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Pressure distribution and critical exponent in statically jammed and shear-driven frictionless disks
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We numerically study the distributions of global pressure that are found in ensembles of statically jammed and
quasistatically sheared systems of bidisperse, frictionless disks at fixed packing fraction φ in two dimensions.
We use these distributions to address the question of how pressure increases as φ increases above the jamming
point φJ , p ∼ |φ − φJ |y . For statically jammed ensembles, our results are consistent with the exponent y being
simply related to the power law of the interparticle soft-core interaction. For sheared systems, however, the value
of y is consistent with a nontrivial value, as found previously in rheological simulations.
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I. INTRODUCTION

When particles interacting with a short-range repulsive
contact potential are confined within a box, a sharp jamming
transition takes place as the density of particles is increased [1].
Defining the packing fraction as

φ = Nv̄/V, (1)

where N is the total number of particles, v̄ is the average
volume per particle, and V is the total system volume, the
jamming transition takes place at a critical value φJ . For
φ < φJ , particles pack with no overlaps and the total potential
energy E of the system vanishes. For φ > φJ , soft-core
particles have some degree of overlap and the resulting contact
forces cause E to become finite. When such a configuration
relaxes to a mechanically stable state, the sum of contact forces
on each particle vanishes, and the system is at a local minimum
of the total potential energy. We refer to such a compressed
mechanically stable state of finite energy as statically jammed.

For an ensemble of such statically jammed frictionless
spheres in two and three dimensions, with average isotropic
stress, it was observed numerically [2] that the pressure p of
the total system increased continuously from zero as a power
law, as the packing fraction φ increased above the critical
jamming fraction φJ ,

p ∼ |φ − φJ |y . (2)

It was found by O’Hern et al. [2] that the power-law exponent
y was simply related to the form of the soft-core contact inter-
action between overlapping particles. For a contact potential
between two particles,

V (rij ) =

⎧⎪⎨
⎪⎩

ε
α

(
1 − rij

dij

)α

for rij < dij

0 for rij > dij

, (3)

it was found that

y = α − 1. (4)

Here rij = |rij | ≡ |ri − rj | is the center-to-center distance
between the two particles i and j , dij = Ri + Rj is the sum of
the radii of the two particles, and ε is a coupling constant that
sets the energy scale. For a simple harmonic repulsion with
α = 2, we therefore have y = 1.

If the same system is sheared at a uniform constant shear
strain rate γ̇ , a nonzero pressure p(φ,γ̇ ) results for any φ. The
shear-driven jamming φJ can be defined [3] by taking the limit
γ̇ → 0, where one finds

lim
γ̇→0

p(φ,γ̇ ) =
⎧⎨
⎩

0 for φ < φJ

p0(φ) for φ > φJ

. (5)

Here p0(φ) is the finite pressure along the yield stress curve
separating statically jammed states (p < p0) from states in
steady-state shear flow (p > p0). This p0(φ) is found to obey
a similar power-law behavior,

p0(φ) ∼ |φ − φJ |y. (6)

It had generally been assumed that the pressure p0 along the
yield stress curve, and the pressure p within statically jammed
states, should behave similarly, in particular that the exponent
y is the same for both cases. However, simulations [4] of
the shearing rheology of overdamped frictionless disks in two
dimensions with a harmonic interaction α = 2 found y ≈ 1.1,
greater than the expected value of Eq. (4) for statically jammed
states, α − 1 = 1. Differing values of y would indicate that
shear-driven jamming is in a different critical universality
class than the unjamming of isotropically compressed jammed
states, and so the specific value of the exponent y is of
considerable theoretical importance.

Since this shearing value of y > α − 1 resulted from a
detailed critical scaling analysis, which was more complicated
than usual because of the need to include correction to scaling
terms, it is useful to see if one can find an independent and
simpler analysis that can confirm this result. In this work we
argue that the conclusion, whether or not y > 1, may be easily
obtained by looking at the histogram of total system pressure
over the ensemble of configurations at fixed packing fraction
φ. We first present our numerical results, and then we present
a simple model to explain them.

II. NUMERICAL RESULTS

Our model is one that has been well studied previously in
the literature [2]. We use a bidisperse mixture of frictionless
circular disks in two dimensions (2D), with equal numbers
of big and small particles and diameter ratio db/ds = 1.4.
Particles interact with the soft-core contact potential of Eq. (3).
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We use a fixed number of particles N in a square box with side
length L, with periodic boundary conditions. L is adjusted to
vary φ. We will measure length in units such that ds = 1, and
energy in units such that ε = 1.

