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Search for hyperuniformity in mechanically stable packings of frictionless disks above jamming
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We numerically simulate mechanically stable packings of soft-core, frictionless, bidisperse disks in two
dimensions, above the jamming packing fraction φJ . For configurations with a fixed isotropic global stress
tensor, we investigate the fluctuations of the local packing fraction φ(r) to test whether such configurations
display the hyperuniformity that has been claimed to exist exactly at φJ . For our configurations, generated by a
rapid quench protocol, we find that hyperuniformity persists only out to a finite length scale and that this length
scale appears to remain finite as the system stress decreases towards zero, i.e., towards the jamming transition.
Our result suggests that the presence of hyperuniformity at jamming may be sensitive to the specific protocol
used to construct the jammed configurations.
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I. INTRODUCTION

When a system of athermal (T = 0) particles with only
contact interactions is compressed, it seizes up into a rigid
disordered solid at a critical value of the packing fraction
φJ known as the jamming transition [1–3]. For a system
of monodisperse frictionless spheres at φJ , it was observed
numerically [4,5] that density fluctuations appear to be
suppressed on long length scales, with a structure function
S(q) (density-density correlation) that vanishes as S(q) ∼ |q|
when the wave vector |q| → 0. This is in contrast to behavior
in a normal liquid where S(q → 0) → constant. Such a system
with suppressed density fluctuations has been denoted as
“hyperuniform” [6].

However, when spheres that were bidisperse or polydis-
perse in size where studied, this characteristic feature of S(q)
was no longer observed, and S(q → 0) was found to be finite
[7,8]. It was then argued by Berthier et al. [9] and by Zachary
et al. [10,11] that in such size-disperse systems it is the
fluctuations of the packing fraction φ, rather than fluctuations
of particle density, that are suppressed at φJ (for monodisperse
systems, packing fraction fluctuations and density fluctuations
become the same at long wavelengths). The presence of such
hyperuniformity of the packing fraction at jamming would be
important, as it would provide a purely structural means for
distinguishing particles in a disordered jammed configuration
from those in a liquid and perhaps provide a way to determine a
diverging length scale as the jamming transition is approached
[12].

In this work we consider mechanically stable packings of
bidisperse, soft-core, frictionless, disks in two dimensions at
finite isotropic global stress above the jamming transition
φJ . Our configurations are generated by a rapid quench
protocol. We test these configurations for hyperuniformity
using both real-space and wave vector-space methods. We
find that hyperuniformity persists only out to a finite length
scale and that this length scale appears to remain finite as the
system stress decreases towards zero, i.e., as one approaches
the jamming transition. Moreover, we argue that measuring
fluctuations at a given wave vector q gives a better test of
hyperuniformity than measuring fluctuations over a real-space
window of length R, as the latter can be strongly effected by

the fluctuations on all length scales smaller than R, whereas the
former measures fluctuations specifically on the length scale
2π/q.

The remainder of this paper is organized as follows. In
Sec. II we define what we mean by the local packing fraction
φ(r) and discuss the wave vector-dependent and real-space
measures we will use to test for hyperuniformity. In Sec. III
we describe the details of our numerical model and the
minimization method we use to construct mechanically stable
configurations at fixed isotropic global stress. In Sec. IV
we present our numerical results. In Sec. V we discuss our
results and make comparisons with recent works on this topic.
The Appendix provides further details about the accuracy
of our numerical minimization method for constructing our
configurations.

II. LOCAL PACKING FRACTION

In this section we define the quantities we will compute in
order to test for hyperuniformity. Here we define quantities
as appropriate to a system of two-dimensional circular disks,
so as to match our numerical simulations; however, the
generalization to a higher dimension or other shaped particles
is straightforward.

Consider a polydisperse collection of N disks in a system of
total volume V , satisfying Lees-Edwards boundary conditions
[13]. Disk i has its center located at position ri and has volume
vi (in our two-dimensional system we will use “volume” to
mean area). The local particle density can then be written as

n(r) =
∑

i

δ(r − ri). (1)

Defining the Fourier transform,

nq =
∫

V

d2r eiq·rn(r), (2)

the structure function (density-density correlation) is

S(q) ≡ 1

N
〈nqn−q〉, (3)

where here and henceforth 〈. . . 〉 denotes an average over
independently quenched configurations. For the bidisperse
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systems we study here, we expect S(q) to approach a constant
as |q| → 0 [7–11].

