sensitivity of behavior to the
variation of elastic torque with particle orientation.

In Fig. 29 we plot our results for ḡ and δg vs φ, which
are used in constructing the mean-field (MF) models (i) and
(ii). In Fig. 29(a) we show results for nearly circular particles
with α = 0.01 at strain rate γ̇ = 10−6; in Fig. 29(b) we show
results for elongated particles with α = 4 at γ̇ = 10−5. The
horizontal black dashed lines in each panel are the values
of fmin ≡ f (0) = (1 − 
Ii/Ii )/2 and fmax ≡ f (π/2) = (1 +

Ii/Ii )/2, which are the minimum and maximum values of
f (θ ) = [1 − (
Ii/Ii ) cos 2θ ]/2 given in Eq. (14). If ever we
have fmin < ḡ < fmax, then in MF model (i) the direction θi

such that f (θi ) = ḡ is a stationary point where θ̇i/γ̇ = 0. From
Fig. 29 we see that this situation never arises for α = 0.01;
however, it does occur for α = 4 when φ > 0.5. Note that
in both cases the average elastic torque ḡ = 〈τ el

i /kdAiIiγ̇ 〉 is
positive, showing that, on average, the elastic torques serve to
slow down the clockwise rotation of the particles. Note also
that in both cases the magnitude of the noise δg is one or more
orders of magnitude larger than the average ḡ for the range of
φ considered.

In Fig. 30 we show results for ḡ(θ ) and δg(θ ) vs θ ,
which are used for constructing the models MF (iii) and
MF (iv). In Figs. 30(a) and 30(b) we show results for α =
0.01 at γ̇ = 10−6, while in Figs. 30(c) and 30(d) we show
results for α = 4 at γ̇ = 10−5. In each case we show re-
sults at four different typical values of φ: below φS2 max,
near φS2 max, near φJ , and above φJ . Rather than show ḡ(θ )
directly, in Figs. 30(a) and 30(c) we instead plot f (θ ) −
ḡ(θ ) = −θ̇i/γ̇ , since this more directly gives the rotational
motion of the particle. A positive value of f (θ ) − ḡ(θ )
indicates a clockwise rotation. A value of θ such that
f (θ ) − ḡ(θ ) = 0 indicates a stationary point in MF (iii),
where θ̇i/γ̇ = 0; if d[ f (θ ) − ḡ(θ )]/dθ > 0 this is a stable
stationary point.

At the larger values of φ our data for f (θ ) − ḡ(θ )
become quite scattered, particularly for α = 4. To get a
smooth ḡ(θ ) for integrating our mean-field single-particle
equation of motion, we therefore approximate ḡ(θ ) by ex-
panding our data as a Fourier series and keeping only the

0.81
0.83
0.84
0.86
f( )

0.0

0.2

0.4

0.6

0.8

1.0

1.2
(a)

0 /2/2 /4/4
(rad)

0.81
0.83

0.84
0.85

10-1

100

101

102

(b)

0 /2/2 /4/4
(rad)

0.5
0.8
0.905
0.95
f( )

-2

-1

0

1

2

3
(c)

0 /2/2 /4/4
(rad)

0.5
0.8

0.905
0.9510-2

10-1

100

101

102

103

104

(d)

0 /2/2 /4/4
(rad)

FIG. 30. For mean-field models (iii) and (iv), average elastic
torque ḡ(θ ) = 〈τ el

i /kdAiIiγ̇ 〉θ and associated noise δg(θ ) for particles
oriented at angle θ . (a) and (b) are for α = 0.01 at γ̇ = 10−6, with
φJ = 0.845, and (c) and (d) are for α = 4 at γ̇ = 10−5, with φJ =
0.906. (a) and (c) Plot of f (θ ) − ḡ(θ ) vs θ at different packings φ,
where f (θ ) = (1 − [
Ii/Ii] cos 2θ )/2 as in Eq. (14). The thick solid
black line is just f (θ ), corresponding to φ → 0 where ḡ(θ ) = 0. Thin
colored lines are the Fourier series approximation to the data at each
φ, as given by Eq. (46). (b) and (d) Magnitude of the noise δg(θ ) vs
θ at different packings φ. Note the logarithmic vertical scale.

lowest several terms,

ḡ(θ ) = a0

π
+ 2

π

∑
n=1

(an cos 2nθ + bn sin 2nθ ), (46)

an =
∫ π/2

−π/2
dθ ḡ(θ ) cos 2nθ, (47)

bn =
∫ π/2

−π/2
dθ ḡ(θ ) sin 2nθ. (48)

For the largest φ, where the data are most scattered, we use up
to n = 3 terms for our approximate ḡ(θ ); for smaller φ, where
the data are smoother but where there are regions of θ where
ḡ(θ ) is rather flat, we use up to n = 16 terms. This Fourier
approximation gives the solid lines in Figs. 30(a) and 30(c).