We consider two different ensembles. In the first, which we
denote as RAND, particles at a fixed φ are placed at random
initial positions and then quenched to a local energy minimum
using a conjugate gradient method. If the energy per particle
of the resulting configuration is E/N > 10−16 we consider
the configuration to be jammed [5]. Our RAND ensemble
is formed by the energy quenched jammed configurations
obtained from a large number of independent random initial
configurations. Depending on system size, value of φ, and
type of soft-core interaction, our histograms represent between
5000 and 20 000 independent samples. This is the ensemble
considered originally by O’Hern et al. [2]. Configurations
obtained this way, in a fixed square box with periodic boundary
conditions, may contain some small residual shear stress.
However, on average the stress tensor is one of isotropic
pressure. Such states therefore model the statically jammed
states that lie below the yield stress curve.

The second ensemble, which we denote as QS, is obtained
by quasistatically shearing [3,6,7] the system at fixed φ.
Starting from an initial random configuration, we apply an
affine finite shear strain �γ using Lees-Edwards boundary
conditions [8]. Following the strain step we then use a
conjugate gradient method to relax the strained system to its
nearest local energy minimum, giving the nonaffine response
to the strain step. Repeating the strain and relaxation steps, our
ensemble is formed by the energy minimized configurations
at the end of each relaxation step. We have found [3] that this
ensemble of configurations becomes independent of the initial
starting configuration, provided one strains to a sufficiently
large total shear strain γ . Here we use a strain step �γ = 10−4,
sufficiently small that our results are independent of �γ , and
we discard an initial 10 000 steps, corresponding to a strain of
γ = 1, to allow the system to reach steady state. Depending
on system size and the value of φ, our histograms represent
systems sheared to a total strain of roughly γ = 10–20,
averaging over 10–30 independent starting configurations. The
QS ensemble represents states along the yield stress curve
γ̇ → 0. Further details of our numerical procedure may be
found in Ref. [3] (see Sec. II and the Appendix).

In both ensembles we compute the total system pressure
p of each configuration in the usual way [2] from the trace
of the stress tensor P given by the contact forces Fij =
−(dV/drij )r̂ij ,

P ≡ 1

L2

∑
i,j

rij Fij , p = 1

2
Tr[P]. (7)

A. RAND ensemble

In Fig. 1 below we show the resulting histograms of
pressure, P(p|φ), found for the RAND ensemble at packing
fraction φ, with harmonic soft-core potential α = 2. In this
case we expect from Eq. (4) that the pressure exponent
is y = 1. We show results for systems with N = 512 and
N = 1024 particles for several different packing fractions φ

close to the value φJ = 0.842, the limiting N → ∞ value
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FIG. 1. (Color online) Histograms of total system pressure p for
several different packing fractions φ for the RAND ensemble with
harmonic soft-core interactions. The number of particles is (a) N =
512 and (b) N = 1024. Solid lines represent fits to Eq. (16) holding
y = 1 fixed.

of the jamming packing fraction for RAND in 2D [9]. Only
jammed configurations with a finite p > 0 are included in
the histograms. Because we have a finite-size system, such
jammed configurations exist both below as well as above the
N → ∞ value of φJ .

In Fig. 2 we show histograms P(p|φ) for the RAND
ensemble but now for a Hertzian soft-core contact potential,
with α = 5/2. For this case we expect from Eq. (4) that
y = α − 1 = 3/2. Comparing Figs. 1 and 2 we see a clear
qualitative difference. Whereas for the harmonic interaction
P(p|φ) appears to behave smoothly as p → 0, for the Hertzian
interaction we see a clear upturn of P(p|φ) as p decreases to
small values, suggesting a divergence as p → 0.

