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Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions:
Spatial structure and correlations
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We use numerical simulations to study the flow of athermal, frictionless, soft-core two-dimensional sphero-
cylinders driven by a uniform steady-state simple shear applied at a fixed volume and a fixed finite strain rate y.
Energy dissipation is via a viscous drag with respect to a uniformly sheared host fluid, giving a simple model
for flow in a non-Brownian suspension with Newtonian rheology. We study the resulting spatial structure of
the sheared system, and compute correlation functions of the velocity, the particle density, the nematic order
parameter, and the particle angular velocity. Correlations of density, nematic order, and angular velocity are
shown to be short ranged both below and above jamming. We compare a system of size-bidisperse particles
with a system of size-monodisperse particles, and argue how differences in spatial order as the packing increases
lead to differences in the global nematic order parameter. We consider the effect of shearing on initially well
ordered configurations, and show that in many cases the shearing acts to destroy the order, leading to the same
steady-state ensemble as found when starting from random initial configurations.
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I. INTRODUCTION

In a system of athermal granular particles with only repul-
sive contact interactions, as the packing fraction of particles
¢ increases, the system undergoes a jamming transition [1,2]
at a critical ¢y. For ¢ < ¢, the system behaves similar to a
liquid, while for ¢ > ¢, the system behaves like a rigid but
disordered solid. One way to probe the jamming transition is
through the application of a simple shear deformation to the
system. For an infinite system in the “thermodynamic limit,”
if one applies a simple shear stress ¢ no matter how small,
then if the system is below ¢, the system responds with a
simple shear flow, with a velocity profile that varies linearly in
the direction transverse to the flow. Above ¢,, the application
of a small shear stress causes the system to have an elastic
shear distortion determined by the finite shear modulus of the
solid phase; the system does not flow. However, if o exceeds
a critical yield stress oy, then plastic deformations cause the
solid to flow. The point where this yield stress o((¢) vanishes
upon decreasing ¢ then determines the shear-driven jamming
transition ¢, [3-5]. For frictionless particles, such as those
considered in this work, oy vanishes continuously [3,4] as
¢ — ¢, from above.

Many numerical studies of the jamming transition, and
granular materials more generally, have used spherically
shaped particles for simplicity. It is therefore interesting to
ask how behavior is modified if the particles have shapes
with a lower rotational symmetry [6]. In a recent work [7]
we considered the simple shear-driven jamming of a suspen-
sion of athermal, bidisperse, overdamped, frictionless, sphe-
rocylinders in two dimensions (2D), uniformly sheared at a
fixed strain rate y. In that work we considered the global
rheology of the system, investigating how pressure, devia-
toric shear stress, and macroscopic friction vary with particle
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packing fraction ¢, shear strain rate y, and particle asphericity
o. In a subsequent work [8] we focused on the rotational
motion and nematic orientational ordering of spherocylinders
in simple shear flow, arguing for a crossover in behavior as
the particle packing fraction increased. At small packings ¢,
the particle rotations are single-particle-like, though perturbed
by interparticle collisions. At larger ¢, approaching and going
above jamming, the geometry of the dense packings inhibits
particle rotations, which become a random Poisson-type pro-
cess. This crossover leads to a nonmonotonic behavior of the
average particle angular velocity (6;)/y, and the magnitude
of the nematic ordering S,, as ¢ increases. We also argued
that nematic orientational ordering was a consequence of the
shearing acting like an ordering field, rather than due to long-
range cooperative behavior among the particles.

In this work we continue our studies of this 2D sphero-
cylinder model, but now concentrating on the spatial structure
of the sheared system, and the spatial correlations of vari-
ous quantities, including the particle density, nematic order
parameter, and angular velocity. We confirm the assertion in
[8] that there is no long-range cooperative behavior caus-
ing the finite nematic ordering, by showing that correlations
of the nematic order parameter are short ranged. By compar-
ing the behavior of a size-bidisperse system of particles with a
size-monodisperse system, and finding that the monodisperse
system has a greater local spatial ordering, we find further
evidence for our claim in [8] that at large ¢ it is the specific ge-
ometry of the dense packing that determines particle rotations
and nematic ordering.

The rest of this paper is organized as follows. In Sec. II
we discuss our model and simulation methods. In Sec. III
we present our results for a size-bidisperse system of
particles. We consider both the case of moderately elon-
gated spherocylinders with o = 4, as well as nearly circular
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FIG. 1. An isolated spherocylinder indicating the spine half-
length A;, end cap radius R;, center of mass position r;, and angle
of orientation 6;.

spherocylinders with o = 0.01. In Sec. IV we present our
results for a size-monodisperse system of particles, consid-
ering only the case of elongated particles with o« = 4. In
Sec. V we consider what happens when one starts the shearing
from an initially well ordered state, as opposed to the random
initial states considered in the rest of our work. We find that
in many cases, the sheared steady-state ensemble becomes
independent of the initial configuration after sufficiently long
shearing. In Sec. VI we summarize our conclusions.

II. MODEL AND SIMULATION METHOD

Our model is intended to describe a system of particles in a
suspending host medium, rather than a dry granular material.
Dissipation is taken to be due to a viscous drag between the
particles and the host medium, rather than due to inelastic
particle collisions, and the resulting rheology in the dilute
phase is Newtonian. As this work is a continuation of our prior
work on this system, the description of the model presented
here is abbreviated. We refer the reader to our earlier works
[7,8] for a discussion of the broader context of, and motivation
for, our model, a more complete list of references, and more
details of the derivation of our equations of motion.

We consider a two-dimensional system of N, athermal,
frictionless, spherocylinders, consisting of a rectangle with
two semicircular end caps, as illustrated in Fig. 1. The half-
length of the rectangle of particle i is A;, the radius is R;, and
we define the asphericity o; as

o =A,'/R,' (1)

so that o« = 0 is a pure circular particle. The “spine” of the
spherocylinder is the axis of length 2A; that goes down the
center of the rectangle. For every point on the perimeter of
the spherocylinder, the shortest distance from the spine is R;.
The center of mass of the particle is r; and the angle 6; denotes
the orientation of the spine with respect to the flow direction
%. Our system box has lengths L, and L, in the X and §
directions, respectively. We will in general take L, = L, = L
unless otherwise noted. If .4; is the area of spherocylinder i,
the packing fraction ¢ is

p=-—5> A )

All particles in our systems are taken to have an equal as-
phericity «. In Sec. III we will consider a system of particles

that are bidisperse in size, with equal numbers of small and
big particles with length scales in the ratio R,/R; = 1.4.
In Sec. IV we will consider a system of particles that are
monodisperse in size.

Periodic boundary conditions are taken along X, while
Lees-Edward boundary conditions [9] are taken along ¥ to
introduce a simple shear strain y. We take y = yt to model
simple shear flow in the X direction at a fixed finite strain
rate y. Particles interact with each other via elastic contact
interactions. Defining 7;; as the shortest distance between the
spines of spherocylinders i and j [10], and d;; = R; + R;, two
spherocylinders are in contact whenever r;; < d;;. In this case
there is a repulsive harmonic interaction between the particles,
with the force on i given by

k T
] _ Re ij \a
o= (- i) ®

where k. is the particle stiffness and f;; the unit vector
pointing normally inward to particle i at the point of contact
with j. Ff} acts at the contact point, which is located a distance
(R[ /d; j.)ri ; from the spine of.particle i, along the cord 7;;, and
gives rise to a torque on particle i,

el _ a-el __ . el
T, =11 —SleFij, 4)
where s;; is the moment arm from the center of mass of i to its

point of contact with j. The total elastic force and torque on
particle i are then
1 1
7= T 5)
J

P =Y F
J
where the sums are over all particles j in contact with i.
Energy dissipation is due to a viscous drag between the
particles and the affinely sheared host medium. The viscous
drag force density at position r on particle i is

£75(r) = —ka[vi(r) — Viou (1], (6)
where k, is a viscous damping coefficient, vy (r) is the local
velocity of the host medium, which for simple shearing in the
X direction is

Vhost (F) = ¥)X, @)
and v;(r) is the local velocity of the particle at position r,
vi(r) = i + 62 x (r — 1)), ®)

where ¥; = dr;/dt is the center of mass velocity of the particle
and 6; is its angular velocity about the center of mass.
The total viscous drag force on particle i is then taken as

Fis = / d*rfs(r), ©)

where the integral is over the area of particle i. The corre-
sponding dissipative torque is
i = g = / d*r(r—r;) - £5(r). (10)
i
The above elastic and dissipative forces are the only forces

included in our model; there are no interparticle dissipative
or frictional forces. We will carry out our simulations in the
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overdampled (low particle mass) limit, where the total force
and torque on each particle are damped to zero,

F'+F* =0, !+ =0 (11)

The resulting translational and rotational equations of motion
for particle i can then be written as [7]

el

F=pyk 4+ ——, 12

vy Ko (12)

. el

0, = —y f(6; L 13
v f( )+kd~AiIi (13)

where A; is the area of particle i, /; is the trace of the particle’s
moment of inertia tensor, and

fo)= %[1 — (AL/I}) cos 20], (14)

where Al; is the absolute value of the difference of the two
eigenvalues of the moment of inertia tensor. We assume a
uniform constant mass density for both our small and big
particles.

One of the distinguishing features of aspherical particles
in simple shear flow is that they tumble as they flow, and that
they show a finite nematic orientational ordering S, [8,11-18],
with the spines of the spherocylinders tending to align about
a given direction. The extent of the alignment is given by
the magnitude of the nematic order parameter S,, while the
direction of alignment is given by the angle 8, with respect to
the flow direction X. For a two-dimensional system, these can
be computed by [19]

1 & ? 1 & ?
S, = [ﬁ;cos(%i)] +|:N;sin(29i):| (15)

and

N N
tan[26,] = [% Zsin(ZG[):| / le Zcos(ze,»)]. (16)
i=1 i=1

To compute the nematic order parameter of a specific con-
figuration, the square brackets in the above expressions rep-
resent sums over the N particles in the system. To compute
the ensemble averaged nematic order parameter, the square
brackets should be taken as both a sum over the N particles in
the system, as well as an average over all configurations in the
sheared steady state.

