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Finite-size scaling at the jamming transition: Corrections to scaling and the correlation-length
critical exponent
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We carry out a finite-size scaling analysis of the jamming transition in frictionless bidisperse soft core disks
in two dimensions. We consider two different jamming protocols: (i) quench from random initial positions and
(ii) quasistatic shearing. By considering the fraction of jammed states as a function of packing fraction for systems
with different numbers of particles, we determine the spatial correlation length critical exponent ν ≈ 1 and show
that corrections to scaling are crucial for analyzing the data. We show that earlier numerical results yielding
ν < 1 are due to the improper neglect of these corrections.
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Glassy behavior in condensed matter and granular systems
remains a topic of considerable controversy. In this context, the
jamming of hard or soft-core particles at zero temperature has
been the focus of much recent effort. As the packing fraction
φ of a granular material increases, the system undergoes a
sharp jamming transition from a fluidlike state to a rigid but
disordered solid state [1]. It has been proposed that this T = 0
transition is described by a critical point, with scaling behavior
similar to that at a continuous phase transition as found in
equilibrium systems [2]. A key signature of a continuous
transition is a correlation length ξ that diverges at the jamming
φJ , ξ ∼ |φ − φJ |−ν . Determination of the critical exponent ν

is thus a key goal in establishing and characterizing the critical
nature of the jamming transition.

While it has been suggested that the value of ν is
independent of the dimensionality of the system, or the specific
force law between particles [3], the precise numerical value
of ν varies widely throughout the literature. From theoretical
consideration of soft vibrational modes in the jammed solid,
Wyart et al. [4] argued for ν = 1/2. Numerical simulations of
vibrational modes led Silbert et al. in two (2D) and three
(3D) dimensions [5] to postulate diverging transverse and
longitudinal correlation lengths with exponents νT ≈ 0.24
and νL ≈ 0.48 respectively. k-core percolation models, in
mean-field theory, also yield [6] two exponents ν∗ = 1/4 and
ν# = 1/2, while a field-theoretic approach [7] to jamming
in 2D gave ν = 1/4. Simulations by Drocco et al. [8] of
a trace particle dragged through an incipient 2D jammed
liquid resulted in a value ν = 0.71 ± 0.12, while from a
numerical finite-size scaling analysis of mechanically stable
states in 2D and 3D O’Hern et al. [3] found ν = 0.71 ± 0.08.
A scaling analysis of velocity correlations in simulated 2D
shear driven flow by two of us [9] previously reported that
ν = 0.6 ± 0.1. Hatano [10] obtained ν = 0.73 ± 0.05 from
simulations of shear relaxation in 3D, while relaxation of
random initial states to mechanical equilibrium in 2D led
Head [11] to ν = 0.57 ± 0.05. Heussinger and Barat [12]
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estimate ν = 0.8 − 1.0 from displacement correlations in a 2D
system under quasistatic shearing, while Heussinger et al. [13]
find a dynamic correlation length in 2D with exponent ν = 0.9.
Establishing the precise value of ν and determining whether all
these correlations lengths are the same thus remains a crucial
theoretical objective.

In this work we present a detailed finite-size scaling
analysis of the jamming transition in frictionless bidisperse
soft-core disks in 2D. Only through such a scaling analysis
can one hope to clearly establish the singular behavior of the
system in the limit of infinite size and the value of critical
exponents. An advantage of the finite-size scaling method
is that it allows one to compute the exponent ν of the most
divergent length scale without the need to explicitly calculate
the correlation length ξ itself.

We consider two different jamming ensembles: (i) quench
from random initial positions (RAND) and (ii) quasistatic
shearing (QS) [12]. By considering the fraction of jammed
states f as a function of packing fraction φ for systems with
different numbers of particles N , we demonstrate that the
correlation length critical exponent in both ensembles is ν ≈ 1.
We further show that corrections to scaling are crucial for
understanding our data and argue that earlier numerical results
yielding ν ≈ 0.7 are due to the improper neglect of these
corrections. Our results suggest that corrections to scaling may
be important in other scaling analyses of critical behavior at
jamming, for example, in rheological behavior.