B. QS ensemble

In Fig. 3 we show histograms P(p|φ) for the QS ensemble,
for the harmonic interaction α = 2. We show results for several
different packing fractions φ close to the value φJ = 0.843, the
liming N → ∞ value of the shear-driven jamming transition
in 2D [4,9]. Only configurations with a finite p > 0 are
included in the histograms. For the harmonic interaction,
Eq. (4) would lead us to expect a value of y = α − 1 =
1; however, our earlier detailed critical scaling analysis of
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FIG. 2. (Color online) Histograms of total system pressure p for
several different packing fractions φ for the RAND ensemble with
Hertzian soft-core interactions. The number of particles is (a) N =
512 and (b) N = 1024. Solid lines represent fits to Eq. (16) holding
y = 3/2 fixed.
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FIG. 3. (Color online) Histograms of total system pressure p for
several different packing fractions φ for the QS ensemble (quasistatic
shearing) with harmonic soft-core interactions. The number of
particles is (a) N = 512 and (b) N = 1024. Solid lines represent
fits to Eq. (16) holding y = 1.1 fixed.

shearing rheology [4] resulted in the value y ≈ 1.1. Looking
at the histograms in Fig. 3 we see a clear upturn in P(p|φ) as
p decreases to small values, suggesting a possible divergence
as p → 0, just as was seen in Fig. 2 for the RAND-Hertzian
case where y > 1. We have verified that this behavior is not
an artifact of the bin size chosen to construct the histogram.
We may therefore conjecture that the divergence of P(p|φ) as
p → 0 is a signature of a pressure exponent y > 1.

III. MODEL

In this section we propose a simple model to explain the
connection between the pressure exponent y and the small
p behavior of the pressure histograms P(p|φ). Consider a
statically jammed configuration i in the RAND ensemble,
under isotropic stress at a fixed packing fraction φ. If the
box containing the system is slowly and uniformly expanded
to decrease φ, one will find that the energy decreases and
vanishes at some configuration specific unjamming fraction
φJi . For a system with a finite number of particles N , at a fixed
initial φ, the values of these φJi form a distribution with finite
width as one varies over the configurations i of the ensemble.
The width of the distribution vanishes only as N → ∞. We
denote this distribution as PJ (φJi |φ), the probability that a
jammed configuration at packing fraction φ will unjam at the
packing fraction φJi . Next we will assume that pressure p in
such a configuration i is determined by its distance from φJi ,

p = g(φ − φJi), with g(0) = 0. (8)

As found numerically by O’Hern et al. [2] and by Chaud-
huri et al. [10], we will assume that for sufficiently large
N the function g(·) is approximately the same for all
configurations i.

We can imagine a similar scenario for a configuration i in
the QS ensemble, at its configuration specific yield stress at
packing fraction φ. We can in principle slowly increase the
size and perturb the skew of the box to decrease the packing
fraction φ while remaining at the configuration specific yield
stress; the yield stress should then vanish at a configuration
specific φJi . The values of φJi obtained this way then give
a distribution PJ (φJi |φ), and the pressure p0(φ) along the

configuration specific yield curve is given by a g(φ − φJi),
similar to what was assumed above for RAND.

With this framework in mind, we can then invert Eq. (8) to
write

φJi(p) = φ − g−1(p). (9)

It then follows that the probability that a configuration i at
packing fraction φ will be found to have a pressure p is just

P(p|φ) = PJ (φJi(p)|φ)

∣∣∣∣
dφJi

dp

∣∣∣∣. (10)

Next we assume, as in Eq. (2), that

g(x) ∼ xy, as x → 0, so g−1(p) ∼ p1/y . (11)

We then have
∣∣∣∣
dφJi

dp

∣∣∣∣ =
∣∣∣∣
−dg−1(p)

dp

∣∣∣∣ ∼ p−(1−1/y), (12)

and so as p → 0,

lim
p→0

P(p|φ) ∼ PJ (φJi(p)|φ)p−(1−1/y) ∼ p−(1−1/y). (13)

In the last step we have used that PJ (φJi(p = 0)|φ) =
PJ (φ|φ) is finite [11].

Thus, for y = 1 we expect P(p|φ) to be finite as p → 0,
but for y > 1 the pressure distribution diverges algebraically
as p → 0. The presence or absence of such a divergence in
P(p|φ) at small p is thus a simple test of whether y > 1
or y � 1. This conclusion is in complete agreement with the
behavior of P(p|φ) observed in Figs. 1–3 if we accept the
previously determined values of y found for the three different
ensembles.

