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Statistics of conserved quantities in mechanically stable packings of frictionless disks above jamming
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We numerically simulate mechanically stable packings of soft-core, frictionless, bidisperse disks in two
dimensions, above the jamming packing fraction ¢;. For configurations with a fixed isotropic global stress
tensor, we compute the averages, variances, and correlations of conserved quantities (stress I'¢, force-tile area
Ac, Voronoi volume V¢, number of particles N¢, and number of small particles N,¢) on compact subclusters of
particles C, as a function of the cluster size and the global system stress. We find several significant differences
depending on whether the cluster C is defined by a fixed radius R or a fixed number of particles M. We comment
on the implications of our findings for maximum entropy models of jammed packings.
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I. INTRODUCTION

As one increases the density of deformable granular
particles above a critical jamming packing fraction ¢;, the
system undergoes a transition from a liquidlike to a solidlike
state [1]. For large and massive particles, thermal fluctuations
are irrelevant, and in the absence of any mechanical agitation,
the dense system relaxes into a mechanically stable rigid but
disordered configuration. Numerous works have considered
how the global properties of such static packings scale as
one approaches the jamming transition from above, ¢ — ¢,
[1-5]. Here we consider the statistical properties of conserved
quantities defined on finite sized subclusters of particles of the
total system. By “conserved quantity” we mean an extensive
observable which is additive over disjoint subclusters of
the system, and for which the total system has a fixed value
in the ensemble of configurations being considered. Such
conserved quantities have played an important role in making
maximum entropy models [6] for the nonuniform distribution
of various properties of the disordered packings [7-13].
Recent experiments [ 14—16] have sought to test such statistical
models.

We consider here a bidisperse system of soft frictionless
disks in two dimensions. We will consider two different
ensembles of circular clusters: one in which the radius R of
the cluster is fixed and the number of particles in the cluster
fluctuates, and the other in which the number of particles M
in the cluster is fixed and the radius fluctuates. We find that
there are several significant differences between these two
ensembles: (i) For fixed R, averages defined on the cluster
are simply related to the corresponding global parameter for
any R; for fixed M, however, such averages only approach
the naively expected value algebraically as the cluster size
increases. (ii) For fixed R, correlations between many variables
decrease as the cluster size increases; for fixed M, however,
we find that correlations appear to be constant as the cluster
size increases. We believe that these differences may have
important consequences for the development of maximum
entropy models to describe the statistical behavior of such
jammed packings.

The conserved quantities we consider are the Voronoi
volume V (in our two-dimensional system, “volume” will
be used to mean area), which has played an important role
in Edwards’ [7] statistical ensemble for jammed packings,
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the extensive stress I", which Henkes and co-workers [8,9]
have used to define the stress ensemble, the Maxwell-Cremona
force-tile area A, which Tighe and co-workers [10—12] have
argued plays an important role in the distribution of pressure,
as well as the number of particles N and the number of small
particles N;.

II. MODEL
A. Soft-core disks

Our system is a bidisperse mixture of equal numbers of
big and small circular, frictionless, disks with diameters d
and d; in the ratio dp/d; = 1.4 [2]. If v, = 71(417;,,X/2)2 is
the volume of the big and small disks respectively, then the
packing fraction of a system with N disks in a total volume V
is

_ﬁ(vx'i'vb)
voo2

Disks i and j interact only when they overlap, with a soft-core
repulsive harmonic interaction potential,

Tke(1 = rij/dij)?,
.

Here r;; is the center-to-center distance between the particles,
andd;; = (d; + d;)/21is the sum of their radii. We will measure
energy in units such that k, = 1, and length in units so that the
small disk diameter dy = 1.

Our numerical system consists of N = 8192 disks. The ge-
ometry of our system box is characterized by three parameters,
L,,L,,y, as illustrated in Fig. 1; L, and L, are the lengths
of the box in the X and y directions, while y is the skew ratio
of the box. We use Lees-Edwards boundary conditions [17] to
periodically repeat this box throughout all space.

¢ )

rij <dijs (2)
rij = dij.

B. Packings with isotropic stress

For this work we consider only packings with an isotropic
total stress tensor,

DI I'ndap, Where

af =

p is the system pressure, and V = L, L, is the total system
volume. Here ¢, 8 denote the spatial coordinate directions x,y.