For our simulations we take 2R; = 1 as the unit of distance,
k. = 1 as the unit of energy, and 1y = (2R, kg Ay Jke =1 as
the unit of time. For simplicity we take the viscous drag k,; to
vary with particle size so that k;.4; = 1 for all particles. We
numerically integrate the equations of motion (12) and (13)
using a two-stage Heun method with a step size of Ar = 0.02.
Except for the simulations discussed in Sec. V, we begin each
shearing run in a finite energy configuration at the desired
packing fraction ¢, with random initial particle positions
and orientations. To generate such initial configurations we
place the spherocylinders in the system one by one, while
rejecting and retrying any time a new placement would lead
to an unphysical overlap where the spines of two sphero-
cylinders intersect. In general, we use N = 1024 particles.
Our simulations typically extend to total strains of at least

L a=4
0'8{'/././!—-7'—*.\.\% ]
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FIG. 2. Magnitude of the nematic order parameter S, vs packing
¢, for elongated spherocylinders of o = 4 and nearly circular sphe-
rocylinders of &« = 0.01, in simple shear steady state. Dotted vertical
lines locate the respective jamming transitions ¢, (a¢ = 4) ~ 0.906
and ¢y (o = 0.01) = 0.845. The vertical arrows indicate the location
of the maxima in S, at ¢g, max = 0.67 and 0.83 for « =4 and 0.01,
respectively. For each case, we show results at two different strain
rates. For a = 4, solid symbols are at strain rate ¥ = 107>, while
open symbols are at y = 4 x 1073; for o = 0.01, solid symbols are
for y = 4 x 1077, while open symbols are for y = 107°.

y ~ 150. Discarding an initial Ay = 20 of the strain from the
averaging so as to eliminate transients effects, we find that our
steady-state averages are generally insensitive to the particular
starting configuration. Note, we restrict the strain coordinate
y used in our Lees-Edwards boundary condition to the range
v € (—Ly/2L,, L;/2L,]; whenever it exceeds this maximum,
it is reset by taking y — y — L, /Ly, allowing us to shear to
arbitrarily large total strains.

III. SIZE-BIDISPERSE PARTICLES

In this section we consider a system of size-bidisperse
particles, with equal numbers of big and small spherocylinders
with radii in the ratio of R,/R; = 1.4. We will consider both
the case of moderately elongated spherocylinders with o« = 4,
and nearly circular spherocylinders with & = 0.01. To set the
scale for the various packing fractions ¢ that we will consider,
in Fig. 2 we show a plot of the magnitude of the nematic
order parameter S, vs ¢ for these two cases. As noted in
our previous work [8,11], S, is nonmonotonic in ¢, with a
peak at ¢s, max that lies somewhat below the jamming ¢,. For
o =4 we have ¢g, max & 0.67 and ¢; = 0.906; for @ = 0.01,
we have ¢s, max ~ 0.83 and ¢; ~ 0.845.

We start with a qualitative description of the spatial struc-
ture of the system. In Fig. 3 we show snapshots of typical
configurations sampled during steady-state shearing at strain
rate ¥ = 107%. In Fig. 3(a) we show a system with o = 4 at
packing ¢ = 0.905, very close to the jamming ¢; = 0.906.
In Fig. 3(b) we show a system with o = 0.01 at packing
¢; = 0.845. Because the o = 0.01 particles are to the eye
indistinguishable from circles, we draw a line on each particle
to indicate the direction of the particle’s spine. Animations
showing the evolution of particle positions and orientations,
as these systems are sheared starting from a random initial
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FIG. 3. Snapshot configurations in simple sheared steady state
with strain rate 7 = 10~ for spherocylinders of asphericity (a) & =
4 at packing ¢ = 0.905 near the jamming ¢; = 0.906, and (b) & =
0.01 at packing ¢; = 0.845. In (b) straight lines on particles indicate
the directions of the spines. Different colors are used to help distin-
guish different particles and have no other meaning. (c), (d) Show the
corresponding configurations of the local nematic order parameter
S, (r), obtained by averaging over all particles whose center of mass
r; is contained in each square grid cell. Corresponding animations,
showing the evolutions of these configurations under shearing, are
available in our Supplemental Material [20].

configuration, may be found in our Supplemental Material
[20].

While the structure and flow pattern of the particles in
these animations look complex, especially for o =4, the
orientational ordering of the particles can be represented more
simply by constructing a local nematic order parameter S, (r).
To do this we divide our system up into a 12 x 12 grid of
square cells centered at fixed positions r. At any given strain
y = yt we take all particles whose center of mass r; lie in
the cell at r and construct the local S, of that cell, using
Egs. (15) and (16) but with the sum restricted to only the
particles in that cell; on average there are about seven particles
in each cell. In Figs. 3(c) and 3(d) we show the resulting
S, (r) corresponding to the particle configurations in Figs. 3(a)
and 3(b). For the o = 4 configuration, which has a relatively
large global S, ~ 0.78, we see that the S,(r) clearly look
ordered, with for the most part nearly equal magnitudes S>(r)
and oriented close to the flow direction. For the o = 0.01
configuration, which has a smaller global S, ~ 0.23, the S,(r)
look more disordered, with a greater variation in magnitudes
and directions fluctuating about the global orientation 6, ~
45° [8].

Animations of the evolution of S,(r) as y increases may
be found in our Supplemental Material [20]. We see in these
animations that the initial S,(r) are random since we start in

a randomized initial configuration, but that they then order
as the system is sheared. After sufficient shearing, the S,(r)
tend to fluctuate about a well defined average, and there is
no evidence of any coherent time dependent motion. Occa-
sionally we see that S(r) in a given cell shrinks in size to a
small value, then grows back to the average; this occurs when
there is a rotation of particles in that cell. We now seek to
quantify aspects of the spatial flow and structure by measuring
the spatial correlations of several different observables.

A. Flow profile

First, we wish to check that the simple shearing in the X
direction gives rise to the linear velocity profile (v,(y)) = yy,
that is expected for a uniformly sheared system. To compute
(vx(y)) we divide the system into strips of thickness Ay run-
ning the length L, of the system parallel to the flow direction.
We then compute for a given configuration

Nv
L
— ixs 17
N, ;v (17)

where v;, = X; is the x component of the center of mass
velocity of particle i, and the sum is over all the N, particles
i contained within the strip centered at height y. On aver-
age, Ny = NAy/L,. We then average this over configurations
contained within window of strain from y; to yy + Ay, with
Ay =5, to compute an average (vi(y)),, after the system
has been sheared to a strain yy. We also average over all
configurations in the steady-state ensemble, starting from
yo = 25 to allow for equilibration, to compute the ensemble
average (v,(y)). We consider here configurations sheared at a
rate y = 107°,

In Fig. 4(a) we show our results for nearly circular sphe-
rocylinders with o = 0.01, at our densest packing ¢ = 0.90,
well above the jamming ¢; = 0.845. We see that the velocity
profile agrees quite well with the expected linear (v, (y))/y =
v, both for the ensemble average over the entire run, as well as
the averages over the strain windows of width Ay distributed
throughout the shearing. The same is true for all packings at
smaller ¢.

In Figs. 4(b)-4(d) we show results for elongated sphero-
cylinders with o = 4, at packings ¢ = 0.905 ~ ¢;, 0.91, and
0.95, respectively. Note, all systems have N = 1024 particles
except for Fig. 4(d) which has N = 2048 particles. For ¢ < ¢;
(not shown) the velocity profiles on the short strain scale of
Ay =5 are all linear, similar to what is seen in Fig. 4(a)
for « = 0.01. However, as ¢ increases above ¢;, we see
in Figs. 4(b)-4(d) that the velocity profiles averaged over
Ay =5 start to noticeably fluctuate away from linear, and
this effect grows in magnitude as ¢ increases. We see a
steplike structure, with distinct regions of different d(v,)/dy,
i.e., regions of different local strain rate. The system thus
displays shear banding. In some cases there are regions where
d(v,)/dy =~ 0, indicating strongly correlated rows of particles
that move together as a block, with an interface region of large
strain rate between such blocks, suggesting a stick-slip type
of motion between rows of particles. However, comparing
velocity profiles at different strains y; during the shearing run,
we see that these shear bands are not stationary, but wander as

ve(y) =
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FIG. 4. Average velocity of particles in the flow direction scaled
by the strain rate (v,(y))/y as a function of height y transverse to
the flow. Curves labeled by a value of y, represent averages over a
strain window from y, to ¥y + Ay, with Ay = 5. Solid black circles
labeled “all” are an average over the entire shearing run, starting at an
initial yy = 25 to allow for equilibration. The dotted black line gives
the expected linear profile (v,(y))/y = y. (a) Spherocylinders with
o = 0.01 at our densest packing ¢ = 0.90; (b)—(d) spherocylinders
with o = 4 at packings ¢ = 0.905 =~ ¢,, 0.91, and 0.95 respectively.
All configurations are sheared at the rate y = 10~°. Configurations
(a)—(c) have N = 1024 particles, while (d) has N = 2048 particles. In
all cases, the horizontal axis runs from O to L,. Lengths are measured
in units of the small particle diameter 2R; = 1.

the system is sheared. Averaging over the entire shearing run,
the expected linear profile for (v, (y)) is recovered, and so on
average the system is uniformly sheared as expected.

