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We consider the discretized model of a driven string with an anharmonic elastic energy, in a two-
dimensional random potential, as introduced by[Rosso and Krauth, Phys. Rev. Lett.87, 187002(2001)].
Using finite size scaling, we numerically compute the roughness of the string in a uniform applied force at the
critical depinning threshold. By considering a string with a net average tilt, we demonstrate that the anhar-
monic elastic energy crosses the model over to the quenched KPZ universality class, in agreement with recent
theoretical predictions.
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Recently, Rosso and Krauth(RK) reported[1] simulations
of roughening at the depinning threshold of a driven one-
dimensional string in a two-dimensional(2D) random poten-
tial. Introducing higher order anharmonic terms to a qua-
dratic elastic energy for the string, RK found a value for the
roughness exponentz.0.63, in contrast to the valuesz
,1.2 found in earlier simulations[2], and recently theoreti-
cally [3], using a purely quadratic energy. RK noted that the
value z.0.63 had previously been found in some cellular
automata models for depinning[4].

In a subsequent work[5] RK (with Hartmann) noted that
that when an average tilt is applied to the string, the anhar-
monic terms break the rotational invariance present in the
quadratic model, thus suggesting that the anharmonic terms
might cross the model into the quenched Kardar-Parisi-
Zhang (KPZ) universality class, previously introduced by
Kardar [6] to explain theanisotropicdepinning observed in
the automata models. Simulations[7] of a continuum model
with the quenched KPZ term foundz.0.61±0.06, consis-
tent with the automata models and with the anharmonic
model of RK. Most recently, a functional renormalization
group calculation by Le Doussal and Wiese[8] argued that
the quenched KPZ term can indeed be generated, not only by
the anisotropic disorder considered by Kardar, but also by
the anharmonic elastic energy terms introduced by RK.

A key prediction of Kardar’s for anisotropic depinning is
that the roughness exponent for atilted interface will differ
from that of an untilted one; for a tilted string in 2D, he
predicted the exact value ofztilt =1/2. In this paper, by com-
puting theztilt of the RK model for the first time, we offer a
direct numerical demonstration that their model does indeed
belong in the quenched KPZ universality class.

Our model is the same as that of RK. We take for the
energy of the string

Efhig = o
i=0

L−1

hVsi,hid − fhi + Eelshi+1 − hidj, s1d

where hi is the integer height of the string at positioni
=0, . . . ,L on a discretized lattice,Vsi , jd is an uncorrelated
random Gaussian potential with zero average and unit vari-
ance, f is a uniform external driving force, andEel is the

elastic energy of deforming the string.Vsi , jd is taken peri-
odic on anL3L system size. In their work, RK used peri-
odic boundary conditions. Here, to model a tilted interface
with net slopes, we use boundary conditionshL=h0+sL.
Defining the height relative to a uniformly tilted linedhi
;hi −si, so thatdhL=dh0, we can rewrite Eq.(1) in terms of
the dhi and recover the same model as RK except that the
elastic term now has the form

o
i=0

L−1

Eelsdhi+1 − dhi + sd. s2d

We now carry out simulations of Eq.(1), using the elastic
term of Eq. (2). Using the same algorithm[9] as RK, we
consider slopess=0 ands=1 for one of the specific cases
studied in Ref.[1],

EelsDd = D4/16. s3d

We compute the interface roughnessW for a system of
lengthL,

FIG. 1. RoughnessW2 versus system sizeL, for strings of net
slopes=0 ands=1. The lines are the best fits toW2,L2z using
system sizesL=128–2048.
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W2 ;
1

L
o
i=0

L−1

fsdhi
c − dhcd2g , L2z, s4d

wheredhi
c is the relative height at sitei of the critical string

at depinning,dhc is the average relative height of the critical
string, f¯g represents an average over many realizations of
the random potentialVsi , jd, andz is the roughness exponent.
We also compute the disorder average of the critical force,fc.

Our results for string roughnessW2 versusL, averaged
over 500 disorder samples(for L=2048 we use only 200
samples), are plotted in Fig. 1. Fors=0, our numerical val-
ues agree with those in Ref.[1]. The straight lines on the
log-log plot indicate the power law relationW2,L2z and the
difference in slopes indicate clearly different roughness ex-
ponents for the tiltedss=1d and untiltedss=0d strings.

To determine the values of the exponentz, we fit the data
in Fig. 1 to W2,L2z, using system sizes fromLmin to L
=2048. We plot the resulting values ofz versusLmin in Fig.
2, for Lmin=4 to 256. We see that asLmin increases, the val-

ues ofz decrease and saturate to a constant value character-
izing the roughness in the asymptotic largeL limit. Using the
results from fitting withLmin=128 we find fors=0 the value
z.0.63±0.01. This value is used to plot the solid straight
line in Fig. 1, and agrees with the value found by RK. For
s=1, however, we find the valuez=0.52±0.01. We use this
value to plot the dashed line in Fig. 1. Given thatz for s
=1 still shows a small systematic decreases asLmin increases,
we believe our value is in excellent agreement with the exact
value of 1/2 predicted by Kardar, and thus verifies that the
anharmonic model of RK is in the quenched KPZ universal-
ity class.

Finally, in Fig. 3 we plot the critical forcefc as a function
of system sizeL for the tilted and untilted strings. We see
clearly that the critical forces approach different values asL
increases, another signature of anisotropic depinning.
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FIG. 2. Roughness exponentsz for the tiltedss=1d and untilted
ss=0d strings, as obtained by fitting the data of Fig. 1 toW2,L2z

using data for sizesLmin to 2048.

FIG. 3. Critical forcefc versus system sizeL, for strings of net
slopes=0 ands=1. The lines are guides to the eye.
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