Note, the direct numerical determination of the function
g(x) for individual configurations is somewhat problematic.
For statically jammed configurations under isotropic stress, as
in RAND, slowly varying the packing fraction can on occasion
trigger an instability that causes a sudden rearrangement of
many particles with an accompanying discontinuous jump in
pressure. This tends to be more of a problem upon compressing
rather than decompressing [10]. However, for decompressing
a configuration along its yield stress curve, as in QS, the
difficulty is greatly increased. First, the location of the yield
stress curve is not a priori known, and so the trajectory in the
(φ,σ ) plane (with σ the shear stress) that one is trying to follow
must be determined in some self-consistent way. But, more
importantly, a configuration at its yield stress is inherently
at the cusp of going unstable. If during decompression the
system parameters are varied in a way that contains any
overlap with the unstable direction in phase space, the particles
will suffer large rearrangements and the pressure will jump
discontinuously. In practice, we have found that it is possible
to continuously (i.e., without large particle rearrangements)
decompress configurations along the yield stress curve only
over small intervals of φ too restrictive to be able to accurately
determine the exponent y assumed in Eq. (11). So instead of
directly computing g(x) numerically, we take Eqs. (8)–(13)
as an implicit way to determine g(x) from the well-defined
pressure histograms P(p|φ).
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IV. ATTEMPTED DATA FITTING

We would like to be able to fit the histograms in the above
figures to independently determine a numerical value of the
exponent y in each of the different cases. However, such
an analysis is complicated by several factors: (i) The range
of data for which we see the upturn at small p, where the
distribution is dominated by the small p power-law divergence,
is exceedingly narrow; (ii) we do not a priori know the form
of PJ (φJi |φ) in Eq. (13) that we need to do a fitting over a
wider range of p; and (iii) we do not a priori know how the
function g−1(p) of Eq. (9) may depart from a pure power law
as p increases from zero to larger values. As we explain below,
we find that (i) and (ii) combine to be too severe a problem to
allow us to make a meaningful quantitative estimate of y from
our histogram data.

The simplest and most natural guess for the probability
distribution PJ (φJi |φ) is a Gaussian,

PJ (φJi |φ) ∝ e− 1
2 z2

, with z ≡ φJi − μ(φ)

w(φ)
, (14)

where we allow that the average μ and width w may depend on
φ. Such a Gaussian form is suggested by the computation of
the jamming distribution PJ (φJi) found using a compression
(rather than our decompression) protocol in Ref. [12] (see
their Fig. 13), as well as from the fraction of jammed states
f (φJi) found in Ref. [2] (see their Figs. 5 and 6). If we further
assume a pure power-law form for g(x) over the entire range
of interest,

g(x) = Kxy ⇒ g−1(p) = (p/K)1/y, (15)

we can then write

P(p|φ) = Cp−(1−1/y)e− 1
2 [((φ−μ)K1/y−p1/y )/wK1/y ]2

. (16)

Within the above Gaussian approximation for PJ (φJi |φ), we
see that a value y > 1 gives not only a divergence at small
p but also an asymmetric peak about the maximum for the
exponential term in P(p|φ). If, however, the true PJ (φJi |φ)
was asymmetric about its peak, this would give another source
of asymmetry about the peak of P(p|φ). In that case, using the
symmetric Gaussian approximation for PJ (φJi |φ) and fitting
our data to Eq. (16) would result in inaccurate values of y.
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FIG. 4. (Color online) Values of (a) (φ − μ)K1/y and (b) wK1/y

vs φ, for systems with N = 512 and 1024 particles, as obtained from
fits of the RAND-harmonic data of Fig. 1 to Eq. (16), keeping y = 1
fixed. The solid line in (a) is the best linear fit, while the solid line in
(b) is the best fit to a constant.
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FIG. 5. (Color online) Values of (a) (φ − μ)K1/y and (b) wK1/y

vs φ, for systems with N = 512 and 1024 particles, as obtained from
fits of the RAND-Hertzian data of Fig. 2 to Eq. (16), keeping y = 3/2
fixed. The solid line in (a) is the best linear fit, while the solid line in
(b) is the best fit to a constant.

That PJ (φJi |φ) is asymmetric for small system sizes N is
suggested by the results of Ref. [12] (see their Fig. 13), where
systems up to size N = 256 were considered. While they show
that this asymmetry decreases as N increases, we find that a
noticeable asymmetry remains for the sizes N = 256 and 1024
considered here, as we explain below.