B. Transverse velocity correlations

Next, we consider the correlations of the transverse veloc-
ity vy, = y;. It was previously found for our model [3], that
when circular disks are sheared, then the transverse velocity
correlation

Cy, (1) = (vy(X),(0)) (18)
goes negative and has a minimum at some X, before de-
caying to zero at large x. It was observed that the location of
this minimum x,;, increased in a seemingly divergent way as
jamming was approached. Thus, xn,;, was identified with the
divergent correlation length & at the jamming transition [3].
We now examine this velocity correlation for spherocylinders.

If r{ is the center of mass position of particle i in configura-
tion ¢, and v{ = If is the center of mass velocity, we compute
the velocity correlation as

ZZ”&U%A —rj+1).

(vy (), (0)) = 19)

1.0 T T T 1.0 T
y=107° (a) b 4=10"° (b)
= 08 B 1 oosih
2 a=0.01 0 = I a=4 ¢
= =
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FIG. 5. Transverse velocity correlation C,,(x)/C,,(0) vs dis-
placement x parallel to the shear flow, at different packing fractions ¢
for spherocylinders of asphericity (a) « = 0.01 with ¢, = 0.845 and
system length L ~ 40, and (b) @ = 4 with ¢, = 0.906 and system
length L =~ 90. Both systems are sheared at a strain rate y = 107%
and have N = 1024 particles. Lengths are measured in units of the
small particle diameter 2R, = 1.

Here, the first sum is over configurations ¢ in the sheared
steady state, while the second sum is over all pairs of particles
(i, j) in configuration c. To coarse grain the point center of
masses, we take A(r) as a window function, such that A(r) =
1 within a small square area of width Ax = Ay=R; =0.5
centered about r = 0, and A(r) = 0 elsewhere. N; is the total
number of nonzero terms in the sum.

Setting r = xX, we show our results in Fig. 5 for nearly
circular spherocylinders with « = 0.01 and moderately elon-
gated spherocylinders with o« = 4, considering different pack-
ing fractions ¢, below, near to, and above ¢;; our results are
for a strain rate y = 107°. In order to more easily compare
correlations at different packings ¢, we show the normal-
ized correlation C, (x)/C, (0) vs x. For a = 0.01, shown
in Fig. 5(a), we see behavior similar to that found [3] for
circular particles. The correlation shows a clear minimum at
an Xy, that increases as ¢ approaches ¢;. Above ¢; this xy;,
increases to L,/2, indicating long-range transverse velocity
correlations.

For the elongated particles with « = 4, shown in Fig. 5(b),
the situation is quite different. At small ¢, behavior is similar
to o« = 0.01, with a minimum at an x,,;, that increases as ¢
increases. However, as the packing increases above ¢ ~ 0.88,
but still below the jamming ¢; = 0.906, the behavior changes
dramatically with xp;, suddenly decreasing from xpi, =~ 18 to
Xmin & 2, and the correlations staying quite flat and zero for
x 2, 10. Increasing ¢ further, to jamming and above, results in
little further change in G, (x)/C,,(0).

The difference in behavior at small x < 2R;, between o =
0.01 and 4, can partially be understood as an effect of the
change in particle shape. For small x, of order the particle size,
C,, (x)/C,,(0) is determined by contacts between particles
whose centers of mass are separated by x&. Since the force is
always directed normal to the particle’s surface, for circular
and nearly circular particles this force is typically closely
aligned with the X direction, and so by itself induces no cor-
relation in the v, components of the two particles’ velocities.
Any correlation in v, between these two particles presumably
comes from a third particle in contact with both, either from
above or below, as illustrated in Fig. 6(a), and so leads to
a positive correlation. For two elongated spherocylinders,
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(a) (b)

FIG. 6. (a) Sketch of a configuration of nearly circular sphero-
cylinders that contributes to C, (x)/C,, (0) for small x. The contact
force between particles i and j'is in the % direction; any correlation
in the v, components of the velocities of i and j must therefore come
from contact with a third particle k, and gives a positive correlation.
(b) Sketch of a configuration of elongated spherocylinders that con-
tributes to C,, (x)/C,, (0) for small x. Now, the contact force between
i and j will have a component in the ¥ direction, and so lead to a
negative correlation between the v, of i and j since F§; = —F¢,.

however, if the particles are oriented at some finite angle 6; >
0, then the force of the two contacting particles has a finite
component in the § direction, leading to an anticorrelation
in the v, components of the two particles’ velocities, as
illustrated in Fig. 6(b). This explains the negative values of
C,,(x)/C,,(0) at small x, seen in Fig. 5(b). However, we have
no clear understanding why this effect for a = 4 seems to
only occur for ¢ > 0.88, or why for ¢ > 0.88 the correlation
C,,(x)/C, (0) becomes quite flat, and shows no other structure
for x > 5.

We note that the identification of xp;, with a diverging
correlation length £ has recently been questioned [21]. Were
Xmin X &, one would expect that a scaled C,, (x)/C,,(0), when
plotted vs x/xni, at different ¢ or y, would show a collapse
to a common curve at large x/xnin. But, for circular particles,
this has been found not to be the case; rather, the minimum
at xpip is now believed to be a consequence of competition
between two different length scales. One should therefore
not take the results of Fig. 5(b) as clear evidence for the
absence of a diverging £ for « = 4, and indeed the critical
scaling analysis of pressure that we have recently done for
o = 4 [7] suggests that such a diverging £ does indeed exist,
although it is apparently not evident in the transverse velocity
correlations.

C. Positional correlations

For spherical particles, it is observed that there is no long-
range translational ordering when the particles are sheared
[22]. Since our spherocylinders do show orientational order-
ing when sheared, it is of interest to see if such orientational
ordering might induce any translational ordering. We there-
fore consider the positional correlations of the particles, to
confirm that there is no such translational ordering. With the
average particle density given by ny = N/L?, we define the
density-density correlation function as

1 2
Ca(r) = ﬁ[(n(r)n(o)) —ng]. (20)
0

C,(0,y

; 4=10"% a=0.01 R 1
0 2 4 .06 8 10 0 3 10, 15 20
y Yy

FIG. 7. Density correlation C,(r) vs coordinates x’ and y’, paral-
lel and perpendicular to the nematic order parameter S,, at different
packing fractions ¢. (a) and (b) are for spherocylinders of & = 0.01,
with ¢; = 0.845 and system length L =~ 40; (c) and (d) are for o« = 4,
with ¢; = 0.906 and L ~ 90. Both systems are sheared at a strain
rate ¥ = 107° and have N = 1024 particles. Lengths are measured
in units of the small particle diameter 2R, = 1.

To evaluate C,(r), we compute the ensemble average

1/1
C,(r) = n—(2)<§;5(r,-—rj+r)>— 1, Q1)
where in practice the §(r) is smeared out over a small bin of
area Aa centered at the origin, so that 6(r) = 0 outside the
bin and 1/Aa within the bin; the width of the bin is roughly
VAa ~ 0.1 for @ = 0.01 and v/Aa ~ 0.2 for « = 4, where
R; = 0.5 is the radius of the small particles. The finite width
of our bins will affect the heights and fine structure of the
sharp peaks in C,(r) that occur at separations corresponding
to neighboring particle contacts, but otherwise does not effect
the large |r| behavior that is our interest here. With the
normalization we have chosen, our density correlation C,(r)
is simply related to the usual pair correlation function g(r) by

g(r) =Cy(r) + 1. (22)

Because the rotational symmetry of the system is broken
by both the flow direction X and by the direction of the
nematic order parameter S,, the correlation C,(r) will not
be rotationally invariant. Therefore, instead of averaging over
orientations and plotting as a function of the radial coordinate,
as is often done, we will instead consider separately the
behavior of C,(r) in orthogonal directions. One choice would
be to look along the x and y directions, parallel and transverse
to the shear flow. However, since individual particles tend to
align parallel to S,, we consider instead the direction oriented
parallel to S,, which we denote as x’, and the orthogonal
direction, which we denote as y’. Writingr = (x/, '), in Fig. 7
we plot C,(x, 0) vs x’, and C,,(0, ¥') vs y/, for spherocylinders
of asphericity ¢ = 0.01 and 4. We show results at several
different packings ¢, below, near to, and above ¢;; our results
are for a strain rate y = 107°,

For the nearly circular particles with o = 0.01, shown
in Figs. 7(a) and 7(b), we see little difference between
the x' and y’ directions, or among the different ¢. Fitting
the peak heights to an exponential decay, we find that the
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correlation C,(r) decays to zero on a length scale ~1,
much shorter than the system half-length L/2 ~ 20. We see
that C,(r) = —1 for x’,y’ < 1 since no particles may come
closer to each other than 2R; = 1 without an unreasonable
particle overlap. We see the nearest neighbor peak is split
into three at distances x’, y’ &~ 1.0, 1.2, and 1.4, correspond-
ing to contacts between small-small, small-big, and big-big
particles.

For the elongated particles with « = 4, shown in Figs. 7(c)
and 7(d), however, we see a big difference between the x” and
¥ directions. Since the (x, y") coordinates are aligned parallel
and perpendicular to S, and since particles on average are
also aligned with their spines parallel to S,, the x” coordinate
on average runs parallel to the particle spines. Therefore,
for parallel oriented particles aligned in a row, the closest
approach another particle can make in the x’ direction is
the length of a small particle, 2R;(o + 1) =5, and hence
in Fig. 7(c) we see the nearest neighbor peaks at x' &~ 5, 6,
and 7, corresponding to nearest contacts between small-small,
small-big, and big-big particles. In the transverse y’ direction,
however, corresponding to the narrow width of the particle,
the closest parallel oriented particles aligned in a row may
come is 2R; = 1. In principle, we would expect to see peaks at
y =1, 1.2 and 1.4, corresponding to small-small, small-big,
and big-big particle contacts, however, the finite size of our
bins (which are a bit larger here than for « = 0.01) make these
less sharply distinguished.