The global packing fraction of the system is defined as

φ ≡ 1

V

∑
i

vi . (4)

For the local packing fraction φ(r), two slightly different
definitions have been proposed in the literature. Zachary et al.
[10,11] use a definition that is equivalent to

definition I : φ(r) =
∑

i

�i(r − ri), (5)

where the indicator function �i(r) is such that for a particle
centered at the origin,

�i(r) =
{

1, if r lies within the area of the particle
0, otherwise (6)

so that
∫
V

d2r �i(ri) = vi .
Berthier et al. [9] use a definition1 that is equivalent to

definition II : φ(r) =
∑

i

viδ(r − ri). (7)

Both definitions give correctly the global packing fraction of
Eq. (4):

1

V

∫
V

d2r φ(r) = 1

V

∑
i

vi = φ. (8)

Definition I spreads the weight of each particle uniformly
over its area, while definition II treats each particle as a point
object with weight equal to its area. Definition II views the
particle positions as a point process, while definition I views
the particles as defining a heterogeneous medium [14].

Defining the Fourier transform,

φq =
∫

V

d2r eiq·rφ(r), (9)

fluctuations in the packing fraction at wave vector q are given
by

χ (q) ≡ 1

V
〈φqφ−q〉. (10)

The signature of hyperuniformity is then

χ (q) ∼ |q| as |q| → 0, (11)

whereas χ (q → 0) → constant if the system is not hyperuni-
form.

Note, using definition II of Eq. (7) we have

φq =
∑

i

vie
iq·ri , (12)

whereas using definition I of Eq. (5) we have

φq =
∑

i

�iqeiq·ri , (13)

1Here we are referring to the definition of φ(q), and subsequent
definition I (q), on p. 4 of Ref. [9].

where �iq is the Fourier transform of �i(r). Since �iq → vi

as |q| → 0, the two definitions of Eqs. (5) and (7) must give
the same χ (q) in the limit |q| → 0; hence both are in principle
good measures for hyperuniformity.

Note, for circular disks in two dimensions, �iq depends
only on the magnitude |q| and is given by

�iq = vif (|q|di/2), f (y) = 2

y2

∫ y

0
dx xJ0(x). (14)

Here di is the diameter of the particle i and J0(x) is the Bessel
function of the first kind.

We will also consider another wave vector-dependent
measure of hyperuniformity, as introduced by Berthier et al.
[9], the thermal compressibility χT (q) defined by

definition III : [nT χT (q)]−1 =
∑
s,s ′

xsS
−1
ss ′ (q)xs ′ . (15)

Here n = N/V is the particle density, s and s ′ label distinct
species of particles of given diameter ds , xs = Ns/N is the
global concentration of species s, and S−1

ss ′ (q) is the inverse of
the matrix,

Sss ′ (q) ≡ 1

N
〈nsqns ′−q〉, (16)

where nsq is the Fourier transform of the particle density of
species s alone. The quantity χT (q) in Eq. (15) is derived
as the compressibility of a polydisperse liquid of particles in
thermal equilibrium at temperature T . For our nonequilibrium
athermal system, in which fluctuations from configuration to
configuration are induced by our rapid quench protocol rather
than a finite temperature, the physical interpretation of χT (q)
as a compressibility is unclear; nevertheless the right-hand side
of Eq. (15) is an interesting measure of density fluctuations,
and so we will compute it for the sake of comparison.

We will also consider hyperuniformity as measured in real
space by computing the fluctuations of φ(r) over a circular
window of radius R. Place a circle of radius R at a random
position within the system and denote this region as the volume
VR . We can then define the average packing fraction on this
region as

φR ≡ 1

πR2

∫
VR

d2r φ(r). (17)

The difference in φR between using definition I of Eq. (5)
and definition II of Eq. (7) for φ(r) is then as illustrated by the
sketch in Fig. 1. In definition I we count all overlapping volume
between particles and the volume VR; particles which are not
entirely contained within VR contribute only the overlapping
fraction of their volume as illustrated. In definition II we count
the entire volume of particles whose centers lie within the
volume VR; particles whose centers lie outside VR contribute
nothing, even if they overlap VR .

We then compute the variance:

var(φR) ≡ 〈
φ2

R

〉 − 〈φR〉2. (18)

One can show that var(φR) is related to χ (q) by

var(φR) = 1

(πR2)2V

∑
q �=0

χ (q)�2
Rq, (19)
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(a) (b) 

FIG. 1. Shaded volume represents the volume that contributes to
φR according to (a) the definition I of φ(r) in Eq. (5) and (b) the
definition II of φ(r) in Eq. (7).

where �Rq is the Fourier transform of the indicator function
�R(r) for a circular volume of radius R, and the sum is
over all q consistent with Lees-Edwards boundary conditions
excluding q = 0.2

When χ (q) → constant as |q| → 0, as in a liquid, the
above gives [10,11] for the limiting large R behavior in two
dimensions:

for liquid : var(φR) ∼ c

R2
. (20)

For a hyperuniform system, with χ (q) ∼ |q| as |q| → 0, the
limiting large R behavior in two dimensions is [10,11]

for hyperuniform : var(φR) ∼ a + b ln R

R3
. (21)

Since the |q| → 0 limiting behavior of χ (q) must be the
same for definitions I and II, we expect that the large R

limiting behavior of var(φR) must in principle also be the same.
However, unlike what we will find for χ (q), we will find that
for the system sizes and length scales we can simulate, var(φR)
versus R behaves very differently for the two definitions of
φ(r).