Iy =pV; 3)
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FIG. 1. Geometry of our system box. L, and L, are the lengths
in the X and § directions, and y is the skew ratio. Lees-Edwards
boundary conditions are used.

To construct such isotropic packings, in which the shear
stress vanishes, we use a scheme in which we vary the box
parameters L,, L, and y as we search for mechanically stable
states [18]. We introduce a modified energy function U that
depends on the particle positions r;, as well as L,, Ly, y,

U=U+T0InL,+T0IL,, U= V). @)

i<j

Here T'? and I'Y are fixed constants representing the diagonal
components of the desired diagonal stress tensor. Noting
that the interaction energy U depends implicitly on the box
parameters L, L, y via the boundary conditions, we get the
relations

U aUu

Lxm =%+ J/Exys W = _ny» s
oU
LyZ)_Ly ==Xy — ¥y

Starting with randomly positioned particles within a square
box of length L determined by the packing fraction ¢ ~ ¢,
we then minimize U with respect to both particle positions
and box parameters. The resulting local minimum of U gives
amechanically stable configuration with force balance on each
particle and a stress tensor that satisfies

S =T, T, =T), %,=0. (6)

For isotropic states we choose ' =T'9 =T'y. For mini-
mization we use the Polak-Ribiere conjugate gradient algo-
rithm [19]. We consider the minimization converged when we
satisfy the condition U; — Ui+50)/U,-+50 < 10719, where U;
is the value at the ith step of the minimization. Our results
are averaged over 10000 independently generated isotropic
configurations.

In this work we consider the range of 'y = 6.4 to 18.4 in
increments of 0.8. Since our simulations fix both N and I'y,
we will parametrize our results by the intensive, pressurelike
variable, p =I'y/N = p(V/N), the total system stress per
particle. Since our method varies the system volume L,L,
so as to achieve the desired total stress I'y, the packing
fraction ¢ for fixed I'y varies slightly from configuration to
configuration. In Fig. 2 we plot the resulting average (¢) as a
function of p. Error bars represent the width of the distribution
of ¢; the relative width is roughly 0.03-0.04%. The values of
p we consider here are all close above the jamming transition,
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FIG. 2. Average packing fraction (¢) vs total system stress per
particle p = I'y/N. Error bars represent the width of the distribution
rather than the statistical error in the average.

which for our rapid quench protocol is ¢; ~ 0.842 for an
infinite system [20].

C. Cluster ensembles

Fixed radius. To define our clusters of particles with fixed
radius R, we pick a point in the system at random and draw a
circle of radius R about that point. All particles whose centers
lie within this circle are considered part of the cluster. For a
fixed R, the number of particles in the cluster fluctuates. We
consider here clusters of radii R = 2.8 to 8.2, small enough
compared to the total system size so that effects due to the finite
system size are negligible. The average number of particles in
these clusters ranges roughly from (Ng) &~ 18 to 150.

Fixed number of particles. To define our clusters with fixed
number of particles M, we again pick a random position in the
system, draw a circle about that point, and then continuously
increase the radius of the circle until we have exactly M
particles whose centers lie within the circle. For such clusters,
the number of particles is fixed, but the volume fluctuates. We
consider here clusters with M = 18 to 153.

D. Conserved quantities

Stress. The stress tensor for a finite cluster of particles C is
given by [8],

/
29 = siuFp By =~V for. ()

ieC j

Here s;; is the displacement from the center of particle i to
its point of contact with j, and F;; is the force on j due to
contact with 7. The first sum is over all particles i in the cluster
C. The second, primed, sum is over all particles j in contact
with particle i. The sum over all particles i in the total system
just gives the total stress tensor Eg;) = I'ydqp. Since Eéi,) is
clearly additive over disjoint clusters, and its total for the entire
system is constrained by I'y, the stress tensor is a conserved
quantity.

Although the total system stress is isotropic, the stress on
any particular cluster X fjf; in general is not. However the stress
averaged over many independent clusters will be isotropic. If
we define

o= 4n[sG] den (55)= s ®
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FIG. 3. [(Ax)/(TX (D] — 1 vs p=Ty/N, where Ay is the
total force-tile area, I'y is the total system stress, and V is the total
system volume. We expect this quantity to vanish at all j. Our system
has a total of N = 8192 particles.