Note, for o = 4, the correlation C,(0, y') drops sharply to
—1 as y’ decreases below unity. This is because the shortest
distance any two particles may approach each other, without
unreasonable overlaps, is 2R; = 1. However, for C,(x’, 0) we
see no such sharp drop as x” decreases below 2R, (« + 1) = 5.
In fact, C,(x’, 0) becomes, and stays equal to, —1 only when
x" decreases below 2R, = 1. The reason for this is that not all
particles are aligned nearly parallel to S,. When two adjacent
particles are aligned nearly perpendicular to S,, then one
can have a contact at x’ ~ 1; although this is possible [see
Fig. 3(a)], it is relatively uncommon, hence, C,(r) increases
slowly above —1 as x’ increases above unity, then takes a rapid
increase at x’ &~ 5. This lack of perfect alignment of particles
parallel to S, is also responsible for the fact that the sharp
peaks in Fig. 7(c) are not exactly atx’ = 5, 6, and 7, but rather
are at slightly smaller values.

Comparing the ¢ dependence of C,(r) for « = 4, we see
little effect in the transverse direction y’, but in the x” direction
one sees more clearly higher order peaks as ¢ approaches and
goes above ¢;. In all cases, however, C,(r) decays to zero as
Ir| increases; for the y’' direction the decay length is ~1.3,
while in the x’ direction it is ~4.

The above calculations show that the particles have no
long-range translational order in the sheared system. How-
ever, we still wish to investigate if there can be any shear
induced columnarlike ordering, where particles order into
well defined channels oriented parallel to the flow direction X.
To investigate this we average the C,(r) correlation over the x
direction to define the transverse density correlation function
G(y):

L
Coly) = no /0 dx Co(x., y). (23)
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FIG. 8. Transverse density correlation C,(y) vs y, at different
packing fractions ¢, for spherocylinders of (a) @ = 0.01, with ¢, =
0.845 and system length L =~ 40; (b) o = 4, with ¢; = 0.906 and
L~ 90. Both systems are sheared at a strain rate y = 10~ and
have N = 1024 particles. Lengths are measured in units of the small
particle diameter 2R, = 1.

Our results are shown in Fig. 8 for spherocylinders of o =
0.01 and 4. Again, we see that these correlations rapidly decay
to zero as the separation y increases. Fitting the peak heights to
an exponential gives a decay length between 1 and 2. Thus, we
conclude that the particles do not flow in well defined channels
and there is no columnar ordering.

D. Nematic correlations

Next, we wish to consider the correlations of the nematic
order parameter S,. Shearing induces a finite S, in the system
at any ¢, as shown in Fig. 2, but our arguments in Ref. [§]
suggested that this finite S, arises because the shearing acts
like an ordering field, rather than because of many-particle
cooperative behavior arising from a long-range coherence
of particle orientations. Computing the correlations of the
nematic order parameter S, will confirm this.

The nematic correlation function is

Cs, (r) = (cos 2[6(r) — 0(0)]) — S, (24)

where the first term is computed similarly to Eq. (19). If 6 is
the orientation of particle i in configuration c, then

{cos2[0(r) — 0(0)])
= Nir DD cos2(6f — 65)A(rf — x5 +1), (25)

< iJ

where A(r) is the same window function as used in computing
C,, (x), and N, is the number of nonzero terms being summed.

In Fig. 9 we show our results for Cs, (r)/Cs, (0) in the x” and
y' directions, parallel and perpendicular to the global nematic
order parameter S;. We show results for different packings
¢, below, near to, and above ¢;, for systems sheared with
strain rate = 107%. For nearly circular particles with a =
0.01, shown in Figs. 9(a) and 9(b), we see that there is little
difference in the correlation function comparing the different
packings ¢, or comparing the x" and y’ directions, and that the
correlations decay rapidly to zero within one small particle
width 2R; = 1. [Note, although no two particles may come
much closer than 2R; = 1 without an unreasonable overlap,
here we see a large drop at x’ =y’ = 0.75; this is an artifact
of the finite width Ax = Ay = 0.5 of our window function
A(r).] The very rapid decay of the correlation function, and
the absence of any noticeable variation of the decay length
with the packing ¢, indicate that there are no long-range
orientational correlations between the particles.
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FIG. 9. Nematic ordering correlation Cs,(r)/Cs,(0) vs coordi-
nates x" and y’, parallel and perpendicular to the global nematic order
parameter S,, at different packing fractions ¢. (a) and (b) are for
spherocylinders of o = 0.01, with ¢, = 0.845 and system length
L ~ 40; (c) and (d) are for o« = 4, with ¢, = 0.906 and L = 90. Both
systems are sheared at a strain rate y = 107® and have N = 1024
particles. Lengths are measured in units of the small particle diameter
2R, = 1.

For moderately elongated particles with « = 4, shown in
Figs. 9(c) and 9(d), we see a noticeable difference between
the x” and y’ directions. Along the x" direction, Cs,(r)/Cs, (0)
is a decaying oscillation with a period of roughly 6, cor-
responding to the average length of the particles. A rough
estimate gives a decay length of comparable size &5. Along
the y" direction correlations remain positive, and we see that
the decay length takes a noticeable increase as ¢ increases,
from roughly ~1.5 at ¢ = 0.80 to ~5 at ¢ = 0.90 and above.
Indeed, for the packing ¢ = 0.905, shown in Fig. 3(a) and
the corresponding animation [20], it is easy to see that one
has many local stacks of particles in side-to-side contact
along their flat edges, nearly one on top of the other. Such
local stackings presumably result from the system adjusting
to reduce the pressure at a given packing. These stacks, often
consisting of ~10 or more particles, are then responsible for
the larger decay length in the y’' direction as ¢ increases
above jamming. Nevertheless, despite this increase in decay
length as ¢ increases, the decay length appears to remain
finite at all ¢, Cs,(r)/Cs,(0) decays to zero on the order of
a typical particle size as |r| increases, and we thus conclude
that there are no long-range orientational correlations between
the particles.

E. Angular velocity correlations
Finally, we consider the correlations of the scaled angular
velocity 6 = d6;/dy = 6;/y:
Co(r) = [{(1)6(0)) — (6)*1/7. (26)

As we have done for other quantities, if 91? is the angular
velocity of particle i in configuration ¢, then we compute

(H()H(0)) = v DO A — xS +r). (27)
e i

In Fig. 10 we show our results for Cy (r)/Cy/(0) in the
x' and y’ directions, parallel and perpendicular to the global
nematic order parameter S;. We show results for different
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FIG. 10. Angular velocity correlation Cy (r)/Cy (0), where 6/ =
6;/y, vs coordinates x’ and y', parallel and perpendicular to the global
nematic order parameter S,, at different packing fractions ¢. (a) and
(b) are for spherocylinders of « = 0.01, with ¢; = 0.845 and system
length L = 40; (c¢) and (d) are for o« = 4, with ¢; = 0.906 and L ~
90. Both systems are sheared at a strain rate y = 107% and have N =
1024 particles. Lengths are measured in units of the small particle
diameter 2R, = 1.

packings ¢, below, near to, and above ¢;, for systems sheared
with strain rate y = 107°. For both nearly circular particles
with @ = 0.01, shown in Figs. 10(a) and 10(b), and for mod-
erately elongated particles with « = 4, shown in Figs. 10(c)
and 10(d), we see that the correlation drops rapidly and stays
flat at zero, once |r| is greater than the particle length 1 4 «.
Only nearest neighbor particles are at all correlated, and
those are anticorrelated, as indicated by the negative value of
Cy(r)/Cy(0) at [r| ~ 1.

To illustrate the origin of this anticorrelation of nearest
neighbor angular velocities, in Fig. 11 we sketch two nearest
neighbor, nearly parallel, particles with separation |r| ~ 1. We
see that a collision between the two particles, indicated by
the double headed arrow in the sketch, leads to oppositely
oriented changes in angular velocity for the two particles, and
hence the anticorrelation. However, for larger |r|, on the order
of a few or more particle separations, our results in Fig. 10
indicate that fluctuations in the particles’ angular velocities
are completely uncorrelated.

IV. SIZE-MONODISPERSE PARTICLES

When studying jamming in two-dimensional systems of
circular particles, it is common to consider bidisperse or
polydisperse distributions of particle sizes, so as to avoid

FIG. 11. Sketch of two nearly parallel particles to illustrate how
a collision leads to oppositely oriented changes in angular velocity,
and thus explains the anticorrelation seen in Cy (r) for |r| &~ 1.
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FIG. 12. (a) Snapshot configuration of a system of size-
monodisperse particles of asphericity a = 4, at packing ¢ = 0.90,
sheared at y = 107%. Different colors are used to help distinguish
different particles and have no other meaning. (b) The corresponding
configuration of the local nematic order parameter S,(r), obtained
by averaging over all particles whose center of mass r; is contained
in each square grid cell. A corresponding animation, showing the
evolution of this configuration as it is sheared, is available in our
Supplemental Material [20].

crystallization into an ordered hexagonal lattice. When study-
ing aspherically shaped particles, one can ask if the possibility
of such crystallization still remains for size-monodisperse
particles. In particular, for particles driven by simple shear, the
shear-driven rotation of particles could conceivably disrupt
crystalline structure in densely packed systems, if the particles
are sufficiently aspherical.