The relative merits of the wave vector-dependent method
χ (q) compared to the real-space method var(φR), for detecting
hyperuniformity as applied to particle images from physical
experiments, has recently been discussed in Ref. [15].

III. MODEL

Our two-dimensional system of N particles is a bidisperse
mixture of equal numbers of big and small circular, frictionless,
disks with diameters db and ds in the ratio db/ds = 1.4 [2].
Disks i and j interact only when they overlap, in which case
they repel with a soft-core interaction potential:

Vij (rij ) =
⎧⎨
⎩

1
α
ke(1 − rij /dij )α, rij < dij

0, rij � dij .
(22)

Here rij is the center-to-center distance between the particles,
and dij = (di + dj )/2 is the sum of their radii. We will measure
energy in units such that ke = 1 and length in units so that

2This result is equivalent to Eq. (3) in Ref. [14].

FIG. 2. Geometry of our system box. Lx and Ly are the lengths
in the x̂ and ŷ directions, and γ is the skew ratio. Lees-Edwards
boundary conditions are used.

the small disk diameter ds = 1. Unless otherwise stated, our
results are for the harmonic interaction with α = 2.

The geometry of our system box is characterized by three
parameters, Lx,Ly,γ , as illustrated in Fig. 2. Lx and Ly are the
lengths of the box in the x̂ and ŷ directions, while γ is the skew
ratio of the box. We use Lees-Edwards boundary conditions
[13] to periodically repeat this box throughout all space.

In this work we consider only packings with an isotropic
total stress tensor 	αβ ,

	αβ = �Nδαβ, where �N = pV, (23)

p is the system pressure, and V = LxLy is the total system
volume. Here α,β denote the spatial coordinate directions x,y.

To construct such isotropic packings, in which the shear
stress vanishes, we use a scheme in which we vary the box
parameters Lx,Ly , and γ as we search for mechanically stable
states [16]. We introduce [17] a modified energy function Ũ

that depends on the particle positions {ri}, as well as Lx,Ly,γ :

Ũ ≡ U + �N (ln Lx + ln Ly), U ≡
∑
i<j

Vij (rij ). (24)

Noting that the interaction energy U depends implicitly on
the box parameters Lx,Ly,γ via the boundary conditions, we
get the relations

Lx

∂U

∂Lx

= −	xx + γ	xy,
∂U

∂γ
= −	xy,

Ly

∂U

∂Ly

= −	yy − γ	xy.

(25)

Starting from an initial configuration of randomly posi-
tioned particles in a square box (Lx = Ly,γ = 0) at packing
fraction φinit = 0.84, and fixing a target value of �N , we then
minimize Ũ with respect to both particle positions and box
parameters. Our minimization can be considered as a rapid
quench from infinite to zero temperature, keeping the final
total system stress fixed. The resulting local minimum of Ũ

gives a mechanically stable configuration with force balance
on each particle and a total stress tensor that satisfies

	xx = 	yy = �N, 	xy = 0. (26)

For minimization we use the Polak-Ribiere conjugate gradient
algorithm [18]. We consider the minimization converged when
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we satisfy the condition (Ũi − Ũi+50)/Ũi+50 < ε = 10−10,
where Ũi is the value at the ith step of the minimization.
Tests that our procedure gives well minimized configurations
are discussed in the Appendix. Our results at each value of
�N are averaged over 1000–10 000 (depending on the system
size) independently generated isotropic configurations. Con-
figurations are generated independently at each value of �N .

IV. RESULTS

We simulate our system for a range of total system
stresses �N spanning just over two orders of magnitude. It
will be convenient to parametrize our configurations by the
intensive quantity p̃ ≡ �N/N , the total stress per particle; p̃

is related to the ordinary pressure p by p̃ = p(V/N ). We have
considered four different system sizes, N = 8192, 16 384,
32 768, and 65 536, each for equal values of p̃ = 0.0001373
to p̃ = 0.0183105. We use large systems in two dimensions
so as to be able to probe small wave vectors q and so test for
hyperuniformity on long length scales.

A. Global quantities

Before considering the behavior of local packing fraction
fluctuations, we first consider several global properties of
the system in order to establish where our systems lie with
respect to the jamming transition. For our model, a detailed
finite-size-scaling analysis [19] found that a rapid quench from
random positions at fixed packing fraction φ gave a jamming
fraction of φJ = 0.84177. However, since it is established
[20–24] that the jamming fraction φJ of mechanically stable
configurations can depend on the specific protocol used to
produce those configurations, there is no guarantee that φJ for
rapid quenching to constant stress p̃ necessarily results in the
same exact value of φJ .

