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Critical scaling of shearing rheology at the jamming transition of soft-core frictionless disks
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We perform numerical simulations to determine the shear stress and pressure of steady-state shear flow in
a soft-disk model in two dimensions at zero temperature in the vicinity of the jamming transition φJ . We use
critical point scaling analyses to determine the critical behavior at jamming, and we find that it is crucial to
include corrections to scaling for a reliable analysis. We find that the relative size of these corrections are much
smaller for pressure than for shear stress. We furthermore find a superlinear behavior for pressure and shear stress
above φJ , both from the scaling analysis and from a direct analysis of pressure data extrapolated to the limit of
vanishing shear rate.
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Granular materials, supercooled liquids, and foams are
examples of systems that may undergo a transition from a
liquid-like to an amorphous solid state as some control param-
eter is varied. It has been hypothesized that the transitions in
these strikingly different systems are controlled by the same
mechanism [1], and the term jamming has been coined for this
transition.

Much work on jamming has focused on a particularly
simple model, consisting of frictionless spherical particles
with repulsive contact interactions at zero temperature [2].
The packing fraction (density) of particles φ is the key control
parameter in such systems. Jamming upon compression and
jamming by relaxation from initially random states have been
the focus of many investigations [2–4]. Another physically
realizable and important case is jamming upon shear defor-
mation. This has been modeled both by simulations at a finite
constant shear strain rate γ̇ [5–11] as well as by quasistatic
shearing [4,12,13], in which the system relaxes to its energy
minimum after each finite small strain increment.

Several attempts have been made to determine the critical
packing fraction φJ and critical exponents that describe be-
havior at shear-driven jamming [5–8,10,11]. There is, however,
little agreement on the values of the exponents and there is thus
a need for a thorough and careful investigation of the jamming
transition in the shearing ensemble. It will also be interesting
to compare the exponents found from shearing rheology to
those found from compressing marginally jammed packings.
In particular, we note the linear increase of pressure above
jamming that is observed in that system [2,3], compared to the
superlinear behavior often reported in the sheared system for
pressure and/or shear stress [5,6,10,11].

In this paper we do a careful scaling analysis of high-
precision data for both shear stress and pressure at shear
strain rates down to γ̇ = 10−8. Instead of relying on visually
acceptable data collapses we use a nonlinear minimization
technique to determine the best fitting parameters. As in a
recent analysis of energy-minimized configurations [4] we find
that it is necessary to include corrections to scaling, but also
that the magnitude of the corrections are markedly different
for different quantities and, furthermore, that the neglect of
these corrections is a major reason for the differing values of
the critical exponents in the literature. We find strong evidence

for a superlinear behavior of yield stress and pressure above
jamming from the scaling analysis and also find independent
support for this result from pressure data extrapolated to the
limit of vanishing shear rate. We also suggest a possible
mechanism behind this behavior.

Following O’Hern et al. [2] we use a simple model of
bi-disperse frictionless soft disks in two dimensions with
equal numbers of disks with two different radii in the ratio
1.4. Length is measured in units of the diameter of the small
particles, ds . With rij being the distance between the centers of
two particles and dij being the sum of their radii, the interaction
between overlapping particles is V (rij) = (ε/2)(1 − rij/dij)2.
We use Lees-Edwards boundary conditions [14] to introduce a
time-dependent shear strain γ = t γ̇ . With periodic boundary
conditions on the coordinates xi and yi in an L × L system,
the position of particle i in a box with strain γ is defined as
ri = (xi + γyi,yi). We simulate overdamped dynamics at zero
temperature with the equation of motion [15]

dri

dt
= −C

∑

j

dV (rij)

dri

+ yi γ̇ x̂,

with ε = 1 and C = 1. The unit of time is τ0 = ds/(Cε).
Our basic scaling assumption describes how different

quantities (e.g., shear stress, pressure, potential energy, and
jamming fraction) depend on a change of length scale with a
scale factor b:

O(δφ,γ̇ ,1/L) = b−yO/νgO(δφb1/ν,γ̇ bz,b/L). (1)

Here δφ = φ − φJ , yO is the critical exponent of the observ-
able O, ν is the correlation length exponent, and z is the
dynamic critical exponent. Point J is at δφ = 0, γ̇ → 0, and an
infinite system size, 1/L → 0. The scaling relation describes
the departure from the critical point in these respective
directions.