In this section, therefore, we study the case of a size-
monodisperse system of moderately elongated spherocylin-
ders with asphericity ¢ = 4. For the bidisperse distribution of
o = 4 spherocylinders we have previously determined [7] the
shear-driven jamming transition to be at ¢ &~ 0.906. For the
monodisperse distribution we have not carried out a similar
detailed analysis to try and locate ¢; accurately. However, by
comparing the dependence of the pressure on ¢ and y, our
crude estimate for the jamming of the monodisperse system
is ¢y &~ 0.92. In Fig. 12(a) we show a snapshot of a typical
configuration sampled during steady-state shearing at packing
¢ = 0.90 and strain rate y = 107°. In Fig. 12(b) we show
the corresponding configuration of the local nematic order
parameter S,(r), computed as described earlier in connection
with Fig. 3. An eyeball comparison of Figs. 12(a) and 12(b)
with the bidisperse case in Figs. 3(a) and 3(c) suggests that
for dense monodisperse systems there is a larger probability
for particles to be aligned parallel to the flow direction X. We
will return to this matter below in Sec. IV D.

A. Flow profile

We have found that reliable results for the monodisperse
system are difficult to obtain much above the jamming ¢; ~
0.92 because at large packings, the particles tend to lock into
local configurations. This is illustrated by considering the flow
profile (v, (y)), defined earlier in Sec. IIT A.

In Fig. 13 we show (v.(y))/y Vs y, averaged over strain
windows of width Ay = 5, at different total strains y, within
the shearing ensemble. We also show the average over the
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FIG. 13. For N = 1024 monodisperse particles of asphericity

a = 4, sheared at y = 107%: average velocity of particles in the flow
direction scaled by the strain rate (v,(y))/y as a function of height
y transverse to the flow, for packing fractions (a) ¢ = 0.90, (b) ¢ =
0.92, and (c) ¢ = 0.95. Curves labeled by a value of y, represent
averages over a strain window from yp to Yy + Ay, with Ay =
5. Solid black circles labeled “all” are an average over the entire
shearing run, starting at an initial y, = 25 to allow for equilibration.
The dotted black line gives the expected linear profile (v, (y))/y = y.
Lengths are measured in units of the small particle diameter 2R, = 1.
In (d) is shown a snapshot of the configuration at ¢ = 0.95 after a
strain of yy = 250; the horizontal dotted line locates the interface
between two coherently moving blocks of particles, as shown by the
sharp jump in velocity of the corresponding curve in (c). Different
colors in (d) are used to help distinguish different particles and have
no other meaning. An animation of this configuration is available in
our Supplemental Material [20].

entire shearing run. For ¢ = 0.90, shown in Fig. 13(a), we see
that the flow profile (v,(y)/)/y is almost perfectly linear for
all strain windows, indicating that the shear flow is uniform
even on short strain scales. For ¢ = 0.92 near jamming,
shown in Fig. 13(b), we see the steplike structure indicative
of shear banding on short strain scales; however, the location
and size of these steps fluctuate with )y, and when averaging
over the entire run we regain the expected linear flow profile.

However, for ¢ = 0.95, above jamming, something dra-
matically different occurs. In the earlier part of the shearing
run, we see wandering shear bands on short strain scales,
similar to what is seen at the smaller ¢ = 0.92, only now
with wider bands. But, after shearing a large total strain,
we see that the system separates into two sharply defined
bands, each with constant velocity, one small, one large, with
a large velocity jump between them. The velocity profiles
(vx(¥))/y at yo =225 and 275 are identical, indicating that
the system has locked into this particular state, characterized
by two blocks of coherently flowing particles, each moving at
different constant velocities, and sliding over each other along
a sharply defined interface.
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FIG. 14. For N = 1024 monodisperse particles of asphericity
« = 4, sheared at y = 107%: density correlation C,(r) vs coordinates
(a) x and (b) y, parallel and perpendicular to the flow direction %, for
different packing fractions ¢. Peak heights in (c) C,(x, 0) vs x for
X ~ 5Sm, and in (d) C,(0, y) vs y for y,, = m; straight lines are fits to
an exponential decay. Lengths are measured in units of the particle
diameter 2R = 1 and the system width is L & 90.

In Fig. 13(d) we show a snapshot of the configuration
for ¢ = 0.95 at yy = 250, after the system has locked into
this state of coherently sliding blocks. The interface between
the two blocks of particles is indicated by the horizontal
dotted line at height y = 50. In either block there is neither
more spatial nor orientational order than typical in a homo-
geneously shearing configuration, although there exist many
local clusters of particles contacting along their flat sides,
oriented nearly in parallel; many of these clusters are oriented
with the particle spines nearly parallel to the flow direction
X, however, many are oriented at relatively large angles with
respect to the flow. Along the interface where the sliding
takes place, one sees two rows of particles, oriented parallel
to the flow, extending the length of the system; it is these
rows, sliding one upon the other, that cause the large jump in
velocity between the two blocks. An animation of the shearing
at ¢ = 0.95 is available in our Supplemental Material [20]; the
animation starts after the system has already been sheared a
considerable amount, but before it has locked into the state of
coherently sliding blocks, which occurs around the midpoint
of the animation.

B. Positional correlations

We next consider the positional correlations in the
monodisperse system, computing the correlation function
C,(r), as defined earlier in Sec. III C. Since the configuration
shown in Fig. 12 suggests (and as will be confirmed below
in Fig. 17) that many of the particles align near to the flow
direction X, here we will plot the correlation as a function of
the x and y coordinates, parallel and perpendicular to the flow
direction, rather than the x’ and y’ coordinates (parallel and
perpendicular to S;) used earlier for the bidisperse system in
Sec. III C.

In Figs. 14(a) and 14(b) we show C,,(r) vs x and y, respec-
tively, at several different values of the packing ¢ for a system
strained at the rate ¥ = 107°. Comparing to Figs. 7(c) and
7(d) for a bidisperse system, we see that in the monodisperse
system the peaks in both the x and y directions are more
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FIG. 15. For N = 1024 monodisperse particles of asphericity
o = 4, sheared at y = 107%: nematic order parameter correlation
Cs, (r)/Cs,(0) vs coordinates (a) x and (b) y, parallel and perpen-
dicular to the flow direction X, for different packing fractions ¢.
Peak heights in (c) Cs,(x, 0)/Cs,(0,0) vs x for x,, ~ 5m, and in
(d) Cs,(0,)/Cs,(0,0) vs y for y,, ~ m; straight lines are fits to an
exponential decay. Lengths are measured in units of the particle
diameter 2R = 1 and the system width is L & 90.

sharply defined and persist out to considerably longer length
scales. Similar results have been suggested in simulations
comparing monodisperse and polydisperse spherocylinders in
three dimensions, for a model in which energy dissipation is
by inelastic particle collisions rather than the viscous drag we
use here [23].

In Figs. 14(a) and 14(b) the peaks are perfectly periodic
with a spacing Ax =5 along the x direction, and Ay =1
along the y direction. Nevertheless, the peak heights still
decay exponentially with distance, as is seen in Figs. 14(c)
and 14(d) where we plot just the peak heights at x,, & Sm
and y,, &~ m on a semilog plot (we note that the locations of
these peaks are not exactly at integer values of x, but are very
close to them). The straight lines in these figures are fits to an
exponential decay, and we see reasonably good agreement.

C. Nematic correlations

We now consider the correlations of the nematic order
parameter, computing Cs, (r) as defined earlier in Sec. III D. In
Figs. 15(a) and 15(b) we show plots of Cs, (r)/Cs,(0) vs x and
v, parallel and perpendicular to the flow direction. Comparing
to Figs. 9(c) and 9(d) for a bidisperse system, we see that the
peaks in the x direction are again sharper, with periodicity
of Ax =5, and persist to longer length scales. Along the y
direction we see sharp oscillations with periodicity Ay = 1,
but the heights decay more quickly. In Figs. 15(c) and 15(d)
we plot the peak heights vs x and y and fit to an exponential
decay. For the smaller ¢ = 0.70 and 0.75 the peak heights
decay too quickly for an accurate determination, and we omit
these from Figs. 15(c) and 15(d). For the y direction, shown in
Fig. 15(d) the heights can be nonmonotonic, and the location
of the peaks varies somewhat with ¢; errors are large and so
our fits should be regarded as just estimates.

In Fig. 16 we show the decay lengths &, and &, that come
from the exponential fits of Figs. 14(c) and 14(d) for the
positional correlation C,(r), and from Figs. 15(c) and 15(d)
for the nematic correlation Cs, (r). From the positional cor-
relation C,, we get a decay length in the x direction that
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FIG. 16. For N = 1024 monodisperse particles of asphericity
a = 4, sheared at ¥ = 107%: correlation lengths in the x and y di-
rections, parallel and perpendicular to the flow, as obtained from the
exponential fits to the peaks in the density correlation C,(r) and the
nematic order parameter correlation Cs, (r), shown in Figs. 14(c) and
14(d) and 15(c) and 15(d).

varies between 2.6 and 9.6 over the range of ¢ shown; in
the y direction the decay length varies between 1.8 and 7.3.
These are roughly twice as large as the corresponding decay
lengths for the bidisperse system, but still no greater than
two particle lengths. The monodisperse system thus does not
have any long-range translational order. From the nematic
order parameter correlation Cs, we get a decay length in the y
direction that varies between 1.5 and 7.3, comparable to that
found from C,,. In the x direction the decay length from Cs,
varies between 6.5 and 22, roughly double that found from C,.
The largest value &, &~ 22 ~ L/4 is roughly one quarter the
length of the system, and so in Fig. 15(a) one does not see the
peaks in Cg, (x, 0) decaying to zero, although from Fig. 15(c)
the decay does appear to be exponential. Simulations of a
larger length system would be needed to confirm that the value
&, ~ 22 really is finite, and that there is no long-range nematic
ordering.

D. Global nematic ordering

Finally, we consider several quantities related to the global
nematic ordering of the system. We are interested in how the
differing packing geometry and greater local spatial ordering
found in dense packings of the monodisperse system, as com-
pared to the bidisperse system, will effect such orientational
ordering.