Since our minimization procedure varies the box lengths
Lx and Ly to achieve the desired global stress �N , different
configurations at a common fixed �N may have slightly
different volumes (see Appendix) and hence different global
packing fractions. In Fig. 3 we plot the average global packing
fraction 〈φ〉 versus the stress per particle p̃, for systems with
N = 8192 to 65 536 particles. Panel (a) shows the results
on a linear-linear scale, where it appears that finite-size
effects are negligible. It has been predicted [2] that, for our

FIG. 3. (Color online) Average global packing fraction 〈φ〉 vs
stress per particle p̃, for systems with N = 8192 to 65 536 particles
on (a) linear-linear and (b) log-log scales. Solid lines are a fit to a
quadratic function 〈φ〉 = φJ + a1p̃ + a2p̃

2.

harmonic interaction of Eq. (22), pressure scales linearly
with packing fraction. In our data, however, we see a small
but clear curvature at larger p̃. We thus fit (solid lines in
Fig. 3) our results to 〈φ〉 = φJ + a1p̃ + a2p̃

2, regarding the
quadratic term as a correction to scaling. This fit gives φJ =
0.84159 ± 0.00002, with the error representing the variation
in values obtained for the different system sizes.

However, to examine more closely the points at the smallest
p̃, in Fig. 3(b) we plot 〈φ〉 − 0.8415 versus p̃ on a log-log scale
[25]. We now see a definite finite-size effect in the results for
the two smallest p̃ values and that these lie noticeably below
the fitted quadratic curve (solid line). Our above estimate of φJ

should therefore be taken with some caution. A more accurate
determination of φJ , as well as the power-law dependence
between p̃ and (φ − φJ ), should take into account these finite-
size effects. Such an analysis is outside the scope of the present
work.

The jamming transition of frictionless particles is well
determined by the isostatic condition [1–3], where the number
of constraints on the particles exactly equals the number of
degrees of freedom. For frictionless spherical particles this
condition requires that the average number of contacts 〈z〉
for a given particle is equal to twice the dimensionality of
the system; for two dimensions, ziso = 4. Numerically, this
condition is found to hold quite precisely provided one first
excludes from the system “rattler” particles [2]. A rattler is
any particle which is not at a strict local energy minimum but
may move without cost in energy in one or more directions.
To locate the rattlers in our two-dimensional system we loop
recursively through all our particles removing any particle
with less than three contacts; i.e., after an initial pass in
which such particles are removed, we loop again through the
remaining particles and remove any that now have less than
three contacts, repeating this procedure until no additional
particles are removed. The total number of removed particles
is then the number of rattlers. Removing such rattlers and
computing the resulting average 〈z〉 of the remaining particles,
in Fig. 4 we plot 〈�z〉 ≡ 〈z〉 − ziso, versus p̃, for system
sizes N = 8192 to 65 536. Panel (a) shows our results on a
linear-linear scale, while panel (b) shows a log-log scale. In
this case, as has been noted previously [26], finite-size effects
are truly negligible for the range of p̃ and N considered
here. For the harmonic interaction used here, theoretical

FIG. 4. (Color online) Average excess contact number 〈�z〉 =
〈z〉 − ziso vs stress per particle p̃, for systems with N = 8192 to
65 536 particles on (a) linear-linear and (b) log-log scales. Solid
lines are a fit to 〈�z〉 = p̃x(a0 + a1p̃ + a2p̃

2 + a2p̃
3), where we find

x ≈ 0.546.
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FIG. 5. (Color online) Density of frequencies of small elastic
vibrations D(ω) vs ω. Results are shown for a system of N =
8192 particles for a range of stress per particle p̃ = 0.0001373 to
0.0183105. Each curve is an average over three independent energy
minimized configurations.

arguments [27] predict 〈�z〉 ∼ p1/2 close to the jamming
transition. Since our values of p̃ extend moderately above
jamming, (〈φ〉max − φJ )/φJ ≈ 0.05, we fit our data to the form
〈�z〉 = p̃x(a0 + a1p̃ + a2p̃

2 + a2p̃
3), where the polynomial

factor is an empirical form to account for corrections to scaling
when not sufficiently close to jamming. We find the value
x ≈ 0.546 ± 0.001, with the error representing the variation
in values obtained for the different system sizes. A more careful
scaling analysis, going to lower stresses p̃ closer to jamming,
is desirable before concluding the exponent is truly x > 1/2.
However, we may note that a recent reanalysis [28] of the data
of Ref. [26] has similarly found values of x > 1/2 in both two
and three dimensions.