We now consider how well these mean-field models do
in describing the behavior of our interacting many particle
system. In Fig. 31 we show our results for −〈θ̇i〉/γ̇ , S2, and θ2

(top, middle, and bottom rows, respectively) vs the packing φ,
comparing our N = 1024 particle simulations against that of
the single-particle mean-field models (i)–(iv). Figures 31(a)–
31(c) are for nearly circular particles with α = 0.01 at γ̇ =
10−6, while Figs. 31(d)–31(f) are for elongated particles with
α = 4 at γ̇ = 10−5.

We discuss α = 0.01 first. We see in Fig. 31(a) that all the
models MF (i)–(iv) do a good job in predicting the angular
velocity −〈θ̇i〉/γ̇ . This is not surprising. For α = 0.01, the
term 
Ii/Ii = 0.008 47 is so small that the variation in f (θ )
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FIG. 31. Comparison of −〈θ̇i〉/γ̇ , S2, and θ2 vs φ (top, middle,
and bottom rows, respectively) between our N = 1024 interacting
particle simulations and the single-particle mean-field approxima-
tions MF (i), (ii), (iii), and (iv). (a)–(c) are for nearly circular particles
of α = 0.01 at γ̇ = 10−6, while (d)–(f) are for elongated particles
of α = 4 at γ̇ = 10−5. The vertical dashed lines locate the jamming
packings φJ = 0.845 and 0.906 for α = 0.01 and 4, respectively.

is exceedingly slight, and so to good approximation one can
take f (θ ) ≈ 1/2; an isolated particle is essentially rotating
uniformly. The elastic torque of MF (i), modeled by the θ -
independent ḡ, with ḡ < fmin at all φ [see Fig. 29(a)], then
just subtracts from this average drive f ≈ 1/2 to give the
correct average angular velocity. Adding the noise δg in MF
(ii), or using an orientationally dependent ḡ(θ ) in MF (iii) and
corresponding noise δg(θ ) in MF (iv), does not change this
average rotational behavior. Only as one goes above φJ and
correlations between particles become longer ranged do we
see a difference between the interacting many-particle system
and our single-particle mean-field models.

In contrast, if we consider S2, we see in Fig. 31(b) that the
simple MF (i) does an exceedingly poor job. Again, this is not
surprising. As discussed above, since for α = 0.01 the model
MF (i) results in a particle that rotates almost uniformly, there
is no mechanism for S2 to grow above the very small value
S2 = 0.0042 that is found for an isolated particle. Similarly, as
seen in Fig. 31(c), MF (i) gives θ2 = 0, just as for an isolated
particle. Adding noise, as in MF (ii), does nothing to improve
the results for S2 or θ2. However, using the orientationally
dependent average elastic torque ḡ(θ ) of MF (iii) results in

excellent agreement for both S2 and θ2. The strong variation
of ḡ(θ ) with θ , as seen in Fig. 30(a), results in the nonuniform
rotation of the particle that is essential to dramatically increase
S2 over the isolated particle limit. No further improvement
is found by adding the orientationally dependent noise δg(θ )
of MF (iv).

Turning to elongated particles with α = 4, we see in
Fig. 31(d) that now MF (i) fails dramatically even when con-
sidering −〈θ̇i〉/γ̇ . While agreement is not bad at the smallest
φ, once φ increases above 0.5 and ḡ increases above fmin =
f (0) [see Fig. 29(b)], the particle locks into a stationary state
where θ̇i/γ̇ = 0 and consequently one has S2 = 1, as seen
in Fig. 31(e). The orientation θ2, shown in Fig. 31(f), then
increases with φ so as to obey f (θ2) = ḡ. Adding the noise
δg of MF (ii) is not sufficient to allow the particle to escape
from this stationary state, until φ gets close to and goes
above jamming.