We start by returning to an observation made at the start
of this Sec. IV on monodisperse systems. Looking at the
dense monodisperse configuration of Fig. 12, the particles
generally appear to be more aligned with the flow direc-
tions as compared with the dense bidisperse configuration of
Fig. 3(a). To quantify this observation, in Fig. 17 we plot
the probability density P(6) for a particle to be oriented at
angle 0. In Fig. 17(a) we compare P(6) for monodisperse and
bidisperse systems, both with particles of asphericity o = 4,
at the relatively dilute packing ¢ = 0.70. Here, we see that
the distributions for the two cases are essentially identical.
However, in Fig. 17(b) we compare the two cases at the denser
packing ¢ = 0.92. Here, we see a rather dramatic difference.
For the bidisperse case, P(0) is qualitatively similar to that
at the lower packing, with a broad unimodal peak that is
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FIG. 17. Probability density P(6) for particles of asphericity
o =4 to be oriented at angle 6 with respect to the flow direction:
comparing size-monodisperse and size-bidisperse particles at pack-
ings (a) ¢ = 0.70 and (b) ¢ = 0.92; (c) monodisperse particles at
different ¢, and (d) bidisperse particles at different ¢. Strain rate
is ¥ = 107% for the monodisperse system and y = 10> for the
bidisperse system.

skewed to the right. For the monodisperse case, however,
we see a primary peak that remains comparatively sharp and
centered close to zero at Guea ~ 1.5°, but there is also a
shoulder extending to larger angles that becomes a smaller
secondary peak around 6 ~ 60°. In Fig. 17(c) we plot P(8)
for the monodisperse system for several different packings
from ¢ = 0.70 to 0.92, to show how this secondary peak
develops as ¢ increases. In Fig. 17(d) we similarly plot P(60)
at different ¢ for the bidisperse case; we see that the width of
the distribution broadens and the location of the peak shifts to
slightly larger 6 as ¢ increases, but otherwise the shape of the
distribution stays qualitatively the same.

While the distributions P(6) for monodisperse and bidis-
perse systems are thus significantly different for dense pack-
ings, it is interesting to consider a measure of the average
particle orientation. This is most naturally given by the orien-
tation 0, of the nematic order parameter, which is computed
from the individual particle orientations by Eq. (16); the sums
in that equation are equivalent to averages over the distribution
P(0). In Fig. 18(a) we plot the resulting 6, vs packing ¢
for the monodisperse system considered in this section, as
compared to the bidisperse system studied in Sec. III. We
show results for the two strain rates ¥ = 107> (open symbols)
and y = 107° (solid symbols). Just as we saw in Fig. 17(a)
that P(0) was the same for monodisperse and bidisperse
systems at low ¢, here we see that 6, for the two cases are
similarly equal at low ¢. However, as ¢ increases and the
distributions P(0) start to differ, so do the values of 6, for
the two cases differ, though in both cases 8, remains in the
range 5°—10°. It is interesting to note that, for some range of ¢,
the value of 6, for the monodisperse system is greater than that
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FIG. 18. (a) Orientation of the nematic order parameter 6,,
(b) magnitude of the nematic order parameter S,, and (c) aver-
age angular velocity —(6;)/7, vs packing ¢, for size-monodisperse
compared to size-bidisperse spherocylinders of asphericity o = 4.
Open symbols are for a strain rate y = 107> while solid symbols
are for y = 107°. For the bidisperse system ¢; ~ 0.906; for the
monodisperse system we estimate ¢; ~ 0.92.

for the bidisperse system, even though the monodisperse P(6)
has a sharper peak that lies closer to 8 ~ 0. This is presumably
due to the weight in the broad shoulder that extends to larger
angles.

In Figs. 18(b) and 18(c) we show similar comparisons be-
tween monodisperse and bidisperse systems for the magnitude
of the global nematic order parameter S, and the average
particle angular velocity —(0;)/y, respectively. As with 6, we
see that these quantities agree between the monodisperse and
bidisperse systems for low ¢ < 0.70, but they differ for denser
packings.

In a previous work [8], that dealt strictly with bidisperse
systems, we argued that the peak in the nonmonotonic S>
marks a crossover from a region of qualitatively single par-
ticle behavior below @, max, to a region above ¢g, max Where
decreasing free volume causes behavior to be dominated by
the local structure of the dense packing. The results in Figs. 17
and 18 give strong support for this scenario. At small ¢ <
¢s, max We see that P(0), 65, S», and —(6;)/y are essentially
equal for the monodisperse and the bidisperse systems. This
is as would be expected for a single-particle-like limit, where
the size of the particle would play no role in determining
these quantities [8]. However, at larger ¢, the results in Figs. 7

and 14 for positional correlations, and in Figs. 9 and 15 for
nematic correlations, show that the monodisperse system has
a much stronger local order than the bidisperse system. The
differences we find in P(0), 0,, S,, and —(éi) /y in such dense
packings above ¢s, max thus reflect this difference in local
packing structure.

In our prior work [8] we discussed how the orientation of
particles appears to arise from a competition between aligning
with the shear flow, as an isolated particle would do, vs
aligning with the direction of minimal stress. The details of
this remain poorly understood. It would appear that the strong
local ordering of the monodisperse system at dense packings,
as indicated by Figs. 14 and 15, shifts this competition to favor
increased alignment of many of the particles parallel to the
flow.

V. SHEARING HIGHLY ORDERED CONFIGURATIONS

In the previous parts of this work, as well as in our
earlier works [7,8], we began our shearing simulations from
a random initial configuration, and shear to large total strains
y so as to reach the steady state. The assumption, motivated
by results for sheared circular disks [24], is that by shearing
long enough, one creates a well defined ensemble of states that
is independent of the initial configuration. In contrast, one can
wonder whether the same steady-state ensemble will result if
one starts from an initial configuration of locally well ordered
particles. Will such a system remain ordered as it shears, or
will it revert to the same ensemble obtained from the random
initial configurations? In this section we investigate this ques-
tion for spherocylinders of asphericity o« = 4. We consider,
for systems of both size-bidisperse and size-monodisperse
particles, several different initial configurations designed to
be locally ordered in such a way that we can pack particles to
large density without any particle overlaps.

A. Size-bidisperse particles

We start by constructing a close packed, locally ordered,
configuration as follows. We take a stack of five big sphe-
rocylinders, all oriented parallel to the flow direction X and
lying perfectly one on top of another so that their centers of
mass align vertically. We then take a stack of seven small
spherocylinders in the same fashion; the heights of these
two stacks are equal (recall, R,/R; = 1.4 =7/5). We then
randomly place seven stacks of the big particles and five
stacks of the small particles next to each other in a horizontal
row, so that there are the same number of big and small
particles in this row of stacks. We then construct 16 such
rows of stacks, each row being constructed in an independent
random fashion, so that we have a total of N = 1120 particles.
We then affinely expand the system to the desired packing
fraction ¢, and introduce a small length scale disorder by
making a random displacement of each particle, with the
displacement sampled uniformly over the particle’s Voronoi
cell. The resulting configuration contains no particle overlaps.
An example of such an initial configuration at the packing
¢ = 0.75 is shown in Fig. 19(a). In this and subsequent similar
figures, blue hues are used for the big particles and red hues
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FIG. 19. (a) Snapshot of a size-bidisperse configuration of lo-
cally ordered stacks of particles at a packing ¢ = 0.75; big sphe-
rocylinders are shown in blue hues, while small spherocylinders are
shown in red hues. Shearing initial configurations as in (a) at the
strain rate y = 107>, we show (b) pressure p, and (c) magnitude S,
and (d) orientation 6, of the nematic order parameter vs net strain y
at different packings ¢. The data points in (b)—(d) represent averages
of the instantaneous values over strain windows of Ay =5. The
dotted horizontal lines in (b)—(d) give the ensemble averaged values
when starting from a random initial configuration. A reduced set of
¢ are shown in (c) and (d) for clarity. Animations of the shearing at
¢ = 0.90 and 0.95 are available in our Supplemental Material [20].

for the small particles, but in each case we use a small spread
of colors so as to help distinguish different particles.

Shearing such initial, locally ordered, configurations at a
strain rate y = 107> we compute the instantaneous pressure
p(y), as well as the magnitude S»(y) and orientation 6,(y)
of the nematic order parameter. Because fluctuations in these
instantaneous values can be large, we choose to smooth out
the fluctuations by averaging the instantaneous values over a
strain window of width Ay = 5. We plot the resulting strain
averaged values of p, S, and 6, in Figs. 19(b)-19(d), respec-
tively, for a range of packings ¢. The dotted horizontal lines
in these figures give the ensemble averaged values of these
quantities, when starting from a random initial configuration,
as obtained from our earlier work in Refs. [7,8].

For all ¢ we see that p starts from zero in the initial
configuration with no particle overlaps, but then rises to
saturate at the same value as obtained from a random initial
configuration. Similarly, the nematic order parameter starts
from an initial S, = 1 and 6, = 0, but then evolves to sat-
urate at the same values of S> and 6, found when shear-
ing from a random initial configuration. Shearing an initial,
locally ordered, size-bidisperse configuration constructed as
in Fig. 19(a) thus results in the same spatially disordered
steady-state ensemble as obtained from an initial random
configuration. This disordering is readily seen in animations
of the shearing at ¢ = 0.90 and 0.95, which are available
in our Supplemental Material [20]. From Figs. 19(b)-19(d)
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FIG. 20. (a) Snapshot of a size-bidisperse, phase separated, con-
figuration of particles at a packing ¢ = 0.75; big spherocylinders are
shown in blue hues, while small spherocylinders are shown in red
hues. The interfaces between the regions of big and small particles
consist of a random set of stacks of five big particles and seven
small particles. Shearing initial configurations as in (a) at the strain
rate ¥ = 107>, we show (b) pressure p, and (c) magnitude S,, and
(d) orientation 6, of the nematic order parameter vs net strain y at
different packings ¢. The data points in (b)—(d) represent averages
of the instantaneous values over strain windows of Ay = 10. The
dotted horizontal lines in (b)—(d) give the ensemble averaged values
when starting from a random initial configuration. A reduced set of
¢ are shown in (c) and (d) for clarity. Animations of the shearing at
¢ = 0.90 and 0.95 are available in our Supplemental Material [20].

we see that this disordering takes place fairly quickly, except
for ¢ = 0.95 which is considerably above the jamming ¢; =
0.906; in that latter case the system stays ordered up to some
considerable strain y =~ 60, but then disorders just as at the
smaller ¢.