As a final measure of the global properties of our systems
we consider the density of states D(ω) of the dynamical matrix
of our minimized configurations [2,27,29]. Expanding the
interaction energy U ({ri}) to second order in small particle
displacements about the energy minimized configuration
defines the dynamical matrix. The eigenvalues λ of that matrix,
and corresponding eigenvectors, determine the response of the
system to vanishingly small elastic perturbations. Following
convention and assuming Newtonian equations of motion for
the response to such perturbations, the eigenvalues λ are related
to the frequencies of the normal modes of vibration ω by
λ = ω2. In Fig. 5 we plot the density of such frequencies
D(ω) versus ω on a linear-log scale, for a stress per particle
ranging from p̃ = 0.0001373 to 0.0183105. Because of the
numerical difficulty of computing the eigenvalue spectrum for
large matrices, we show results only for our smallest system
size with N = 8192 particles; curves at each p̃ are averaged
over three independent configurations. We see clearly the
plateau at small ω, often referred to as the “boson peak” [2],
that shows the excess of low-frequency modes characteristic
of a marginally stable solid. As p̃ decreases, the low-frequency
edge of the plateau, ω∗, moves steadily to lower values and
presumably vanishes as p̃ → 0 [2]. Our range of stress p̃ is thus
clearly in the region where marginal stability is characterizing
the structure of the packing out to ever increasing length scales
as p̃ decreases.

FIG. 6. (Color online) Structure function S(qŷ) vs q, giving the
fluctuation in the density of particles at wave vector qŷ. Results are
shown for a system with N = 32 768 particles, for several different
values of the stress per particle, p̃ = 0.0001373 to 0.0183105. S(qŷ)
approaches a constant as q → 0. The error bars shown in the figure
represent one standard deviation of estimated statistical error.

B. Wave vector-dependent fluctuations

We now consider the fluctuations of the system at finite
wave vectors q. For the system geometry of Fig. 2, the wave
vectors allowed by the Lees-Edwards boundary conditions
have the form q = m1b1 + m2b2, where m1 and m2 are
integers, and the basis vectors are b1 = (2π/Lx)(x̂ − γ ŷ)
and b2 = (2π/Ly)ŷ. For simplicity we will look at wave
vectors oriented in the ŷ direction, i.e., q = mb2 = qŷ, with
q = 2πm/Ly for integer m [30]. Because each different
configuration may have a slightly different value of Ly , since
Ly is a free variable determined by the targeted value of �N ,
we average data points at common values of m; however, the
variation in Ly over different configurations, while finite, is in
practice negligible for the large system sizes we consider here
(see the Appendix).

In Fig. 6 we plot the structure function S(qŷ), that measures
fluctuations of particle density, versus q for a system of N =
32 768 particles for a range of stresses p̃. As expected, we see
that S(qŷ) saturates to a finite constant as q decreases, for all p̃.

In Fig. 7 we show our results for the fluctuations of the local
packing fraction, plotting χ (qŷ) versus q, where we have used
definition I of Eq. (5) for the local packing fraction φ(r). We
show results for a system of N = 32 768 particles for a range
of different stresses p̃. We see that as q decreases, χ (qŷ)
decreases roughly linearly in q as was observed previously.
However, when q gets sufficiently small, χ reaches a finite
minimum at a q∗ and then increases as q → 0, rather than
vanishing as expected for a hyperuniform system. Note that
the limiting value χ (qŷ → 0) is increasing as p̃ increases.

The variation of q∗ with p̃ is quite small. As p̃ decreases, q∗
decreases slightly, but at sufficiently small p̃, the data at differ-
ent p̃ appear to be approaching a common curve, with a com-
mon limiting value of q∗ ≈ 0.15. We thus conclude that as p̃

decreases, and one approaches the jamming transition, our con-
figurations display hyperuniformity only out to a finite length
scale �∗ ≈ 2π/q∗ ≈ 42. This is the main result of this work.

One may question whether our observed behavior of χ (qŷ)
at small q is not some artifact of our numerical procedure. In
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FIG. 7. (Color online) Fluctuation in packing fraction χ (qŷ) vs
q, using the definition I of Eq. (5) for the local packing fraction
φ(r). Results are shown for a system with N = 32 768 particles, for
several different values of the stress per particle, p̃ = 0.0001373 to
0.0183105. As q decreases, we find that χ (qŷ) decreases roughly
linearly but then reaches a minimum below which it increases, thus
implying the absence of hyperuniformity on large length scales. As
p̃ decreases, the curves of χ (qŷ) approach a common limiting curve.
The error bars shown in the figure represent one standard deviation
of estimated statistical error.

the Appendix we show a careful analysis that this behavior
is not an artifact of an insufficiently converged minimization
procedure. Another possibility might be that it is a finite-size
effect. In Fig. 8 we therefore plot χ (qŷ) versus q [using
definition I for φ(r)] for several different system sizes, N =
8192 to 65 536, for our smallest stress p̃ = 0.0001373 and
for our largest stress p̃ = 0.0183105. Apart from the fact that
in systems with larger N we can measure down to smaller
q (since q = 2πm/Ly), the measured χ (qŷ) is found to be
completely independent of the system size.