To get good agreement for α = 4 it is thus necessary, as we
found for α = 0.01, to consider the orientational dependence
of the average elastic torque. Using the ḡ(θ ) of MF (iii)
we see that we get excellent agreement for all three quanti-
ties −〈θ̇i〉/γ̇ , S2, and θ2 for all φ except upon approaching
close to the jamming φJ . Close to φJ , Fig. 30(c) shows that
f (θ ) − ḡ(θ ) can go negative, giving rise to a stationary state
when f (θ ) − ḡ(θ ) = 0. Thus we see in Fig. 31(d) that as φ

approaches φJ , −〈θ̇i〉/γ̇ drops to zero, while in Fig. 31(e)
we see that S2 jumps to unity. However, adding the noise
δg(θ ) of MF (iv) is sufficient to allow the particle to escape
this stationary state, and restore good agreement with the
many-particle simulation, until one goes above φJ .

We thus conclude that our single-particle mean-field model
gives an excellent description of the rotational motion of our
particles, over a wide range of asphericities α and packings
φ, provided one includes the proper orientational dependence
to the average torque from the elastic interactions, as in MF
(iii). Agreement at large φ approaching jamming is further
improved by adding the noise term of MF (iv). However,
our mean-field model seems to do less well as φ increases
above φJ . Whether this is an effect of increasing correla-
tions between particles as they jam or whether it is due to
poor accuracy in our estimate of ḡ(θ ), due to poor statistics,
remains unclear.

V. SUMMARY

In this work we have considered a model of sheared,
athermal, frictionless two-dimensional spherocylinders in sus-
pension at constant volume. The simplicity of our model,
in which the only interactions are pairwise repulsive elastic
forces and a viscous damping with respect to the suspending
host medium, allows us to shear to very long total strains
and completely characterize the behavior of the system over a
wide range of packing fractions φ, strain rates γ̇ , and particle
asphericities α. In a prior work we focused on the rheological
properties of this model and the variation of the jamming
transition φJ with particle asphericity [7]. In the present work
we have focused on the shear-induced rotation of particles and
their nematic orientational ordering.

We found that, under simple shearing, particles continue
to rotate at all packings, even above jamming, and that the
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nematic order parameter S2 has a constant time-independent
value in the sheared steady state. We have found that the aver-
age angular velocity of particles −〈θ̇i〉/γ̇ and the magnitude
of the nematic order parameter S2 are nonmonotonic as the
packing φ increases, with the minimum of −〈θ̇i〉/γ̇ and the
maximum of S2 occurring below the jamming transition. By
considering the distribution of strain intervals 
γ between
successive rotations of a particle by π in Sec. IV C and by
comparing the response of the system under pure shear as
opposed to simple shear in Sec. IV D, the following scenario
emerges. At the smaller packings φ, behavior is qualitatively
similar to that of an isolated particle. The rotational drive
implicit in simple shearing (but absent in pure shearing)
causes particles to rotate with a nonuniform angular velocity
that depends on the particle’s orientation. As φ increases, the
rate of collisions between particles increases, leading to a
broadening of the distribution of rotation times, but still with
a typical rotation time comparable to the average. The average
S2 is dominated by the average particle rotation, as evidenced
by the observed difference in S2 between simple and pure
shearing; in contrast to the increase in S2 as φ increases under
simple shearing, under pure shearing, which has no rotational
driving term, S2 shows perfect ordering at small φ and is
monotonically decreasing as φ increases.

At larger φ, however, the system becomes so dense that
the decreasing free volume inhibits rotations. Particles tend to
lock into the local configuration, with rotational rattling about
a particular orientation, until a shear-induced fluctuation in the
local particle structure allows a rotation to take place. Particle
rotations become a Poisson-like process in which the time
until the next particle rotation is largely independent of the
time since the last rotation. The average S2 is now dominated
by the local structure of the dense packing, rather than the
particle rotations, as evidenced by the qualitative agreement
now found for the behavior of S2 comparing simple and pure
shear (see Fig. 23).

The above scenario helps to explain our surprising result
of Ref. [8], further discussed in Appendix B, that the α → 0
limit, approaching perfectly circular particles, is singular. As
particles approach the rotationally invariant circular shape,
one would naively expect that the nematic orientational order
parameter S2 should vanish. However, in the limit of finite
α → 0, we found that S2 vanishes below φJ , but remains finite
at φJ and above. To explain this, consider first the behavior
under pure shear, where we have argued that particles of
any finite α, no matter how small, will exponentially relax
their orientation to the minimal stress direction, and so even-
tually order with S2 ≈ 1, at sufficiently small packings φ.
As φ increases, the decreasing free volume inhibits particle
rotation, limiting the extent of ordering and leading to an
S2 that decreases monotonically as φ increases; we found
numerically that S2, under pure shear, remains finite above
jamming even for very small α. Consider now the behavior
under simple shear. According to the above scenario, above
the peak in S2 under simple shear, behavior is dominated by
the local structure of the dense configuration, and simple and
pure shear result in qualitatively similar ordering. As α → 0
the location of the peak in S2 moves to the jamming transition.
Hence we expect that, even as α → 0, the simple sheared
system will order with finite S2 for φ � φJ . However, for