The above expression is the starting point for our analysis.
Just as in Ref. [5] we make use of data obtained at finite shear
rates and system sizes large enough that finite-size effects
may be neglected: N � 65 536 at the lower shear rates. With
b = γ̇ −1/z in Eq. (1) and qO ≡ yO/zν, the scaling relation
becomes

O(δφ,γ̇ ) ∼ γ̇ qOgO(δφ/γ̇ 1/zν), (2)
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FIG. 1. (Color online) Approximate determination of φJ and qp

from Eq. (2) without corrections to scaling. The figure shows pressure
versus shear rate at several different packing fractions. The pressure
is shown as p/γ̇ 0.3 to make the behavior clearly visible. This suggests
that p ∼ γ̇ q1 with q1 = 0.30 at φJ1 = 0.8433.

where the scaling function is a function of only a single
argument. At φJ we have O(φJ ,γ̇ ) ∼ γ̇ qO , which gives a
simple method for determining qO and φJ : Plot O versus
γ̇ on a double-log scale for several different φ. The packing
fraction for which the data fall on a straight line is then our
estimated φJ . Data above and below φJ , respectively, should
curve in opposite directions.

We start by applying this simple recipe to the pressure
p and will turn to the shear stress only at the next step.
Both these quantities are calculated, as in Ref. [2], from the
elastic forces only. Figure 1 shows pressure versus shear rate at
several different packing fractions. Anticipating that the value
of qp ≈ 0.3, we plot p/γ̇ 0.3 versus γ̇ in order to more clearly
differentiate the behaviors near φJ . It is then easy to identify
φJ1 = 0.8433 as the density with a rectilinear behavior, at
which we find p ∼ γ̇ q1 with q1 = 0.3. Data at lower and
higher densities curve downward and upward, respectively.
The values φJ1 and q1 are only first estimates of the jamming
density and exponent, respectively; our final estimates turn out
to be just slightly different.

Figure 2 is the same kind of plot for the shear stress σ ,
and it is immediately clear that these data are not directly
amenable to the same kind of analysis; there is no density
with an algebraic behavior across the whole range of shear
rates. Before presenting our further analyses we note that
this provides an explanation for the differing values of both
jamming density and exponents in the literature. In Ref. [5]
the jamming density was found to be ≈0.8415 and the figure
shows that data in the range 10−6 � γ̇ � 10−4 would suggest
φ = 0.8416 (crosses) as a good candidate for φJ . However,
it is clear that data at the same density and lower shear rates
deviate from the algebraic behavior. Similarly, with access
to σ down to γ̇ = 10−7, φ = 0.8424 (open circles) would
appear as a good candidate for φJ , whereas data in the range
10−8 � γ̇ � 10−6 would suggest φJ = 0.8433 (solid dots).
The value of the effective exponent qσ also changes: For
these three different ranges of shear rates we find qσ = 0.44,
0.41, and 0.33, respectively. Note that this explanation is at
variance with Ref. [11] where the differing exponents are
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FIG. 2. (Color online) Shear stress σ versus shear rate γ̇ at several
different densities. Panel (a) shows that there is no density where
σ behaves algebraically across the extended range of shear rates;
however, data across two orders of magnitude of γ̇ could, to a
reasonable approximation, be taken as algebraic. In that vein, data
limited to γ̇ � 10−6 give φ = 0.8416 (crosses) as a good candidate
for φJ (cf. Ref. [5]), whereas other ranges of γ̇ would give other
estimates. From a comparison with p/γ̇ q1 = gp(0) at φ = φJ1 in
Fig. 1, panel (b) shows the correction term σ/γ̇ q1 − gσ (0) at φJ1, and
it appears that this correction is, to a very good approximation, ∼γ̇ ω̃1 ,
which has the same form as standard corrections to scaling in critical
phenomena.

attributed to using data from an excessively large range in
φ. That explanation is not applicable here since our analyses
only consider data right at the presumed φJ .

The inconsistencies suggested by Fig. 2 can be resolved by
realizing that corrections to scaling [16] must be considered.
Corrections to scaling, arising from the leading irrelevant
variable in a renormalization group picture, require that Eq. (1)
be modified by an additional term:

O(δφ,γ̇ )/b−yO/ν = gO(δφb1/ν,γ̇ bz)+ b−ωhO(δφb1/ν,γ̇ bz),

where hO is another scaling function and ω is the correction-
to-scaling exponent. Using b = γ̇ −1/z in the above then gives

O(δφ,γ̇ )/γ̇ qO = gO(δφ/γ̇ 1/zν) + γ̇ ω/zhO(δφ/γ̇ 1/zν). (3)

For the shear stress at φJ (i.e., δφ = 0), this simplifies to

σ (0,γ̇ ) /γ̇ qσ = gσ (0) + γ̇ ω/zhσ (0). (4)