Finally we consider our two other wave vector-dependent
measures of hyperuniformity, the fluctuation χ (q) using

FIG. 8. (Color online) Fluctuation in packing fraction χ (qŷ) vs
q, using the definition I of Eq. (5) for the local packing fraction φ(r).
Results are shown for several different system sizes, N = 8192 to
65 536, for our smallest and largest values of the stress per particle,
p̃ = 0.0001373 and 0.0183105. The error bars shown in the figure
represent one standard deviation of estimated statistical error.

FIG. 9. (Color online) Comparison of the different wave vector-
dependent measures of hyperuniformity: “definition I” and “defi-
nition II” refer to the fluctuation of local packing fraction χ (q)
with φ(r) determined from the definitions of Eq. (5) and Eq. (7),
respectively, while “definition III” refers to the quantity nT χT (q)
defined in Eq. (15). Results are shown for a system with N = 32 768
particles, for our smallest and largest values of the stress per particle,
p̃ = 0.0001373 and 0.0183105. The error bars shown in the figure
represent one standard deviation of estimated statistical error.

definition II of Eq. (7) for the local packing fraction φ(r),
and the thermal compressibility nT χT (q) of Eq. (15), used
by Berthier et al. [9], which we denote as “definition III.” In
Fig. 9 we plot χ (qŷ) versus q for definitions I, II, and III,
for a system with N = 32 768 particles at our smallest and
largest values of p̃. While these quantities all differ somewhat
at the larger values of q, we see that definitions I and II
become completely equal at smaller q, in particular about
the minimum q∗, as should be expected from the discussion
following Eq. (13). Definition III for nT χT is completely equal
to definitions I and II at small q about the minimum q∗ at our
lowest p̃ = 0.0001373. For the largest p̃ = 0.0183105 we find
a small deviation between nT χT and χ that persists to low q

at and below q∗; however, the qualitative behavior remains the
same. We thus conclude that all three approaches lead to the
same conclusion: that hyperuniformity extends only out to a
finite length scale for our mechanically stable packings above
the jamming transition, and that this length remains finite as
the jamming transition is approached.

C. Real space fluctuations

In this section we consider the real space fluctuations of the
local packing fraction, defined over a circular window of radius
R, by computing the variance of φR as defined in Eq. (17). For
each configuration we use several different, nonoverlapping,
circular windows at each given R. When the diameter 2R is
roughly equal to half the length of the system L/2, we take
only a single window per configuration.

In Fig. 10 we plot var(φR) versus R, comparing results
from using definition I of Eq. (5) for the local packing fraction
φ(r) with that of definition II of Eq. (7). We show results
for our smallest stress p̃ = 0.00011373 and our largest p̃ =
0.0183105, for a system with N = 32 768 particles. Although
the corresponding χ (qŷ) for these two definitions were shown
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FIG. 10. (Color online) Comparison of the fluctuation in local
packing fraction, var(φR) vs R, using definition I of Eq. (5) and
definition II of Eq. (7) for the local packing fraction φ(r). Results
are shown for a system with N = 32768 particles, for our smallest
and largest values of the stress per particle, p̃ = 0.0001373 and
0.0183105. Thick solid lines represent the dependencies 1/R2 and
1/R3, as indicated.

in Fig. 9 to be essentially identical at small q, we see a rather
dramatic difference in the behaviors of the corresponding
var(φR) for the entire range of R we study. As expected from
Fig. 9, the fluctuations for definition I are smaller than for
definition II. However, the two definitions also appear to give
different power-law dependencies for the decay of var(φR)
with R. Definition II gives roughly a 1/R3 decay, while
definition I seems to be closer to a 1/R2 decay at large length
scales. We will see below that the big difference in magnitude
of var(φR) comparing definition I and definition II, as well as
the apparent difference in power-law decay, can be attributed
to the contributions to var(φR) from moderate to large |q|
fluctuations (i.e., small length scale fluctuations), and that these
higher |q| fluctuations are much larger for definition II.