φ < φJ , the rotational drive of the simple shear, absent for
pure shear, will dominate and cause the particles to rotate
with an increasingly uniform (i.e., independent of the particle
orientation) angular velocity as α gets small. As α → 0 this
uniform rotation will drive S2 → 0. Hence our scenario leads
one to expect that, as α → 0, one will have S2 = 0 for φ < φJ

but S2 > 0 for φ � φJ , just as we found to be the case.
Finally, although our sheared system of aspherical particles

displays finite nematic orientational ordering at any packing
φ, this ordering is not due to long-range coherence between
particles as in an equilibrium liquid crystal, but rather is due
to the shearing acting as an ordering field. This conclusion
is supported by our results in Sec. IV E, where we investi-
gated the relaxation of S2 upon being rotated away from its
steady-state direction. The sharp drop in the magnitude S2

to small values, as the system relaxes back to steady state,
indicates that the relaxation takes place through the incoherent
rotation of individual particles, not a coherent rotation of
many particles that would preserve the magnitude of the or-
dering. Additionally, the success of our numerical mean-field
model of Sec. IV F, in which we modeled the system by an
isolated particle being acted upon by an orientation dependent
average elastic torque and random incoherent torque noise,
indicates that correlations between particles are not important
to describe the behavior of the system. We will give further
evidence for this conclusion in a separate paper [57], where
we directly compute the spatial correlation function for S2 and
show that is it short ranged.
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APPENDIX A: DISTRIBUTION OF
PARTICLE ORIENTATIONS

Several early works [9,10,13,18] considered the orienta-
tional ordering of particles in a shear flow by computing the
probability density P (θ ) for a given particle to be oriented
at a particular angle θi = θ . It is interesting to relate this
P (θ ) to the nematic order parameter S2 and in particular
ask whether the orientation angle θ2 of the nematic order
parameter coincides with the most probable orientation, as
determined by the maximum of P (θ ). Here we will com-
pute P (θ ) by sampling both over different particles i within
an individual configuration and over different configurations
within our steady-state sheared ensemble.

The ensemble averages defining S2 and θ2 in Eqs. (27)–(29)
can be expressed in terms of P (θ ) by considering the Fourier
series expansion of the distribution. In this context, S2 and θ2

can viewed as giving the first term in this expansion,

P (θ ) = 1

2π
+ 1

π

∑
m even

Sm cos[m(θ − θm)], (A1)

where only even integer m terms appear in the sum because
P (θ ) has a periodicity of π , and the normalization is taken
such that

∫ 2π

0 dθ P (θ ) = 1.
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FIG. 32. Probability distribution P (θ ) for a particle to be ori-
ented at angle θ for different packing fractions φ. (a) Nearly circular
particles with asphericity α = 0.01 at γ̇ = 10−6; dotted curves show
the approximation to P (θ ) obtained from the Fourier series expan-
sion of Eq. (A1) keeping only the lowest m = 2 term. (b) Elongated
particles with α = 4 at γ̇ = 10−5. In both (a) and (b) the curve
labeled φ = 0.0 is the distribution for an isolated particle given by
Eq. (16); arrows for each curve of different φ denote the location of
the angle θ2 of the nematic director.

In Fig. 32(a) we plot P (θ ) vs θ , at several different pack-
ings φ, for nearly circular particles with α = 0.01 at strain
rate γ̇ = 10−6. We show only the range −π/2 < θ � π/2
because P (θ ) has a periodicity of π . The solid, nearly hori-
zontal, line labeled φ = 0.0 is the distribution for an isolated
particle, computed using Eq. (16); since 
Ii/
Ii = 0.0085
for α = 0.01, this isolated particle distribution is essentially
flat on the scale of the figure. As φ increases and S2 corre-
spondingly increases [see Fig. 13(b)], P (θ ) develops a strong
θ dependence. The curves for φ � 0.81 in Fig. 32(a) show
a roughly sinusoidal variation in θ , with an amplitude that
varies nonmonotonically as φ increases through the value
φS2 max ≈ 0.83 where S2 has its maximum. The dotted curves
in Fig. 32(a) show the approximation to P (θ ) obtained from
the Fourier series expansion of Eq. (A1) keeping only the
lowest m = 2 term, determined by the nematic order param-
eter. For the denser packings φ � 0.84, near and above the
jamming φJ ≈ 0.845, this gives an excellent approximation
to P (θ ); for smaller φ < 0.84 we see noticeable deviations.
The direction θ2 of the nematic order parameter, which always
lies at the peak of the dotted curves, is thus very close to the
most probable particle orientation θmax for the dense cases
φ � 0.84, but we see that θ2 is slightly larger than θmax for
the more dilute cases.
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FIG. 33. Difference between the angle θ2 of the nematic order
parameter and the angle θmax that gives the most probable particle
orientation, vs packing φ. For α = 0.01 results are from a strain rate
γ̇ = 10−6; for α = 4 results are from γ̇ = 10−5.