Force-tile area. For particles in a two dimensional me-
chanically stable packing, the Maxwell-Cremona force tile for
particle i is obtained by rotating all its contact forces 90°
and lying them tip to tail. Force balance then requires these
to form a closed loop [21]. The area A; of this loop is the
force-tile area. It can be shown that such force tiles tile space
with no gaps or overlaps [11]. The tile area of a cluster of
particles C is then just the sum over tile areas for each member
particle, Ac = Y, .- A;. The sum over all particles gives the
total force-tile area Ay for the entire system. The force-tile
area is thus also a conserved quantity.

For a system of N particles with periodic boundary
conditions, the total force-tile area Ay of a particular jammed
packing is predicted [11] to be exactly determined by the total
system stress I"y, via the relation

Iy 2
Ay = v =PV €))
As we sample different mechanically stable configurations
at fixed 'y, the total system volume V fluctuates slightly.
Averaging over these different configurations, the above
becomes (Ay) = FZZV(%). In Fig. 3 we plot the resulting

[(AN)/(F,Z\,(%)] — 1 vs the total system stress per particle p.
From Eq. (9) we expect this quantity to vanish. Our numerical
results show that (Ay)/ (I‘IZV ( %)) is indeed equal to unity within
roughly 2 x 10~°. The small discrepancy is presumably due to
the failure to achieve perfect force balance in our minimization
of U.

Because our total system is sufficiently large, the relative
fluctuations in the total system volume V from configuration to
configuration are roughly only 0.03—0.04%. In the following
we will therefore view V = (V) and Ay = (Ay) as fixed
values.

Voronoi volume. The Voronoi volume of a particle, V;, is
defined as the region of space closer to particle i than to any
other particle. Since every point in space is closest to some
particle, the volumes V; tile all of position space with no gaps
or overlaps. The Voronoi volume of a cluster is just Vo =
Y icc Vi, and the sum over all particles is just the total volume
of the entire system V. The Voronoi volume is thus a conserved
quantity. We use the Voro+4+ software package to determine
the Voronoi volumes of our particles [22].

Number of particles. The total number of particles N¢ in
a cluster is clearly also a conserved quantity. For a bidisperse
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system, such as we study here, so is the number of small
particles Ny contained in the cluster.

III. CLUSTERS WITH FIXED RADIUS R

We consider first the clusters with a fixed radius R, and
fluctuating number of particles Ng.

A. Averages

Because of the additive nature of the conserved quantities,
we expect that the average value of such a quantity X defined
on a cluster will be related to the fixed value of the entire
N particle system Xy according to the fraction of the total
system occupied by the cluster. For the quantity X defined
on clusters of radius R we therefore expect

_ 7 R? (XR) VY
wo=xn () = (59) (52) =1 a0

If Eq. (10) holds, then knowledge of the global system param-
eters gives knowledge about the expected values on clusters
within the system. This is what makes such quantities useful
for formulating a maximum entropy model of fluctuating
quantities on subsets of the total system.

In Fig. 4 we plot ((Xg)/mTR*)(V/Xy) vs R for Xp =
I'r, Ag, Vg, Ng, and N,p, at three different values of the
total system stress per particle p = I'y/N. We see that the
deviations from the expected value of unity are very small
(less than 0.1% for I'g, Ag, and Ny, and less than 0.02% for
V& and Npy) and are all within the estimated statistical error.
In particular, these results confirm that the average Voronoi
volume of the cluster is just the area of the circle, (Vz) = 7 R>.

B. Variances

Now we consider the fluctuations away from the average,
and compute the variances of the conserved quantities,
var(Xg) = (X%) —(Xg)%. In Fig. 5 we plot Var(XR)/nRz,
vs R for Xp =T'g, Ag, Vg, N, and N, at three different
values of the total system stress per particle p. The solid lines
in Figs. 5 are fits to the form ¢; + ¢, /R.