Our model is a 50:50 bidisperse mixture of disks with
diameters in the ratio 1.4 [3]. Particles interact with a soft-core
harmonic repulsion,

V (rij ) =
{

ε(1 − rij /dij )2/2 for rij < dij

0 for rij � dij

, (1)

where rij is the distance between the centers of two particles
i and j and dij is the sum of their radii. Length is in units
such that the smaller diameter is unity, and energy is in units
such that ε = 1. A system of N disks in an area A thus has a
packing fraction (density)

φ = Nπ (0.52 + 0.72)/(2A). (2)

We define our two ensembles as follows. (i) RAND: This
is the ensemble introduced by O’Hern et al. [3]. We start with
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a fixed number of particles, N , at density φ, in a square box
with periodic boundary conditions. Particles are put at random
initial positions, and then a conjugate gradient method is used
to relax the system to the nearest local energy minimum. The
minima resulting from many such initial configurations (we
use typically 10 000 for each value of φ) defines the ensemble.
(ii) QS: At a fixed N and φ, we start the system in a random
initial configuration and then apply a small shear strain step �γ

using Lees-Edwards boundary conditions [14]. A conjugate
gradient method then relaxes the system to the nearest local
energy minimum before the system is strained again by �γ .
The set of states obtained after the energy minimization, after
a long total strain γ , defines the ensemble. We choose the
strain step small enough that our results do not depend on
the value of �γ . For our biggest systems we use �γ = 10−5.
We average over 10–20 independent runs, each sheared a total
strain γ ∼ 4–8; for our smaller sizes, we use γ up to 200.

In both ensembles, we stop the energy minimization when
one of the following conditions is met: (i) the relative decrease
in the energy after 50 iterations is smaller than 10−10 or (ii)
the average energy per particle is E/N < 10−16. In the latter
case, we consider the resulting configuration to be unjammed.
The key quantity in our analysis will be the fraction of jammed
states in the ensemble at a given value of density, f (φ). We
have verified that the energy bound (ii) gives a clear separation
between the jammed and unjammed states up to the largest
system size we have studied. Further details of our numerical
procedures may be found in Ref. [15].

In Fig. 1 we present our results for f (φ) for systems of vary-
ing number of particles N for both RAND and QS. We see that
f (φ) sharpens up and approaches a step function in the limit
N → ∞; this singularity in f (φ) as N → ∞ is characteristic
of a quantity that has scaling dimension zero. We would thus
expect, to leading order, the finite-size scaling behavior,

f (φ,L) = F(δφL1/ν), where δφ ≡ φ − φJ , (3)

φJ is the jamming density in the thermodynamic limit
N → ∞, ν is the correlation length critical exponent, and
L ≡ √

N is a measure of the linear size of the system. A key
prediction of Eq. (3) is that at φ = φJ , curves of f (φ,L) for
different L should all intersect, having the common value
F(0); plotting f (φ,L) versus δφL1/ν , curves of different L

should collapse to a common scaling curve. However, careful
inspection of our results in Fig. 1 (see insets) shows that
there is no common intersection point for the f (φ,L). This
observation leads us to conclude that, for the sizes studied
here, corrections to scaling must be included in our analysis.

We can include such corrections to scaling by generalizing
Eq. (3) to

f (φ,L) = F0(δφL1/ν) + L−ωF1(δφL1/ν). (4)

In the renormalization group framework for equilibrium
critical phenomena, such corrections to scaling arise from
a Taylor series expansion of the free energy in the leading
irrelevant scaling field, whose scaling dimension is −ω [16].
We will define fc ≡ F0(0) as the critical value of the jamming
fraction at φJ in the limit L → ∞.

One of the consequences of Eq. (4) is that the functions
f (φ,L) approach the L → ∞ limiting step function at
different rates, depending on the value of f . If we define
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FIG. 1. (Color online) Fraction of jammed states f versus
packing fraction φ, for systems with number of particles N . (a) The
RAND ensemble; (b) the QS ensemble. Insets show a blowup of the
region where curves for different N intersect.

φf̄ (L) as the value of φ where f (φ,L) = f̄ , then sufficiently
close to φJ we can expand the scaling functions in Eq. (4) to
linear order in δφ to obtain

φf (L) = φJ − L−1/ν[c0δf − (c1 − c2δf )L−ω], (5)

where c0, c1, c2 are constants and δf ≡ f − fc.
In Fig. 2 we plot φf (L) versus L for several values of f .