In Fig. 32(b) we show similar plots of P (θ ) vs θ at different
φ, but now for elongated particles with α = 4 at γ̇ = 10−5.
The localized shape of P (θ ) at all φ indicates that one would
have to take many terms m in the expansion of Eq. (A1) to get
a good approximation. Nevertheless, one can still ask where
θ2 (indicated by the arrows in Fig. 32) lies with respect to
the most probable value θmax. At the smallest φ = 0.5, the
distribution P (θ ) is largely symmetric about its maximum and
θ2 ≈ θmax. As φ increases, the location of the maximum θmax

increases slightly, but the distribution also becomes noticeably
skewed towards the large θ side of the peak. Thus we find that
θ2 shifts to the right of the peak and θ2 > θmax. This difference
seems to be at its largest near the φθ̇ min ≈ 0.80 where −〈θ̇i〉/γ̇
is at its smallest.

In Fig. 33 we plot the difference between the angle of the
nematic director θ2 and the most probable angle of particle
orientation θmax vs the packing fraction φ for α = 0.01 and
4. In both cases θ2 − θmax is negative at small φ and then
increases as φ increases, becoming positive and reaching a
maximum near (though not exactly equal to) the packing
φθ̇ min where −〈θ̇i〉/γ̇ has its minimum, and then decreasing
again until φ ≈ φJ , at which point it increases again as φ goes
above jamming.

APPENDIX B: THE α → 0 LIMIT

For perfectly circular particles with α = 0, the rotational
invariance of the particles implies that there can be no nematic
ordering, and so S2 = 0. Moreover, for perfectly circular
particles the elastic forces are directed radially inward to the
center of the particle and so the torque from the elastic particle
collisions necessarily vanishes, τ el

i = 0. Since our model has
no Coulomb frictional forces, the rotation of circular particles
is thus determined solely by the dissipative torque τ dis

i due
to the drag with respect to the background, affinely sheared,
host medium. Since by symmetry the moment of inertia has
equal eigenvalues, then 
Ii = 0 and Eq. (13) gives a fixed
uniform rotational motion for each particle, θ̇i = −γ̇ /2. One
might therefore expect that, for spherocylinders of aspheric-
ity α > 0, one would find that S2 → 0 and −〈θ̇i〉/γ̇ → 1/2
continuously as α → 0.
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FIG. 34. (a) For spherocylinders with α = 0.001, S2 vs φ at
strain rates γ̇ = 10−6, 4 × 10−7, and 10−7. The black circle labeled
“QS” represents the extrapolated γ̇ → 0 value of S2 at φ

(0)
J =

0.8433. Widths 
φ1 ≡ φ
(0)
J − φS2 max and 
φ2 = φS2 max − φS2 half are

denoted in the figure. (b) Plot of S2 vs γ̇ at φ
(0)
J for α � 0.12.

Solid lines connect the data points; dashed lines are fits of the small
γ̇ points to the form a + bγ̇ c and are used to extrapolate to the
γ̇ → 0 limit.

However, as we have already noted in connection with
Fig. 7 for −〈θ̇i〉/γ̇ and Fig. 12 for S2, we see a sizable value
for S2 and a sizable difference between −〈θ̇i〉/γ̇ and 1/2, even
for very nearly circular particles with α = 0.001, for which
the flat sides of the spherocylinder comprise only 0.064%
of the total perimeter. Here we will argue that the α → 0
limit is singular and that if one sits at the jamming transition
then limα→0 S2 and limα→0(1/2 − 〈θ̇i〉/γ̇ ) stay finite. We have
previously reported on this effect in Ref. [8]; here we provide
further details.