For 'k, AR, Ng, and N,r we find that the scaled variances
all approach a finite constant as R increases, i.e., ¢; > 0.
Thus the variances of these quantities scale proportional to
the cluster volume. Since, from Fig. 4, the averages of these
quantities also scale proportional to the volume, we conclude
that their relative fluctuations decay as

NECONENS
VNR)

x
(XR) R

Such behavior, resulting from the variances being extensive
quantities, is just what one would expect if the cluster
variable Xz was the sum of independent random variables
X representing the value of X on subunits of the cluster. This
result therefore suggests that there are, on average, no spatial
correlations of Xg on length scales larger than our smallest
value of R = 2.8 [23].

The Voronoi volume Vg, however, behaves differently. The
solid line in Fig. 5(c) is a fit to ¢;/R (i.e., taking ¢; = 0),
showing that the variance of Vg scales proportional to the

(an
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FIG. 4. (Color online) Ratio of intensive quantities defined on a
cluster of radius R, (X g/ R?), to the corresponding quantity defined
on the total system, (X / V), vs cluster radius R for X equal to the (a)
stress I'; (b) force-tile area A; (c) Voronoi volume V; (d) number of
particles N; (e) number of small particles N,. Three different values
of the total system stress per particle p are shown, represented by
three different symbol shapes. Our system has a total of N = 8192
particles.

perimeter ~R of the cluster, rather than its volume. This is
reasonable as only changes in the positions of the particles at
the surface of the cluster will affect the Voronoi volume [24].
The relative fluctuations of Vy therefore scale as

J/var(Vg) 1 1
Vey o R (Npp R

(12)
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FIG. 5. (Color online) Variance of quantities defined on a cluster
of radius R, var(Xg)/m R? vs R, for X equal to the (a) stress I'; (b)
force-tile area A; (c) Voronoi volume V; (d) number of particles N;
(e) number of small particles N,. Three different values of the total
system stress per particle p are shown, represented by three different
symbol shapes. Solid lines are fits to the form ¢, + ¢2/R; for Vg,
¢y = 0. Our system has a total of N = 8192 particles.

From Fig. 5 see that only the scaled variances of I'x and
Apg show a dependence on p, with increasing fluctuations as
p increases. In Fig. 6 we plot the large R limiting value of
var(Xg)/m R? for these two quantities, vs j. The solid lines
in Fig. 6 are power law fits; we find var(l"R)/er2 ~ ﬁl'g,
while var(Ag)/m R?> ~ p39 [25]. Since by Egs. (9) and (10)
(Tg)/TR* =Ty /V = p(N/V),and (Ag)/a R = An/V =

022207-4



STATISTICS OF CONSERVED QUANTITIES IN ...

1.6x10°6 1.6x10°11
o, L4x106 b s 4 14x10tt
Qé 1.2x10°6 £ N 1 12x10m R
= 10x106F A T B
[_?4 8.0x107 £ > ]sxlo"2 >
T 6oxi07 1 6x10712 E:/
§ 4.0x107 £ Jax102 I

2.0x107 £ Joxi02 >

0.0 m—e—o . . . L 10
0.0008  0.0012  0.0016 ~ 0.002  0.0024

FIG. 6. (Color online) var(I'g)/m R> and var(Ag)/m R?, in the
large R limit, vs total stress per particle p. Solid lines are fits to
power laws and give ~ p' and ~ p?, respectively. Our system has
a total of N = 8192 particles.

(Ty/V)? = p2(N/V)?, we conclude that the relative fluctua-
tions, o/var(I'g)/(I'g) and </ var(Ag)/(Ar) both scale as ¢/ R,
with a constant ¢ that is only weakly dependent on the total
stress per particle p.

C. Correlations between conserved quantities

Finally we consider the correlations between the conserved
quantities. Since the stress and the Voronoi volume have been
the variables previously used to construct maximum entropy
models of the statistics of jammed packings, we focus here on
the correlations between I" and the other conserved variables,
and then on the correlations between Vi and the remaining
conserved variables. To compare quantities on similar scales,
we consider here the rescaled variables,

(Xr — (Xg))

Oox

Xz , (13)

R

where oy, is the standard deviation of Xg. To highlight the
quadratic relation between 'y and Ag, instead of Ap we
consider here A}-‘,/ 2, which is linearly related to 'g.