To interpolate between our data points to define the values
φf (L), we use the following procedure. We transform to a
new variable F ≡ ln[f/(1 − f )] and fit F (φ) to a fifth-order
polynomial over the range |F | � 5. The result gives the solid
lines in Fig. 1. We see that as f increases, φf (L) becomes
nonmonotonic, a clear signature of the change in sign of the
leading term L−1/ν in Eq. (5) as f increases above fc. We see
that φJ ≈ 0.8415 for RAND, while φJ ≈ 0.843 for QS.

We consider next a determination of the exponent ν via
Eq. (5). To eliminate the imprecisely known value of φJ , and
to reduce the contribution from the correction to scaling given
by c1, we consider the difference

w(L) ≡ φf2 (L) − φf1 (L) = aL−1/ν(1 + bL−ω), (6)

where both a and b are proportional to f2 − f1. We choose f1

and f2 symmetrically about fc (with fc as determined below)
and plot w(L) versus L for RAND and QS in Fig. 3. We
expect the correction term ∼L−ω to get smaller, and become
negligible, as L increases. We therefore ignore the correction
term and fit the data to w ∼ L−1/ν to get the solid line in
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FIG. 2. (Color online) φf (L) versus L for different values of f

for (a) RAND and (b) QS. Values of f increase from bottom to top.

Fig. 3. The insets show the resulting value of 1/ν as we drop
successively smaller system sizes from the fit, fitting systems
of size Nmin to Nmax (Nmax = 16384 for RAND, Nmax = 4096
for QS, L = √

N ). As expected, the value of 1/ν saturates to
a constant as Nmin increases and the effects of the correction
term become negligible. We find from these fits the values
1/ν = 0.93 ± 0.02 for RAND, and 1/ν = 0.91 ± 0.02 for QS.
If we then fit the data for all sizes to the full Eq. (6), including
the correction term, we get values of 1/ν consistent with
those above; however, the estimated error in ω is too large
to determine ω to any accuracy.

To determine ω, and get a more accurate value for φJ , we
use the following procedure. We fit the results for φf (L) of
Fig. 2 to a single power law φf (L) = φJ − cL−1/νeff . Since
φf (L) has such a single power law behavior only at fc, we
expect that the χ2 of the fit will be smallest when f = fc.
The fitted parameters at this fc then determine φJ and the
exponent 1/νeff = 1/ν + ω. We show the results of such fits
in Fig. 4, where we fit to system sizes Nmin to Nmax, for
the four different cases Nmin = 48,64,96,128. We see that
as Nmin increases, the low-f side of the minimum in χ2

gets increasingly shallow. This is not surprising since the
size of the correction term, and hence its effect on the fits,
becomes progressively smaller as N increases. Nevertheless
we find quite stable values of the fitted parameters as Nmin

varies. We find fc = 0.78 ± 0.02, φJ = 0.841 77 ± 0.000 01,
1/ν + ω = 1.7 ± 0.1 for RAND and fc = 0.60 ± 0.03, φJ =
0.8432 ± 0.0001, 1/ν + ω = 1.85 ± 0.03 for QS. Combining
with our earlier results for 1/ν we get ω = 0.8 ± 0.1 for
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FIG. 3. (Color online) Width w(L) ≡ φf2 (L) − φf1 (L) versus L

for (a) RAND and (b) QS. We choose f1 and f2 symmetrically about
fc; for RAND f1 = 0.7, f2 = 0.9; for QS f1 = 0.5, f2 = 0.7. The
straight line is a fit to w ∼ L−1/ν , including all data. Insets show the
fitted value of 1/ν as the minimum size system included in the fit,
Nmin, is varied.