We are interested in the quasistatic γ̇ → 0 limit of S2(φ)
as α → 0. To determine this limit, we define several bench-
marks. The first is the height of the peak in S2 as φ varies,
which we denote by S2 max, occurring at φS2 max. Next is the
value S2(φ(0)

J ) at the α → 0 jamming transition of circular
particles, φ

(0)
J = 0.8433. To characterize the location of the

peak in S2(φ) we define


φ1 = φ
(0)
J − φS2 max, (B1)

the distance of the peak to φ
(0)
J . To characterize the width of

the peak we define


φ2 = φS2 max − φS2 half , (B2)

where φS2 half < φS2 max is the packing at which S2 takes half
the value at its peak, S2(φS2 half ) = S2 max/2.

These parameters are all indicated in Fig. 34(a), where
we plot S2 vs φ for our smallest asphericity α = 0.001, at
the three smallest strain rates γ̇ . We see that our smallest
γ̇ = 10−7 has reached the desired quasistatic limit for all φ

up to and including the peak. However, above the peak, in
particular at φ

(0)
J , there remains a noticeable dependence on

γ̇ . To obtain the quasistatic limit in this case, in Fig. 34(b) we
plot S2(φ(0)

J ) vs γ̇ for our smallest α � 0.12 (for larger α, our
smallest γ̇ has reached the quasistatic limit at φ

(0)
J ). We fit the

small γ̇ data points to the empirical form a + bγ̇ c, shown as
the dashed lines, to estimate the quasistatic γ̇ → 0 limit. For
α = 0.001, this quasistatic value is shown as the black circle
in Fig. 34(a).
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FIG. 35. (a) Value of the nematic order parameter at its peak
S2 max and at the jamming point for circles S2(φ (0)

J ), vs particle
asphericity α in the quasistatic γ̇ → 0 limit. Dashed lines represent
fits of the four smallest α data points to the empirical form a + bαc.
(b) Distance of the peak from the jamming point for circles, 
φ1 =
φ

(0)
J − φS2 max, and low side half-width of the peak, 
φ2 = φS2 max −

φS2 half , vs α. The small α data indicate a vanishing 
φ1,2 ∼ α0.47.

Note that to improve our estimate for α = 0.001 we have
included in Fig. 34(b) results from a simulation at φ

(0)
J with

γ̇ = 4 × 10−8. Due to the empirical nature of our fits in
Fig. 34(b) and the limited range of small γ̇ for which we
have data, one may question the precision of our estimate
for the quasistatic limit of S2(φ(0)

J ). However, we believe our
results are sufficiently accurate to assert that, for α = 0.001,
S2 remains finite at φ

(0)
J and above.

In Fig. 35(a) we plot S2 max and the extrapolated quasistatic
values of S2(φ(0)

J ) vs α. We see that both appear to stay
finite as α → 0. Fitting the four smallest α data points to
the empirical form a + bαc, shown as the dashed lines, we
estimate limα→0 S2 max = 0.28 and limα→0 S2(φ(0)

J ) = 0.15. In
Fig. 35(b) we plot 
φ1 and 
φ2 vs α. From the straight line
formed by the smallest data points on this log-log plot, we
conclude that both 
φ1 and 
φ2 are vanishing algebraically
as α → 0. Fitting to this algebraic decay, we find 
φ1,2 ∼
α0.47. From Fig. 35(b) we thus conclude that, as α → 0, the
location of the peak in S2 moves to φ

(0)
J and the width of

the small φ side of this peak shrinks to zero, so S2 → 0 for
φ < φ

(0)
J . However, from Fig. 35(a) we conclude that S2 stays

finite at and above φ
(0)
J , though there is a discontinuous drop

in S2 as φ increases above φ
(0)
J .

We next consider the average particle angular velocity.
Since at α = 0 we expect particles to have −〈θ̇i〉/γ̇ = 1/2 at
all φ, we consider here the deviation from that value. With
θ ′

i ≡ dθi/dγ = θ̇i/γ̇ , we define


θ ′ = 1/2 + 〈θ̇i/γ̇ 〉. (B3)

In Fig. 36(a) we plot 
θ ′ vs φ for α = 0.001, showing results
for our three smallest strain rates γ̇ . Similar to our analysis
of S2, we denote the height of the peak value in 
θ ′ as
φ varies by 
θ ′

max, occurring at φ
θ ′ max, the value at the
α = 0 jamming point by 
θ ′(φ(0)

J ), and the value φ
θ ′ half

as the packing where 
θ ′ takes half the value at its peak,

θ ′(φ
θ ′ half ) = 
θ ′

max/2. We similarly define the location of
the peak in 
θ ′ with respect to the jamming transition of
circles as