We consider first the correlations with the stress I'g. In
Fig. 7 we show scatter plots of the configuration specific values
of I° r Vs the other variables, for the particular case of R = 5.4
and p = 0.00078. From the scatter plots we see qualitatively
the very strong linear correlation between ['; and A:R/ *. The
correlation between ["g and Vy is in comparison considerably
weaker, the correlation between ["z and N r 1S even weaker,
and the correlation between [" and NS r 1s almost nonexistent.
To quantify this, we plot in Fig. 8 the covariances between ['¢
and the other variables vs cluster radius R, for three different
values of the total system stress per particle p. We see that the
covariances are essentially independent of p. The covariance
of I'g with A}Q/ %is very large, increasing towards the maximum
value of unity as R increases. The next strongest correlation
is with the Voronoi volume VR, then the number of particles
N. The covariance with the number of small particles Ny is
very small, about 1%. Moreover, we see that the covariance of
['k with VR and N r 1is decreasing as R increases. We do not
have a large enough range of R to determine whether these
correlations vanish as R — o0, or saturate to a finite value.

Although the correlation of ['r with Vg, at 20% for
our largest R, is perhaps not insignificant, recall that this
is the correlation of the rescaled variables. If we con-
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FIG. 7. Scatter plots showing configuration specific values of
(Tr = (Tr))/or, vs (Xgr — (Xg))/0x, for X equal to the (a) square
root of the force-tile area A;{ 2; (b) Voronoi volume Vg; (c) number
of particles Ng; (d) number of small particles N,z. Here oy, is the
standard deviation of variable X and results are for the specific case
R =5.4and p = 0.00078.

sider instead the correlation of the relative fluctuations,
[cov(I'z, Vr)/((Tr)(Ve))]"/?, the suppressed relative fluctu-
ations of Vg given by Eq. (12) will mean similarly suppressed
relative fluctuations of the correlations, which will decay
as ~1/R%*, faster than the ~1/R decay of other relative
correlations.

The effect of correlations between stress and Voronoi
volume on the statistical description of jammed packings has
recently been considered by Blumenfeld ez al. [26], who argue
that these correlations preclude the use of either a volume-only,
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FIG. 8. (Color online) Covariance between rescaled stress ['g
and other variables vs cluster radius R, for three different values of
total system stress per particle p. The rescaled variables are defined
by )A(R = (Xg — (Xgr))/0x,, with ox,, the standard deviation of X,
and the plot shows results for Xy equal to the square root of the
force-tile area AL/ 2, Voronoi volume Vi, number of particles Ng, and
number of small particles N,g. Our system has a total of N = 8192
particles.
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FIG. 9. Scatter plots showing configuration specific values of
(Vi = (Vg))/ov, v$ (Xr — (Xg))/0x, for Xg equal to the (a) square
root of the force-tile area A;{ 2; (b) number of particles Ng; (c) number
of small particles N,. Here oy, is the standard deviation of variable
X r and results are for the specific case R = 5.4 and p = 0.000 78.

or a stress-only statistical ensemble. Our result here, that
the stress-volume correlation decreases as the cluster size
increases, suggests that the effects of such correlations may
become less significant on longer length scales, for clusters of
fixed radius.

We turn now to the correlations with the Voronoi volume
V. In Fig. 9 we show scatter plots of the configuration specific
values of VR with AY 2, Ng, and Ny, for the particular case of
R =5.4and p = 0.00078. In Fig. 10 we plot the covariance
between VR and the other variables vs cluster radius R, for
three different values of the total system stress per particle p.
We see that the covariances are essentially independent of p.
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FIG. 10. (Color online) Covariance between rescaled Voronoi
volume V and other variables vs cluster radius R, for three different
values of total system stress per particle p. The rescaled variables are
defined by )?R = (X — (Xg))/ox,, with oy, the standard deviation
of X . We show results for X equal to the stress I'g, square root of
the force-tile area A;/ 2, number of particles Ng, and number of small
particles Nyg. Our system has a total of N = 8192 particles.
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For VR, the strongest correlation is with N r- Again, we see
that the correlations decrease as the cluster size R increases.

IV. CLUSTERS OF FIXED NUMBER OF PARTICLES M

In this section we consider the second of our two cluster
ensembles, clusters which contain a fixed number of particles
M. We will see some striking differences between the statis-
tical behavior of these clusters and the previously discussed
clusters of fixed radius R. Such fixed M clusters have been
used in some earlier numerical works [8,9].