If we take φJ = φJ1 and qσ = q1 = 0.3 from the analysis of
the pressure in Fig. 1, then the deviations of the stress from
the simpler scaling assumption, σ (φJ ,γ̇ )/γ̇ q1 = gσ (0), can be
shown to precisely obey the form of Eq. (4). From Fig. 2(a) we
note that σ/γ̇ q1 in the limit of low γ̇ appears to saturate at a
finite value, 0.005 < gσ (0) < 0.006, and so we plot σ/γ̇ q1 −
gσ (0) in Fig. 2(b). It is then possible to adjust gσ (0) such that
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the remainder is algebraic in γ̇ , and Eq. (4) is fulfilled with
ω/z = ω̃1 ≈ 0.25.

The above analysis of σ relied on φJ1 and q1 determined
from the pressure data without corrections to scaling. We now
set out to analyze both pressure and shear stress directly from
the scaling relation Eq. (3) that includes the correction term and
determine the φJ , qO, 1/zν, and ω/z that allow for the best fit
to Eq. (3). Here gO and hO are scaling functions, which we ap-
proximate with fifth-order polynomials in x ≡ δφ/γ̇ 1/zν . The
actual fits are done by minimizing χ2/DOF (where DOF is
the degrees of freedom) with a Levenberg-Marquardt method.
The number of points in the fits range from about 100 to 250
depending on the range of data used in the fits.

In this kind of involved analysis it is crucial to validate
the results and, to that end, we use several different criteria:
(i) The first is to check the quality of the fits. Are the
deviations of the data from the scaling function consistent
with the statistical uncertainties? We use χ2/DOF, which
should be close to unity, to get a quantitative measure. (ii)
A good quality of fit does, however, not by itself guarantee
that the results are reliable. The second check is therefore
whether the fitting parameters are reasonably independent
of the precise range of the data included in the fit. We do
this by systematically varying both the range of shear rates
and the range of densities; fixing X = (φ − 0.8434)/γ̇ 0.26

we use the criterion |X| < Xmax with Xmax = 0.2, 0.3, and
0.4. This restriction does not reflect the size of the critical
region but rather that the polynomial approximation of
the scaling function breaks down for excessively large X.
(iii) A final check is whether the critical parameters from
analyses of different quantities (here p and σ ) agree with one
another.

Figure 3 shows χ2/DOF and the key fitting parameters φJ ,
1/zν, qp, and qσ plotted against γ̇max. For each quantity the
left and right panels are from analyses of pressure and shear
stress, respectively. First considering χ2/DOF in the first pair
of panels, we note that the fits are only good when the data
are taken from a rather restrictive interval in φ around φJ ,
|X| � 0.3. For pressure there is a good fit to the data over a
very large interval—more than four decades in γ̇ . For the shear
stress the highest shear rates should not be used, and reliable
results are obtained by restricting γ̇ to γ̇ � 5 × 10−5 when
Xmax = 0.2 and γ̇ � 1 × 10−5 for Xmax = 0.3.

The next two panels show φJ from pressure and shear
stress, respectively, in good agreement with one another;
we estimate φJ = 0.843 47 ± 0.000 20, in agreement with
other recent determinations of φJ from quasistatic simulations
[4,12]. Here and throughout, the error bars in the figures are
one standard deviation whereas the numerical values give a
min-max interval (± three standard deviations) for the es-
timated quantities. To correctly interpret these figures one
should note that the fitted values for different γ̇max and Xmax

are based on different subsets of the same data, and therefore
are expected to be strongly correlated. The main point is here
to check how robust the fitting parameters are to changes in the
precise data set, and the absence of clear trends in the results
is therefore an encouraging sign.

We further find 1/zν = 0.26 ± 0.02 and q = 0.28 ± 0.02.
Combining the two exponents we find y = qzν = 1.08 ± 0.03
(a strong correlation between q and 1/zν is responsible for the
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FIG. 3. (Color online) Results from scaling analyses that include
corrections to scaling. The left and right panels are from analyses of
pressure and shear stress, respectively. The first pair of panels, which
give χ 2/DOF, suggest that the analyses are only reliable when data
is used in a rather restrictive interval of φ − φJ , |X| � 0.3. For shear
stress one also has to be restrictive in using data with larger γ̇ . From
the following panels we read off φJ = 0.843 47, 1/zν = 0.26, and
qp = qσ = 0.28. Combining the last two (y = qzν) gives yp = yσ =
1.08.

error estimate for y). Since y is just slightly above unity we
have also reanalyzed the pressure data with the assumption
yp = 1. The fits then become considerably worse and we
conclude that the data are strongly in favor of yp > 1. A similar
analysis of the shear stress is not conclusive. Using ν = 1.09
from Ref. [4] the dynamic critical exponent becomes z =
3.5 ± 0.4. The correction-to-scaling exponent (not shown) is
ω/z = 0.29 ± 0.03, or ων = 1.10 ± 0.06, which, again using
ν = 1.09 [4], gives ω = 1.0 ± 0.1, in good agreement with
Ref. [4].