φ′
1 = φ

(0)
J − φ
θ ′ max (B4)
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FIG. 36. (a) For spherocylinders with α = 0.001, 
θ ′ = 1/2 −
〈θ̇i〉/γ̇ vs φ at strain rates γ̇ = 10−6, 4 × 10−7, and 10−7. The
black circle labeled “QS” represents the extrapolated γ̇ → 0 value
of 
θ ′ at φ

(0)
J = 0.8433. Widths 
φ′

1 ≡ φ
(0)
J − φ
θ ′ max and 
φ′

2 =
φ
θ ′ max − φ
θ ′ half are denoted in the figure. (b) Plot of 
θ ′ vs γ̇ at
φ

(0)
J for α � 0.12. Solid lines connect the data points; dashed lines

are fits of the small γ̇ points to the form a + bγ̇ c and are used to
extrapolate to the γ̇ → 0 limit.

and the half-width of the peak as


φ′
2 = φ
θ ′ max − φ
θ ′ half . (B5)

These are indicated in Fig. 36(a).
As seen with S2, we see in Fig. 36(a) that our smallest

γ̇ = 10−7 has reached the quasistatic limit for all φ up to
and including the peak. However, at φ

(0)
J we see that there

remains a noticeable dependence on γ̇ . Proceeding as was
done similarly for S2, in Fig. 36(b) we plot 
θ ′(φ(0)

J ) vs γ̇

for the smaller α and fit to the form a + bγ̇ c to extrapolate
to the γ̇ → 0 limit. This extrapolated value for α = 0.001 is
indicated by the black circle in Fig. 36(a).

In Fig. 37(a) we plot 
θ ′
max and the extrapolated quasistatic

values of 
θ ′(φ(0)
J ) vs α. As with the corresponding quantities

for S2, we see that both appear to stay finite as α → 0. Fitting
the four smallest α data points to the empirical form a +
bαc, shown as the dashed lines, we estimate limα→0 
θ ′

max =
0.084 and limα→0 
θ ′(φ(0)

J ) = 0.029. In Fig. 37(b) we plot

φ′

1 and 
φ′
2 vs α. From the straight line formed by the

smallest data points on this log-log plot, we conclude that both
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FIG. 37. (a) Value of 
θ ′ = 1/2 − 〈θ̇i〉/γ̇ at its peak 
θ ′
max and

at the jamming point for circles 
θ ′(φ (0)
J ), vs particle asphericity α

in the quasistatic γ̇ → 0 limit. Dashed lines represent fits of the four
smallest α data points to the empirical form a + bαc. (b) Distance of
the peak from the jamming point for circles, 
φ′

1 = φ
(0)
J − φ
θ ′ max,

and low side half-width of the peak, 
φ′
2 = φ
θ ′ max − φ
θ ′ half , vs α.

The small α data indicate an algebraic vanishing of 
φ′
1 ∼ α0.44 and


φ′
2 ∼ α0.56.
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FIG. 38. Sketch of the quasistatic α → 0 limiting behavior of
(a) nematic order parameter magnitude S2 and (b) average particle
angular velocity −〈θ̇i〉/γ̇ vs φ, as determined by the results of
Figs. 35 and 37.


φ′
1 and 
φ′

2 are vanishing algebraically as α → 0. Fitting to
this algebraic decay, we find 
φ′

1 ∼ α0.44 and 
φ′
2 ∼ α0.56.

Thus we find for 
θ ′ qualitatively similar behavior as we
found for S2: From Fig. 37(b) we conclude that, as α → 0,
the location of the peak in 
θ ′ moves to φ

(0)
J and the width

of the small φ side of this peak shrinks to zero, so 
θ ′ → 0
for φ < φ

(0)
J ; however, from Fig. 37(a) we conclude that 
θ ′

stays finite at and above φ
(0)
J , though there is a discontinuous

drop as φ increases above φ
(0)
J . In Fig. 38 we sketch the

quasistatic (γ̇ → 0) α → 0 limiting behavior of the nematic
order parameter magnitude S2 and angular velocity −〈θ̇i〉/γ̇
vs φ, which follows from the results of Figs. 35 and 37.

The above analysis is for a system in which particles are
bidisperse in size (specifically, half big and half small in the
ratio Rb/Rs = 1.4), but monodisperse in shape (all of the same
asphericity α). It is interesting to consider what happens to
the α → 0 limit if one considers a system of particles that
is polydisperse in shape. We thus now consider a system
in which particles are still bidisperse in size, but where the
asphericity αi of particle i is sampled from a distribution of
finite width. Here we use a � distribution, determined by two
parameters k and ϑ ,

P(α) = 1

�(k)ϑk
αk−1e−α/ϑ . (B6)
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FIG. 39. Magnitude of nematic order parameter S2 vs packing
φ, comparing shape polydisperse distributions of relative widths
σα = 0 (monodisperse), 0.1, and 1.0, at strain rate γ̇ = 4 × 10−7 for
(a) 〈α〉 = 0.001 and (b) 〈α〉 = 0.03.