A. Averages

One might expect that averages of conserved quantities
on such clusters X,; would just be equal to the fraction
of total particles (M/N) contained in the cluster times the
corresponding total system quantity Xy. In Fig. 11 we plot
(XM/M)(N/XN) \A M, for XM = FM, AM, VM, and NYM7
for three different values of the total system stress per particle
p. However, in contrast to the corresponding quantities defined
for clusters of fixed R which are equal to unity at all R (see
Fig. 4), here we find that these quantities only approach unity
algebraically as M increases. The solid lines in Fig. 11 are
fits to the form 1 4 ¢/M. The behavior of (X /M)(N/Xn)
is independent of p, and appears to be identical, decreasing
towards unity, for X, = 'y, A, and Vyy; for Ny, the effect
is about double, and has the opposite sign, increasing towards
unity as M increases. Thus, for clusters of fixed number of
particles, unlike the clusters of fixed radius R, the averages
of the conserved quantities are not simply fixed by the global
average value X /N, but rather depend on the cluster size M
in a way that is not a priori known (i.e., the coefficient ¢ must
be determined from other information).

B. Variances

We can also look at the variance of the conserved quantities
on clusters of fixed number of particles M. In Fig. 12 we
plot var(Xy)/M vs M for Xy =Ty, Ay, Vi, and Ny
We show results for three different values of p. The results

—_ 1.005
NZ
~
5 1.000 ——d—§
=
=
P P
;5 0995 ——0.00078
g 1+c/M —5—0.00146
~ ——0.00225
0.990 . . . . . .
0 20 40 60 80 100 120 140 160

M

FIG. 11. (Color online) Ratio of intensive quantities defined on a
cluster of fixed number of particles M, (X, /M), to the corresponding
quantity defined on the total system, (X /N), vs M for X equal to the
stress I', force-tile area A, Voronoi volume V, and number of small
particles N;. Three different values of the total system stress per
particle p are shown, represented by three different symbol shapes.
Solid lines are fits to the form 1 + ¢/M. Our system has a total of
N = 8192 particles.
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FIG. 12. (Color online) Variance of quantities defined on a clus-
ter of fixed number of particles M, var(X,)/M vs M, for X equal
to the (a) stress I'; (b) force-tile area A; (c¢) Voronoi volume V;
(d) number of small particles N;. Three different values of the total
system stress per particle p are shown, represented by three different
symbol shapes. Solid lines are fits to the form ¢, + cz/«/ﬁ . Our
system has a total of N = 8192 particles.

are qualitatively similarly to what was seen in Fig. 5 for the
clusters of fixed radius R. Only the behavior of the Voronoi
volume Vy is different; instead of var(Vg) ~ R growing as
the perimeter of the cluster, we now have var(Vy) ~ M, i.e.,
growing proportional to the cluster volume, just like the other
quantities.

We again find that only var(I"y;)/M and var(Ay)/M vary
significantly with the total stress per particle p. Plotting the
large R limiting value of var(I"y;)/M and var(Ay)/M vs p in
Fig. 13, we find that they have the same behavior as was found
previously for clusters of fixed radius R, var(I'y;)/M o p'?
and var(Ay)/M ﬁ3'9 [25].

C. Concentration of small particles

Our observation in Fig. 11 implies that the average concen-
tration of small particles in a cluster, x;,(M) = (N;p) /M, is not
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FIG. 13. (Color online) var(I"y;)/M and var(A,)/M,in the large
M limit, vs total stress per particle p. Solid lines are fits to power
laws and give ~p'° and ~ 5, respectively. Our system has a total
of N = 8192 particles.

fixed at the global value Ny/N = 1/2, but varies algebraically
with the cluster size, approaching 1/2 only as the cluster grows
large. We believe it is this that effects the dependence of all
the other variables on M.

For clusters of fixed radius R, our results in Fig. 4 imply
that the ratio ¥; = (Nyg)/(Ng) = 1/2 for all cluster sizes R.
However, the average concentration of small particles in such
clusters is more properly computed as

) = (oF (14)
X ={—).