We next consider an initial configuration that is even more
ordered than that of Fig. 19(a). We start with stacks of ordered
big and small spherocylinders as described above, but now we
phase separate the particles so that the big particles are all on
the bottom of the system while the small particles are all on
the top of the system. At each of the two horizontal interfaces
between big and small particles (there are two interfaces due
to our periodic Lees-Edwards boundary conditions) we put
a randomly ordered row consisting of seven stacks of five
big particles and five stacks of seven small particles, as in
the case previously discussed. We then affinely expand the
system to the desired packing fraction ¢, and make a random
displacement of each particle uniformly over its Voronoi cell,
so that the resulting configuration has no particle overlaps.
An example of such an initial configuration at the packing
¢ = 0.75 is shown in Fig. 20(a).

Shearing such configurations at a strain rate ¥ = 107, in
Figs. 20(b)-20(d) we plot the resulting p, S,, and 6, vs y,
obtained by averaging over strain windows of Ay = 10, for
a range of packings ¢. We see from Fig. 20(b) that for all
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FIG. 21. Snapshots of the final configurations, after a total shear
strain of y = 500, corresponding to initial phase separated config-
urations as in Fig. 20(a). Results are shown for packings (a) ¢ =
0.70, (b) ¢ = 0.90, and (c) ¢ = 0.95, sheared at a rate y = 107>,
Animations of the shearing at ¢ = 0.90 and 0.95 are available in our
Supplemental Material [20].

packings, except the largest ¢ = 0.95, the pressure p increases
and appears to saturate at the same value found for the
ensemble average starting from a random initial configuration.
This suggests that the phase separated initial configurations
are disordering as they are sheared. However, considering
Figs. 20(c) and 20(d), it is less clear whether S, and 6, are
saturating to the same values as when shearing from a random
initial configuration.

To see what is happening, in Fig. 21 we show snapshots
of the final configurations obtained after shearing the initial
configurations as in Fig. 20(a) to a total shear strain y = 500.
While the system at ¢ = 0.95, shown in Fig. 21(c), stays
mostly phase separated and highly orientationally ordered, we
see that for ¢ = 0.70 and 0.90, shown in Figs. 20(a) and 20(b),
the system remains phase separated to a considerable de-
gree, but each of the regions of big and small particles has
separately decreased its orientational ordering. Because the
values of S, and 6, are different comparing bidisperse and
monodisperse systems, as shown in Fig. 18, it is thus not
surprising that the S, and 6, that we find here for our phase
separated system is not quite in agreement with what is found
when shearing from a bidisperse random initial configuration.

Comparing the configurations shown in Figs. 21(a) and
21(b), we see that the width of the interface between the
two regions, and the penetration of one phase into the other,
seems to increase as the packing ¢ increases. To quantify this
observation, we compute the following. If Z is the average
number of contacts per particle, and Z , is the average number
of contacts between big and small particles per particle, in
Fig. 22 we plot the ratio Z, /Z vs strain y at different
packings ¢. Each data point in Fig. 22 is an average of
the instantaneous Z;, ;/Z over a strain window of Ay = 10.
The larger is the fraction Z,.;/Z, the more contacts there are
between big and small particles, and the less is the extent of
the phase separation. When shearing from a random initial
configuration one finds in the steady state that Z;, ;/Z ~ 0.5
at any packing ¢. We clearly see in Fig. 22 that, aside from
an initial decrease at small strains y, the ratio Z,_/Z steadily
increases with increasing strain y, suggesting that the big
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FIG. 22. For initial configurations as in Fig. 20(a), the ratio of
the number of contacts per particle between big and small sphe-
rocylinders Z,, to the total number of all contacts per particle Z
vs shear strain y for systems at different packings ¢. Data points
represent averages of the instantaneous values over strain windows
of Ay = 10. The system is sheared at a rate y = 107>,

and small particles will completely mix if we are able to
shear to large enough strains. Moreover, as suggested by
Figs. 21(a) and 21(b), we see that Z, ;/Z generally increases
as ¢ increases, indicating a greater degree of phase mixing as
the system gets denser. The only exception is for the largest
packing ¢ = 0.95 where Z, ;/Z stays small and is constant
with y, indicating the persistence of the phase separated state
in this dense packing.

We can understand the variation of Z,/Z with the net
strain y as follows. The initial decrease at small y is because
in the initial configuration of nonoverlapping particles there
are no contacts of any type; as the system first starts to shear,
it is the particles within the interfaces between the regions of
big and small particles that first come into contact, and so
a large fraction of the particles that have any contacts at all
have contacts with particles of a different size. As shearing
continues, however, particles in the bulk of the system form
contacts as well; these are generally with particles of the
same size, and so Z,,/Z decreases. Finally, as the system
shears further, the width of the interface region increases, and
penetration of one phase into the other increases, so Z;/Z
now increases. In this latter region Z, /Z steadily grows
as y increases. Animations of the shearing of these phase
separated systems at ¢ = 0.90 and 0.95 are available in our
Supplemental Material [20].

As seen in Fig. 21, the shearing of the system both disor-
ders the perfect orientational ordering of the initial configu-
ration, as well as causes the big and small particles to mix.
The orientational disordering takes place on a faster strain
scale than does the mixing. The former may be estimated by
the increase to saturation of the pressure in Fig. 20(b), and
is presumably a result of shear induced particle rotations. The
latter is measured by the behavior of Z;, ;/Z in Fig. 22, and is a
result of the slower process of transverse diffusion of particles
at the interface. It generally appears that both processes occur
more rapidly as the packing ¢ increases. We speculate that the
increased number and magnitude of collisions as ¢ increases
leads to larger fluctuations and thus a faster rate of disorienting
and diffusing. However, the failure of ¢ = 0.95 to disorder
indicates that this simple picture must be taken with caution.
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We have also considered shearing from an initial configu-
ration in which each row of particles is entirely composed of
spherocylinders all of the same size. Such rows of big or small
spherocylinders are then stacked randomly. We find that, for
¢ < 0.8, such initial configurations disorder and result in the
same steady-state ensemble as found from a random initial
configuration. For ¢ > 0.8, however, the systems remain or-
dered at least up to the maximum strain y = 200 that we have
simulated for these cases.

B. Size-monodisperse particles

For size-monodisperse systems we have already seen, in
connection with Fig. 13(c), that at large packings the system
can get locked into a spatially inhomogeneous flowing state,
even when starting from an initial random configuration. Here,
we consider what happens if the initial configuration is well
ordered. All our systems in this section are sheared at the rate
y =104,

Since particles are monodisperse in size, it is easy to
construct highly ordered configurations. We start first with
an ordered rectangular lattice of particles, all oriented along
the flow direction X. We then affinely expand the system
to the desired packing fraction ¢, and introduce a small
length scale disorder by making a random displacement of
each particle uniformly over its Voronoi cell. The resulting
configuration has no particle overlaps. An example of such
an initial configuration at the packing ¢ = 0.75 is shown in
Fig. 23(a).

In Figs. 23(b)-23(d) we show the resulting p, S,, and 6,
vs y for a range of packings ¢, obtained by averaging the
instantaneous values over strain windows of Ay = 10. The
dotted horizontal lines in these figures give the ensemble
averaged values of these quantities when starting from a
random initial configuration. The configuration at ¢ = 0.70
is seen to quickly disorder upon shearing, reaching the same
steady state as found from a random initial configuration. At
¢ = 0.75 we see the system disordering, but over a much
longer strain interval; only toward the end of our simulation,
after a strain of y = 400, does it appear to be converging to the
steady-state values found from a random initial configuration.
For ¢ = 0.80 and larger, the system remains in an ordered
state for as long as we have sheared. In such ordered states,
the particles show a periodic wagging of the nematic order
parameter; the particles in a given row coherently rotate
clockwise to negative angles 6; < 0 below the flow direction,
where they hit the particles in the row below them and then
bounce back to start another cycle of oscillation. This wagging
is manifest in the periodic behavior of the instantaneous p,
S>, and 6, as shown in Fig. 24 for the packing ¢ = 0.80.
The period of these oscillations is y = 5, corresponding to
the relative displacement of particles in adjacent rows by one
particle length.

To see how stable the ordered configurations of Fig. 23 are
to preserving their order upon shearing at large density, we
next construct an initial configuration, starting just as before,
but now introducing a new localized defect by rotating a group
of five stacked particles by 90°, so that these are oriented
perpendicular to the flow. An example of such an initial
configuration at the packing ¢ = 0.75 is shown in Fig. 25(a);
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FIG. 23. (a) Snapshot of a size-monodisperse, locally ordered,
configuration of particles at a packing ¢ = 0.75; colors are used
to help distinguish different particles and have no other meaning.
Shearing initial configurations as in (a) at the strain rate y = 1074,
we show (b) pressure p, and (c) magnitude S,, and (d) orientation 6,
of the nematic order parameter vs net strain y at different packings
¢. The data points in (b)—(d) represent averages of the instantaneous
values over strain windows of Ay = 10. The dotted horizontal lines
in (b)—(d) give the ensemble averaged values when starting from a
random initial configuration. Animations of the shearing at ¢ = 0.75
and 0.85 are available in our Supplemental Material [20].

the rotated particles are in the lower left corner of the image.
In Figs. 25(b)-25(d) we show the resulting p, S>, and 6, as
such configurations are sheared at different packings ¢. The
plotted values are obtained by averaging the instantaneous
values over strain windows of Ay = 10.