RAND and ω = 0.94 ± 0.05 for QS. The solid lines in Fig. 2
result from fits to Eq. (5) where we have fixed 1/ν and 1/ν + ω

to the values found from the analyses of Figs. 3 and 4.
It is interesting to compare our results against the finite-size

scaling analysis of O’Hern et al. [3], who considered the
RAND ensemble. In that work, the authors considered the
distribution P (φ,L) = df (φ,L)/dφ, the probability density
for a system of size L to have its particular jamming density
at φ. By considering how the location φ0(L) of the peak in
P (φ,L) approached its L → ∞ limit φJ , the authors defined
the critical exponent “ν” by φJ − φ0 ∼ L−1/“ν ” and found the
value “ν”= 0.71 ± 0.08. In terms of our analysis, we see that
φ0 is the same as our φf0 , where f0 locates the steepest slope of
f (φ,L) and “ν” is just our νeff . In light of corrections to scaling,
we see that “ν” should not be identified as the correlation
length exponent; it is an effective exponent that arises from
fitting φ0 to single power law, when the true behavior as
in Eq. (5) is governed by two different power laws with
exponents 1/ν and 1/ν + ω. If we take f0 = 0.5, our Fig. 4(c)
for the case Nmin = 64 gives 1/νeff = 1.32, or νeff = 0.76, in
good agreement with the value found by O’Hern et al.

O’Hern et al. similarly define the full width at half
maximum of P (φ,L), w(L), and find the scaling w ∼ N−� ∼
L−2�, with � = 0.55 ± 0.03 or 2� = 1.10 ± 0.06. With
suitable choices of f1 and f2, this w is the same as our
w of Eq. (6), and hence we expect for asymptotically large
N (where corrections to scaling become negligible) to find
2� = 1/ν. If we assume a Gaussian form for P (φ,L) then the
full width criterion corresponds to f1 = 0.124 and f2 = 0.876.
Computing this w and fitting using sizes N = 64 to 4096, the
same range as O’Hern et al., we get 2� = 1.035 ± 0.002, in
agreement with O’Hern et al. within their estimated errors.
However, if we use up to our largest size N = 16 384, then
increase Nmin, we find � to systematically decrease, becoming
2� = 0.97 ± 0.01 when Nmin = 2048. Our result remains
larger than the 1/ν = 0.93 found in Fig. 3, perhaps because f1

is so far from fc that additional corrections to scaling arise from
nonlinearities in the scaling functions. Thus we conclude that it
is O’Hern et al.’s 1/(2�) that is asymptotically the correlation
length exponent ν, rather than their “ν” (our νeff), and that their
value for 2� is larger than our 1/ν due to their more limited
range of sizes and their neglect of corrections to scaling.

In other recent work [17], it is found that corrections to scal-
ing must similarly be included to properly describe the critical
scaling of rheology under applied shear strain rate γ̇ for rates of
the size typically used in simulations. The value φJ = 0.8415
for shear driven jamming that was reported in earlier work by
two of us [9] is lower than the corresponding φJ = 0.8432
found for QS here, due the neglect in that work of corrections
to scaling. Similarly, the low value ν = 0.6 reported in that
work also results from the earlier failure to include corrections
to scaling. We expect that other numerically reported values
of φJ and ν may similarly be inaccurate due to the neglect of
corrections to scaling in the analysis.

To conclude, we have demonstrated that, for the sizes N

typically used in simulations, including corrections to scaling
is crucial for a proper description of the critical behavior at
jamming, in both RAND and QS ensembles. Although we
know no a priori reason why this should be, it is interesting to
note that corrections to scaling are similarly important in spin
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FIG. 4. (Color online) Results from fitting data of Fig. 2 to φf (L) = φJ − cL−1/νeff , using system sizes Nmin to Nmax. We show results for
Nmin = 48,64,96,128. Panels (a)–(c) are for RAND; panels (d)–(f) are for QS. [(a) and (d)] The χ2/DOF of the fit (DOF = number of data
points minus number of fitting parameters); the minimum of χ2/DOF locates fc, which then determines φJ , as shown in (b) and (e), and the
value of 1/νeff = 1/ν + ω, as shown in (c) and (f). Insets show the dependence of the fitted parameters on the value of Nmin.

glass problems, another system in which the “ordered” state
appears spatially random [16]. Within our estimated accuracy
we find the correlation length exponent ν and the correction to
scaling exponent ω to be roughly equal for the two ensembles.
We find ω = 0.89 ± 0.12 and 1/ν = 0.92 ± 0.02 or ν =
1.09 ± 0.02. While the estimated statistical error in ν is small
[18], our range of system sizes L is not sufficiently large for
us rule out the possibility that systematic errors, for example,

from additional or higher-order corrections to scaling, could
slightly alter the value of these exponents to ν = ω = 1.
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