To examine this decay more closely, we consider
R2var(φR), which according to Eqs. (20) and (21) should ap-
proach a constant for a liquid-like system, and (a + b ln R)/R
for a hyperuniform system. In Fig. 11 we show R2var(φR)
versus R using definition I, for our smallest and largest stresses,
p̃ = 0.0001373 and p̃ = 0.0183105, for several different
system sizes from N = 8192 to 65 536. At small R we see

FIG. 11. (Color online) R2var(φR) vs window radius R for sys-
tems with N = 8192 to 65 536 particles, at stress (a) p̃ = 0.0001373
and (b) p̃ = 0.0183105. The power-law decay at small R is indicated.
Definition I of Eq. (5) for the local packing fraction φ(r) is used.

that R2var(φR) decays as R increases. A power-law fit to the
small R data in panel (a) gives a decay ∼R−0.4, while in panel
(b) we find ∼R−0.3; it is not clear that these exponent values
have any fundamental significance. However, as R increases,
this decay is cutoff at a length R∗ where R2var(φR) reaches
a minimum. Comparing panels (a) and (b) we see that R∗
decreases only slightly as p̃ increases over the two orders of
magnitude. At the lowest stress, R∗ ≈ 18, corresponding to a
window of diameter 2R∗ = 36; this is roughly consistent with
the value of �∗ = 2π/q∗ ≈ 42 obtained from the minimum of
χ (qŷ) in Fig. 7.

For R > R∗ we see that R2var(φR) increases, rather than
saturating to a constant as might be expected. This is the real
space manifestation of the increase in χ (qŷ) as q decreases
below q∗. Whether R2var(φR) will continue to increase, or
saturate to a constant, as R increases further [i.e., whether
χ (qŷ) continues to increase or saturates to a constant as
q → 0] remains unclear. The finite-size dependence seen at
large R is another reflection of the increase in χ (qŷ) as q

decreases below q∗. From Eq. (19) we have that R2var(φR) is
related to the sum of χ (q) over all allowed wave vectors. As
N increases, the smallest allowed q decreases (qmin ∼ 1/L),
and we get additional contributions to this sum, resulting
in the finite-size effect at large R. That this effect is more
noticeable at the higher stress p̃ [compare Fig. 11(b) with
11(a)] is a consequence of the fact that the increase in χ (q)
at small |q| becomes steeper at larger p̃ (see Fig. 8). If χ (q)
eventually saturates to a constant as |q| → 0, these additional
contributions as N increases will become a negligible part
of the sum, and the finite-size effect will similarly become
negligible.

In Fig. 12 we similarly plot R2var(φR) versus R, but now
using definition II of Eq. (7) for the local packing fraction.
Again we show results for several different system sizes,
N = 8192 to 65 536 for our smallest stress p̃ = 0.0001373,
and largest stress p̃ = 0.0183105. The results are dramatically
different from what is seen in Fig. 11. Here we see a
much weaker dependence on the stress p̃, only a small
finite-size effect at the largest R, and a clear R−1 decay
over much of the range of data (a power-law fit to the
data gives more precisely ∼R−0.95). Thus, while definition

FIG. 12. (Color online) R2var(φR) vs window radius R for sys-
tems with N = 8192 to 65 536 particles, at stress (a) p̃ = 0.0001373
and (b) p̃ = 0.0183105. The power-law decay at small R is indicated.
Definition II of Eq. (7) for the local packing fraction φ(r) is used.
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FIG. 13. (Color online) Plot of f 2(y) vs y, with the function f (y)
as defined in Eq. (14). The envelope of the oscillations at large y

decays as 1/y3.

I gives no suggestion of hyperuniform behavior, definition II
looks convincingly hyperuniform out to relatively large length
scales R. The dramatic difference in var(φR) between the two
definitions of the local packing fraction φ(r) is quite puzzling
given the complete agreement of the corresponding χ (q) for
the two definitions at small |q|, as seen in Fig. 9. We can
explain the reason for this difference in behavior as follows.

From Eqs. (14) and (19) we can write the relation between
var(φR) and χ (q) as

var(φR) = 1

V

∑
q �=0

χ (q)f 2(|q|R), (27)

with f (y) as defined in Eq. (14). Assuming that χ (q) depends
only on |q| due to the average isotropy of the system [30],
we can integrate over the direction of q to get for our two-
dimensional system

var(φR) = 1

Ly

∑
q �=0

χ (qŷ)qf 2(qR), (28)

with q = 2πn/Ly . In Fig. 13 we plot f 2(y) versus y on a
log-log scale. We see that for large y, it oscillates with a
1/y3 envelope. For an infinite system, if χ (q → 0) is a finite
constant, then at sufficiently large R a dimensional analysis
implies that var(φR) must scale as 1/R2. However, for finite
R, and in finite systems where the sum on q is discrete, the
behavior of var(φR) can depend in detail on the behavior of
χ (q) at large q; if the sum in Eq. (28) is dominated by the
large q terms, then we may find var(φR) ∼ 1/R3 because of
the 1/(qR)3 dependence of f 2(qR) and not because of any
hyperuniformity of the system.