032901-24



SHEAR-DRIVEN FLOW OF ATHERMAL, FRICTIONLESS, … PHYSICAL REVIEW E 101, 032901 (2020)

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.80 0.82 0.84 0.86 0.88 0.90

0
0.1
1.0

(a)

0.25

0.30

0.35

0.40

0.45

0.50

0.75 0.80 0.85 0.90

0
0.1
1.0

(b)

FIG. 40. Average angular velocity −〈θ̇i〉/γ̇ vs packing φ, com-
paring shape polydisperse distributions of relative widths σα =
0 (monodisperse), 0.1, and 1.0, at strain rate γ̇ = 4 × 10−7 for
(a) 〈α〉 = 0.001 and (b) 〈α〉 = 0.03.

The average and variance of α are given by

〈α〉 = kϑ, var[α] = kϑ2. (B7)

The relative width of the distribution is

σα ≡
√

var[α]/〈α〉 = 1/
√

k. (B8)

We choose k to get the desired relative width and then choose
ϑ to get the desired 〈α〉. We consider two cases: k = 100
corresponding to σα = 0.1 and k = 1 corresponding to σα =
1. The latter case is just an ordinary exponential distribution
with a finite probability density at α = 0 (circles).

We have done simulations with N = 1024 particles at a
single slow strain rate γ̇ = 4 × 10−7 for a range of packings
φ near the peak in S2. We choose ϑ so that the average 〈α〉
is equal to the four smallest values of α = 0.001, 0.003, 0.01,
and 0.03 used in the main text. In particular, we are interested
to see if the singular behavior we found as α → 0 persists
once there is polydispersity in the particle shape.

In Fig. 39 we show the resulting nematic order parameter
S2 vs φ for our smallest 〈α〉 = 0.001 as well as 〈α〉 = 0.03.
We compare results from the distributions with σα = 0.1 and
σα = 1 to our original shape-monodisperse simulations, i.e.,
σα = 0. We see that a relative width of σα = 0.1 (i.e., 10%
dispersity) produces no noticeable change from the monodis-
perse case. For the exponential distribution with σα = 1, the
peak height S2 max decreases and the location of the peak
φS2 max slightly increases.
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FIG. 41. (a) Maximum value of the magnitude of the nematic
order parameter S2 max and (b) minimum average angular velocity

θ ′

max ≡ 1/2 − 〈θ̇i〉min/γ̇ vs average asphericity 〈α〉, for polydis-
perse distributions of relative width σα = 0 (monodisperse), 0.1, and
1.0, at strain rate γ̇ = 4 × 10−7. Solid lines are fits to the form
a + bαc.

In Fig. 40 we show the average angular velocity −〈θ̇i〉/γ̇
vs φ. We see results similar to those found for S2. For σα =
0.1 there is no noticeable change from the monodisperse case
σα = 0. For σα = 1 we see that the depth of the minimum
decreases while the location of the minimum shifts to slightly
larger φ.

In Fig. 41(a) we plot S2 max vs 〈α〉 for these same three
values of σα = 0, 0.1, and 1. Again we see that there is no
difference between σα = 0 and σα = 0.1. A 10% dispersity
results in no noticeable change. For σα = 1 we see that
S2 max is smaller than for the other two cases, but still we
find that S2 max seems to be approaching a finite constant
as 〈α〉 → 0. In contrast to σα = 0, for which we found
limα→0(S2 max) = 0.28, fitting to the form a + bαc for σα = 1
gives limα→0(S2 max) = 0.22.

In Fig. 41(b) we plot 
θ ′
max ≡ 1/2 − 〈θ̇i〉min/γ̇ vs 〈α〉. As

with S2 we see no difference between σα = 0 and σα = 0.1,
while results for σα = 1 are somewhat smaller, but still appear
to be approaching a finite constant as 〈α〉 → 0. In contrast
to σα = 0, for which we found limα→0(
θ ′

max) = 0.084, fit-
ting to the form a + bαc for σα = 1 gives limα→0(
θ ′

max) =
0.046. Thus, even with considerable dispersity in particle
shape, our conclusion that limα→0(S2 max) and limα→0(
θ ′

max)
remain finite appears to remain valid, and so the α → 0 limit
continues to be singular.
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