! Nx

We can now show that x;(R) has the same algebraic behavior
as xg(M). Defining § Nyg so that Nyg = (Nsg) + 6 Nsg, with
(8Nsg) = 0 and ((§N,g)?) = var(N,g), and similarly defining
8N, we can write

xx(R) =

<N3R> <l +5N3R/<NSR)>. (15)

(Ngr) \ 1+ 68Ngr/(Ng)
Expanding for small § Ng and § Nyg, we get to second order,
SN2 SN;rSN
(R =x 1+ ( Rz _ ONswdNR) | (16)
(Ng) (Ngr)(NR)

Writing (Ngg) = Xs(Ng) and Npg = Ng — Nyg, for our par-
ticular case of X; = 1/2 we get

(3N3R> — (SNYZR>
(Ng)?

xs(R) = % (1 +
(17)

1 var(Npg) — var(N,g)
21 .
< * (Ng)? )

2
Now using the observation that var(Nsz) and var(N,g) both
scale proportional to the cluster volume 7 R?, and that (Ng)
does as well, we conclude that

xs(R)=1<1+£>=1<1+ ¢ > (18)
2 )2 (N)

thus showing the same algebraic dependence on the average
number of particles (Ng) in the cluster as was found in the
clusters with fixed number of particles M.

In Fig. 14 we plot 2x,(R) vs (Ng), for clusters with fixed
radius R, for three different values of p. We compare the
values from a direct computation of x,(R) from Eq. (14) (open
symbols) with the prediction of Eq. (17) (solid symbols) and
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FIG. 14. (Color online) Concentration of small particles
x;((Ng)) and x;(M) for clusters of fixed radius R and fixed number
of particles M, respectively. In the first case, x,((Ng)) is plotted vs
(Ng), the average number of particles in the cluster. For x;({Ng)) we
show results from the direct computation of Eq. (14) (open symbols)
as well as the prediction of Eq. (17) (solid symbols). Solid lines are
fits to the forms shown. Three different values of the total system
stress per particle p are shown, represented by three different symbol
shapes.

find excellent agreement. There is no dependence on p. In the
same figure we also show 2( Ny, ) /M vs M for the clusters with
fixed number of particles M. Both show a decay to the large
cluster limit of unity that is proportional to the inverse number
of particles, however the results are quantitatively somewhat
different, presumably due to the different effects of fluctuations
in the two ensembles.

We note that if the particles were positioned purely at
random, then the concentration x;(R) of small particles within
a circle of radius R would be uniform and equal to the global
concentration X, for any R. The algebraic variation with R that
we find here is therefore a consequence of the structural details
of how the particles are arranged in the jammed packing.

D. Correlations between conserved quantities

Finally we consider the correlations between the different
conserved quantities in the clusters with fixed number of
particles M. We use the rescaled variables X, defined
similarly as in Eq. (13). First we consider the correlations
with the stress I'y. In Fig. 15 we show scatter plots of the
configuration specific values of I"y; vs the other variables,
for the particular case of M = 66 (with average cluster radius
(R) ~ 5.4)and p = 0.000 78.In Fig. 16 we plot the covariance
between [° u and the other variables vs M, for three different
values of the total system stress per particle p. As was observed
for the clusters of fixed radius R, we see that the covariances are
essentially independent of 5. The correlation of ['; with A;/ 2
is again very close to the maximum value of unity. Correlations
with Vj; and Ny, are both roughly 50%, but of opposite sign.
But the most striking result is that the correlations now stay
essentially constant as M increases, rather than decreasing
with increasing cluster size as was observed for the clusters of
constant radius R in Fig. 8.

We now consider the correlations with the Voronoi volume
Vu. In Fig. 17 we show scatter plots of the configuration
specific values of Vj; vs the other variables, for the particular
case of M =66 and p = 0.00078. In Fig. 18 we plot the
covariance between VM and the other variables vs M, for
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FIG. 15. Scatter plots showing configuration specific values of
Ty = (Tm))/org vs (Xy — (Xu))/ox,, for Xy equal to the (a)
square root of the force-tile area A}‘f; (b) Voronoi volume V,;; (c)
number of small particles N,y . Here oy,, is the standard deviation
of variable X, and results are for the specific case M = 66 and p =

0.000 78 (a cluster with M = 66 has an average radius of (R) ~ 5.4).

three different values of the total system stress per particle
p. The covariances are again essentially independent of p.
The correlation of Vi with N,y is the strongest, close
to the maximum magnitude of unity, but with negative
sign (anticorrelated). Again, the correlations stay essentially
constant as M increases.