To see this point, we consider the RAND ensemble with
harmonic soft-core potential. Here, earlier work [2,10] has
established the value y = 1, and indeed the histograms in Fig. 1
show no evidence of any divergence at small p, as is consistent
with y = 1. We therefore fit the data in Fig. 1 to Eq. (16),
fixing y = 1. The results are shown as the solid lines. We see
that even though y = 1, the histogram peaks, particularly at
the larger values of φ, show a noticeable asymmetry; data lie
systematically above the fitted curve on the high-p side of the
peak and below the fitted curve on the low-p side of the peak.
If we fit these same data to Eq. (16) with y as a free fitting
parameter, we find values of y � 1, varying sensitively with
the range of φ that is considered in the fit, as well as with the
range of p that is used in the histogram at each particular φ.
The fitted value of y thus arises from a competition between
the true y that determines the limiting small p behavior and
an effective y that is trying to model an unknown asymmetry
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FIG. 6. (Color online) Values of (a) (φ − μ)K1/y and (b) wK1/y

vs φ, for systems with N = 512 and 1024 particles, as obtained from
fits of the QS-harmonic data of Fig. 3 to Eq. (16), keeping y = 1.1
fixed. The solid line in (a) is the best linear fit, while the solid line in
(b) is the best fit to a constant.
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about the histogram peak that is not captured by our Gaussian
approximation for PJ (φJi |φ).

Thus, while the small p behavior of the histograms in
Fig. 1 supports the conclusion y = 1, and the small p behavior
in Figs. 2 and 3 supports y > 1 in those cases, we cannot
determine reliable numerical values for y from our present
histogram data. We can, however, use previously determined
values of y and check for consistency. Fixing y = 1 [2]
for the RAND-harmonic data of Fig. 1, y = 3/2 [2] for
the RAND-Hertzian data of Fig. 2, and y = 1.1 [4] for the
QS-harmonic data of Fig. 3, we fit to Eq. (16) and show
the results as the solid lines in the respective figures. We see
reasonable eyeball agreement.

To further test consistency, we plot the values of (φ −
μ)K1/y and wK1/y obtained from these fits with fixed y, versus
φ, in Figs. 4, 5, and 6. In each case we see that (φ − μ(φ))K1/y

is roughly linear in φ, at least at the larger values of φ

where the estimated statistical error is small, indicating a
relatively weak dependence of μ on φ. Fitting to the form
C(φ − φJ ), with C and φJ as free parameters, we find from
Fig. 4(a) for RAND with harmonic interactions: N = 512,
φJ = 0.8405; N = 1024, φJ = 0.8409. From Fig. 5(a) for
RAND with Hertzian interactions we find N = 512, φJ =
0.8405; N = 1024, φJ = 0.8411, in reasonable agreement
with the harmonic interaction. As expected, we find the value
of φJ to be independent of the particular soft-core interaction.
These values are also reasonably consistent with the finite-size
estimates of φJ as obtained from Ref. [9] [see Fig. 1(a)],
with φJ increasing as N increases. For QS with harmonic
interactions we have from Fig. 6(a) N = 512, φJ = 0.8426;
N = 1024, φJ = 0.8430. These values are also reasonably
consistent with the finite-size estimates of the shear-driven φJ

from Ref. [9] [see Fig. 1(b)].

Finally, we can consider the width parameter wK1/y . We
see that in most cases wK1/y is roughly constant at the larger
values of φ, and the ratio of widths comparing N = 1024 to
N = 512 is 0.69, 0.73, 0.71 for RAND-harmonic, RAND-
Hertzian, and RAND-QS, respectively. This is in reasonable
agreement with the value 1/

√
2 ≈ 0.71 expected for the usual

1/
√

N finite-size dependence.

V. CONCLUSIONS

To conclude, we have presented a simple method, based on
ensemble histograms of total system pressure, to determine
whether the exponent y with which the system pressure
algebraically increases from zero, as φ increases above φJ ,
satisfies y > 1 or y � 1. We find results consistent with our
earlier finding [4] that, for harmonically interacting particles,
y > 1 for the pressure along the yield stress curve of shear-
driven systems. This is in contrast to the expectation of Eq. (4)
for statically jammed systems. While our method is not at
present accurate enough to allow a reliable determination of the
precise numerical value of y, we find our results are consistent
with previous determined values.
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