In contrast to the behavior seen in Fig. 23(b) for the defect
free configuration, in Fig. 25(b) we see for all packings ¢ =
0.70 to 0.92 that the system disorders as it shears, with the
pressure rising from its initial small value to the same steady-
state value found from a random initial configuration. Inter-
estingly, it is the larger ¢ that disorder more quickly than the
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FIG. 24. Variation of the instantaneous (a) pressure p, and
(b) magnitude S, and (c) orientation 6, of the nematic order parame-
ter, with shear strain y, for the system of Fig. 23 at packing ¢ = 0.80.
The periodic behavior seen in these quantities illustrates the periodic
wagging of the nematic order parameter in this highly ordered
configuration. The period of oscillation is y = 5, corresponding to
the relative displacement of particles in adjacent rows by one particle
length.
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FIG. 25. (a) Snapshot of a size-monodisperse, locally ordered,
configuration of particles at a packing ¢ = 0.75, where a defect has
been introduced by the rotation by 90° of five adjacent particles in
the lower left corner; colors are used to help distinguish different
particles and have no other meaning. Shearing initial configurations
as in (a) at the strain rate y = 107%, we show (b) pressure p,
and (c) magnitude S,, and (d) orientation 6, of the nematic order
parameter vs net strain y at different packings ¢. The data points
in (b)-(d) represent averages of the instantaneous values over strain
windows of Ay = 10. The dotted horizontal lines in (b)—(d) give
the ensemble averaged values when starting from a random initial
configuration. Animations of the shearing at ¢ = 0.90 and 0.92 are
available in our Supplemental Material [20].

smaller ¢. In Figs. 25(c) and 25(d), although the data are more
scattered, we see that S, and 6, similarly reach the same values
found from shearing from a random initial configuration; the
only exception is for ¢ = 0.85 where S, remains larger and 6,
remains smaller, indicating that the initial configuration has
not yet disordered to the extent found when shearing from
a random initial configuration. Looking at animations of the
shearing, available in our Supplemental Material [20], we see
that the localized defect of rotated particles, introduced in the
initial configuration, induces a region of nearby disorder, that
grows and eventually fills the system as the system is sheared.
For our larger packing ¢ = 0.95, however, we find that after
a strain of y & 260, the defect of rotated particles disappears,
the particles all become aligned parallel to the flow, and the
system persists in an ordered state for the remainder of the
simulation up to y = 500.

We have also considered other particular initial configu-
rations. In one case we take the same configurations as in
Fig. 23(a) and then randomly displace the rows of parti-
cles in the horizontal direction, with all the particles in a
given row displacing the same amount. Such configurations
behave qualitatively the same as the ones without the row
displacements; large packings ¢ remain ordered while small
packings ¢ disorder, although the disordering takes place
somewhat sooner and extends to a slightly larger ¢ than with-
out the row displacements. We have similarly taken the same

configurations as in Fig. 23(a) but then randomly displace
the columns of particles in the vertical direction, with all
the particles in a given column displacing the same amount.
In this case we find that all ¢ < 0.88 disorder by roughly
y = 50, but larger ¢ > 0.90 remain ordered out to y = 200.

From our results in this section we conclude that, for both
size-bidisperse and size-monodisperse systems, even highly
ordered initial configurations will disorder upon shearing,
and result in the same steady-state ensemble as found when
starting from a random initial configuration, if the packing ¢
is small or moderate; for our spherocylinders with ¢ = 4 we
find this to be the case whenever ¢ < 0.80. However, even
for more dense systems, we find in many cases that the initial
highly ordered configuration will also disorder and result in
the same ensemble as found from a random initial configura-
tion. The initial configurations that remain highly ordered out
to large total strains y seem to be those in which the particles
are able to flow over each other in well defined channels,
resulting only in a coherent wagging of the nematic order
parameter. However, when the initial configuration contains
sufficient variation in the vertical alignment of particles, even
if this occurs only locally, the wagging of particles near these
vertical misalignments turns into full particle rotations, which
then serve to increase and propagate disorder in the flowing
configuration. We cannot rule out the possibility that even
highly ordered initial configurations might eventually disorder
if sheared to larger strains than we have been able to consider
here.

VI. SUMMARY

In this work we have considered a model of sheared, ather-
mal, frictionless, two-dimensional spherocylinders in suspen-
sion at constant volume. The simplicity of our model, in which
the only interactions are pairwise repulsive elastic forces and a
viscous damping with respect to the suspending host medium,
allows us to shear to very long total strains and completely
characterize the behavior of the system over a wide range of
packing fractions ¢, strain rates y, and particle asphericities
«. In two prior works we focused on the rheological properties
of this model and the variation of the jamming transition ¢;
with particle asphericity [7], and on the rotational motion and
nematic orientational ordering induced by the shearing [8].
In this work we have focused on the spatial structure and
correlations of the sheared system.

For a size-bidisperse system of particles, we have consid-
ered the average velocity profile to check for shear banding,
and we have looked at correlations of the transverse veloc-
ity, particle position, the nematic order parameter, and the
particle’s angular velocity. We find that, while dense systems
near and above jamming can form shear bands on short strain
scales, these bands wander over time and so give rise to the
expected linear velocity profile when averaging over long
strain scales. We find that transverse velocity correlations give
evidence for a diverging length scale as the jamming transition
is approached, however, this is only so for nearly circular
particles with small &« = 0.01; for more elongated particles
with o = 4, the location of the minimum in the correlation
function seems to decrease to smaller distances as the packing
approaches and goes above the jamming ¢,. We find that
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the positional and the nematic order parameter correlations
remain short ranged, even as the packing ¢ approaches and
goes above ¢;. We thus confirm the conclusion of our prior
Ref. [8] that the finite nematic order parameter S, of the
sheared system is not a consequence of long-range coopera-
tive behavior among the particles, but is rather because the
finite shearing rate y acts like an ordering field. We also have
computed the angular velocity correlation between particles,
and find that particles in contact are anticorrelated, while the
correlation essentially vanishes at larger distances. Particles
thus rotate incoherently.

For a size-monodisperse system of elongated particles with
o =4, we have considered several of the same quantities,
in order to quantify what structural differences might exist
between the monodisperse and bidisperse systems. Consider-
ing the velocity profile, as with bidisperse systems we find
a similar shear banding on short strain scales that averages
to the expected linear velocity profile on long strain scales.
However, unlike the bidisperse system, for dense systems
well above jamming we have found that the system can also
lock into coherent blocks of particles that move at constant
velocity, sliding over one another to give the imposed fixed
strain rate. Measurement of the distribution P(6) of particle
orientations also shows a distinct difference from the bidis-
perse system; whereas in a dense bidisperse system P(6) has
a single broad peak, located at a finite angle with respect to
the flow direction, in a dense monodisperse system the peak in
P(6) stays comparatively sharp and is located close to 6 = 0,
while a shoulder that develops into a secondary peak develops
at large 6. Thus, in the monodisperse system the particles are
most likely to orient parallel to the flow direction.

We have also computed the positional and nematic order
parameter correlations for the monodisperse system and find
a set of sharper peaks that persist to larger distances than in the
bidisperse case. The monodisperse system thus has greater lo-
cal ordering than the bidisperse system. But, still we find that
correlations decay exponentially and so correlation lengths
remain finite. Our finding that there are significant structural
differences in dense packings, comparing monodisperse and
bidisperse systems, supports our conclusion in Ref. [8] that
there is a crossover from a single-particle-like behavior at
small ¢, to a behavior dominated by the geometry of the
dense packing at large ¢, and that this is responsible for
the nonmonotonic variation we see in the magnitude of the
nematic order parameter S, as ¢ increases. Comparing the
magnitude of S,, as well as the average angular velocity
—(6;)/y, for monodisperse vs bidisperse systems, we see that

the two are in good agreement for all ¢ < ¢g, max, but then
disagree for ¢ > @5, max-

Finally, we have studied the behavior when we shear
starting from well ordered initial configurations, as compared
to the random initial configurations that we use elsewhere
in our work. In many cases we find that the ordered initial
configuration eventually evolves to the same steady-state en-
semble obtained from a random initial configuration. How-
ever, it is difficult to generalize about the process that leads
to this disordering. For initial configurations with no particle
contacts, particle rotations induced by the viscous drag force
lead to the collisions that are essential to this disordering. At
dilute packings ¢, where the free volume available to each
particle is larger, we always find that the initial configuration
disorders. But, at denser packings, whether such collisions are
effective to disrupt the particle ordering, or whether they lead
merely to the wagging of particles as in Fig. 24, seems to
depend on details of the initial configuration. One factor that
increases disordering is when there is greater misalignment
of the particle positions y; in the direction transverse to the
flow. Since the average flow velocity v;, of a particle is set
by the particle’s coordinate y;, the greater the misalignment of
the particles, the more are the collisions that are induced by
translational motion; combined with particle rotations, such
collisions act to break up the initial ordering of particles in
well defined rows. When there is little vertical misalignment,
particles more easily slide over one another, preserving the
row ordering.

The dependence of the time required to disorder on the
packing density ¢ seems to vary with the particular initial
configuration. In some cases, such as the phase separated
bidisperse configurations of Fig. 20 or the monodisperse
configurations with the localized defect of Fig. 25, the con-
figurations seem to disorder faster as the packing ¢ increases
(though in both cases the most dense ¢ fails to follow this
trend). In other cases, such as the bidisperse configurations of
particle stacks in Fig. 19 or the monodisperse configurations
of Fig. 23, disordering takes longer as ¢ increases. We have no
clear understanding of why this is so, and we therefore leave
this question for future work.
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