With these more complicated analyses it is no longer
possible to determine φJ directly from a simple plot as in
Fig. 1. The most direct way to illustrate the determination of
φJ is shown in Fig. 4 which displays p/γ̇ qp and σ/γ̇ qσ against
γ̇ ω/z, now with linear scales on both axes. Data at φJ should
then fall on a straight line. Note the very different size of the
corrections, given by the slopes of the data.

For φ well above φJ the pressure decays algebraically in
γ̇ and this gives a means to determine the limiting value
p(φ,γ̇ → 0). If we can get reliable values, p(φ,γ̇ → 0), at
densities sufficiently close above φJ it should be possible to
get another determination of yp, independent of the scaling
analysis. Figure 5 shows some of our finite-γ̇ data together
with such extrapolated values for densities down to φ = 0.848.

030302-3



RAPID COMMUNICATIONS

PETER OLSSON AND S. TEITEL PHYSICAL REVIEW E 83, 030302(R) (2011)

0.00 0.02 0.04 0.06 0.08
0.002

0.004

0.006

0.008

0.010

γ̇ω/z

σ
/γ̇

q

0.00 0.02 0.04 0.06 0.08
0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

φ = 0.8424
φ = 0.8428
φ = 0.8432
φ = 0.8433
φ = 0.8434
φ = 0.8436
φ = 0.8440

γ̇ω/z

p
/γ̇

q

FIG. 4. (Color online) Illustration of results of the scaling
analysis. The dashed lines are the behaviors at φJ for p and σ ,
respectively: O(φJ ,γ̇ )/γ̇ qO = gO(0) + γ̇ ω/zhO(0).

Fitting to the five points from φ = 0.848 through 0.856 (0.5%
through 1.5% above φJ ) we find y = 1.09 ± 0.04 shown by
the solid line, in excellent agreement with y = 1.08 from the
scaling analysis. (The inset of Fig. 5 shows how y depends
on the assumed φJ .) Similar results, yp ≈ 1.1, have also been
found before [13,17].

The above results point to a good agreement between the
exponent obtained from the scaling analyses on the one hand,
and the γ̇ → 0 limit of the pressure above φJ on the other,
which is entirely in accordance with expectations from critical
scaling. This is in contrast to the claim in Ref. [11] that
the critical region is extremely narrow and does not include
densities away from φJ in the limit γ̇ → 0; the yield stress
is there taken to be governed by a different regime with a
different exponent, yσ = 3/2.

With the result y ≈ 1.1 from two different analyses it
becomes important to try and reconcile this with the well-
established linear increase of the pressure when marginally
jammed packings are compressed above their respective
jamming densities [2,3]. We speculate that the reason for this
is that the ensemble of configurations depends in a nontrivial
way on φ in the vicinity of φJ , and that this is so since the
dynamic process that generates this ensemble is itself very
sensitive to φ. It is then relevant to consider the behavior in the
quasistatic limit and to recall that the average time needed for
the minimization of energy in quasistatic simulations diverges
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FIG. 5. (Color online) Alternative determination of the exponent
yp . The open circles are p(φ,γ̇ → 0) from extrapolations of p(φ,γ̇ ).
Assuming φJ = 0.843 47 the exponent becomes y = 1.09, shown by
the solid line. The dashed line corresponds to y = 1. The inset shows
how y depends on the assumed φJ .

as φJ is approached from above or from below. (This parallels
the more rapid jumping between jammed and unjammed states
reported in Ref. [12].) A dramatic change of the dynamical
process that generates the ensemble suggests that the ensemble
itself would depend on φ in a nontrivial way.

To conclude, we have shown that pressure and shear stress
from shearing simulations are entirely consistent with the
assumption of a critical behavior when corrections to scaling
are included in the analysis. We find φJ = 0.843 47 ± 0.000 20
and that, at φJ , both p and σ scale as γ̇ q with q = 0.28 ± 0.02.
In the limit γ̇ → 0 both p and σ vanish as (φ − φJ )y with
y = 1.08 ± 0.03.
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