1.0 L N -
A,
~~
2 A
<< 0.5 F Vi o -
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= P 1
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8 ——0.00146 ]
——0.00225 R
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FIG. 16. (Color online) Covariance between rescaled stress I M
and other variables vs the number of particles in the cluster M.
Results are shown for three different values of total system stress
per particle p, as indicated by different symbol shapes. The rescaled
variables are defined by )A(M =Xy — (Xm))/ox,, with oy, the
standard deviation of X, and the plot shows results for X,, equal to
the square root of the force-tile area A,l\f, Voronoi volume V,,, and
number of small particles Ny . Our system has a total of N = 8192
particles.
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FIG. 17. Scatter plots showing configuration specific values of
(Ve — (Vu))/ovy vs (Xy — (Xu))/ox, for Xy equal to the (a)
square root of the force-tile area AMZ; (b) number of small particles
Nyum. Here oy, is the standard deviation of variable X, and results
are for the specific case M = 66 and p = 0.00078 (a cluster with
M = 66 has an average radius of (R) ~ 5.4).

V. DISCUSSION

In this work we have considered mechanically stable
packings of soft-core, frictionless, bidispersive disks in two
dimensions, above the jamming transition. Our packings are
restricted to those having an isotropic total stress tensor.
We measure the statistical behavior of conserved quantities
defined on clusters C of fixed radius R, and clusters of fixed
number of particles M. For conserved quantities we have
considered the stress I'¢, defined as 1/2 the trace of the stress
tensor, the Maxell-Cremona force-tile area A, the Voronoi
volume V¢, the total number of particles N and the number
of small particles Nyc. We have computed their averages,
variances, and the correlations between them as a function
of cluster size and the stress per particle of the total system
p=Tn/N.

We find striking differences in the behavior of the two
different ensembles of clusters. For clusters with fixed radius
R, average values of quantities defined on the cluster are simply
determined from the corresponding known value for the entire
system, (Xg) = Xy(r R?/ V), for all values of R. In particular,
the average Voronoi volume (V) is just the circle volume 7 R?,
and the relative fluctuations of Vi are suppressed, scaling as
1/R3?, in comparison the relative fluctuations of the other
quantities, which scale as 1/R. Correlations are very strong
between stress I'p and force-tile area Ag, but correlations
between 'k and the other variables decay as the cluster size R
increases.

For clusters with fixed number of particles M, however,
the average (Xj/) only algebraically approaches the naively
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FIG. 18. (Color online) Covariance between rescaled stress Vy
and other variables vs the number of particles in the cluster M.
Results are shown for three different values of total system stress
per particle p, as indicated by different symbol shapes. The rescaled
variables are defined by Xy=Xy-— (Xm))/ox,,, with ox,, the
standard deviation of X, and the plot shows results for X, equal to
the stress I"y, square root of the force-tile area Al 2, and number of
small particles N,y . Our system has a total of N = 8192 particles.

expected value Xy(M/N) as the cluster size M increases.
The average on a finite cluster, therefore, is not a priori
known without obtaining further information about the system
beyond the values of its global parameters. More strikingly,
correlations between all pairs of conserved quantities appear
to remain constant as the cluster size M increases.

These results lead to our main conclusion, that for de-
scribing the stress distribution within such jammed packings,
the cluster ensemble at fixed radius R appears much more
promising for use with maximum entropy models; one need
only consider the two strongly correlated variables I'g and Ag,
as correlations with other variables will decrease as the cluster
size increases. Indeed, we have recently carried out just such
an analysis [13] and have found good results. For analyses
based on clusters with a fixed number of particles M, it may
be necessary to keep track of all conserved quantities, since
correlations do not seem to decay with increasing cluster size,
and these correlations are not in general small.

We have further shown that, in our bidisperse system, the
average concentration of small particles in a cluster is not
uniform, but rather approaches the global value algebraically
as the cluster size increases. We find this for both clusters of
fixed radius, and clusters of fixed number of particles.
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