The behavior of var(φR) on observed length scales R can
thus be determined by the behavior of χ (q) at large wave
vectors q with |q| > π/R. In Fig. 14 we plot χ (qŷ) for both
definition I and definition II, as well as the structure function
S(qŷ), for a much wider range of wave vectors, 0 < q < 10,
than in previous plots. We show results for N = 32 768 at
our lowest stress p̃ = 0.0001373. As before, we see that
χ (qŷ) for the two definitions agree perfectly at small q but
then separate when q � 1. Moreover, χ (qŷ) for definition
II becomes roughly equal to S(qŷ) and over two orders of
magnitude larger than that for definition I, when q � 5. Thus
the contribution to var(φR) from χ (qŷ) at large q should be

FIG. 14. (Color online) Packing fraction fluctuation χ (qŷ) as
computed using definition I of Eq. (5), and definition II of Eq. (7), as
well as the structure function S(qŷ), for a wide range of wave vectors
up to q = 10. Results are shown for a system of N = 32 768 particles
at our lowest stress p̃ = 0.0001373.

expected to be more significant for definition II as compared
to definition I.

To check this, we compute var(φR) by explicitly summing
the series in Eq. (28), using the data for χ (qŷ) from Fig. 14.
Our results for R2var(φR) versus R are shown in Fig. 15 for
N = 32 768 at p̃ = 0.0001373. We compare these results to
the direct computation of var(φR) as shown in Figs. 11(a) and
12(a). For definition I we find excellent agreement between the
series and the direct computation when we sum the series up to
q = 10. For definition II we find that we must sum even more
terms, up to q = 50, in order to get reasonable agreement.
We thus see again that the large q (i.e., small length scale)
fluctuations are larger, and so contribute more to var(φR), for
definition II than for definition I. Our results in Fig. 15 show
that the computation of var(φR) in Fig. 10 is indeed consistent
with our computation of χ (qŷ) in Fig. 9, and that the reason
for the dramatic difference in var(φR), comparing definition I
with definition II, is the influence of fluctuations at moderately
large q, which persist even to large R. We conclude that χ (q),
rather than var(φR), is the better measure to use to check for
hyperuniformity in our two-dimensional system.

FIG. 15. (Color online) R2var(φR) vs R, comparing the data of
Figs. 11(a) and 12(a) (direct computation) with the result from
summing χ (qŷ) over q in Eq. (28), for both definition I and definition
II of the local packing fraction φ(r). Results are for a system with
N = 32 768 particles at our smallest stress p̃ = 0.0001373.
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V. DISCUSSION AND CONCLUSIONS

In this work we have considered the fluctuations of density
and packing fraction in mechanically stable packings of
bidisperse frictionless particles at finite stress. A distinguishing
feature of our work is that we simulate at fixed isotropic global
stress, rather than at fixed packing fraction. We investigate
states above the jamming transition, in contrast to earlier works
[9–11] that considered the case of packings exactly at the
jamming φJ .

A. Comparison to previous works

Berthier et al. [9] considered both an experimental two-
dimensional system of N = 8000 bidisperse particles, and a
numerical three-dimensional system of N = 64 000 soft-core
particles of varying size dispersities. This corresponds to
system lengths of roughly 90 and 40 particle diameters in
the experimental and numerical systems, respectively. The
experimental system was jammed under slow compression.
The numerical configurations were created starting from
jammed states above φJ and then slowly decompressing until
the system unjammed, followed by a slower recompression
until the system jammed again, as measured by a finite energy
per particle of order 10−11. In both experimental and numerical
systems, a χT (q) is observed that appears to linearly decrease
towards zero. However, in both cases the measured χT (q)
extends only down to roughly qd ≈ 0.15, where d is the
average diameter of the particles, and the data are quite
scattered below qd ≈ 0.5. These results thus give evidence
for hyperuniformity out to length scales �/d ∼ 2π/0.5 ≈ 12,
but not necessarily on longer length scales.

Zachary et al. [10,11] considered a much larger numerical
system in two dimensions, with up to N = 106 particles (and so
system length of roughly 1000 particle diameters). They used
a bidisperse system with particles of different shapes, with
size ratio 1.4 and a concentration of small particles xs = 0.75,
and large particles xb = 0.25. They used the Lubachevsky-
Stillinger algorithm [31] to generate their jammed states. This
is an event-driven molecular dynamics for elastic hard-core
particles, where particles are inflated at a prescribed rate from
an initial thermally equilibrated dilute state so as to rapidly
quench the hard-core gas into a thermal glassy state. The
particle inflation continues until the system seizes up into a
strictly jammed state that they denote as maximally random
jammed (MRJ). They measure both χ (q) and var(φR) (using
definition I) in the MRJ state, and for circular particles they
find strong evidence from var(φR) for hyperuniformity out to
length scales 2R/d ∼ 80.

More recently, other works have reconsidered hyperunifor-
mity in systems of monodisperse spheres in three dimensions
and have considered behavior approaching, rather than strictly
at, φJ . Recall, for monodisperse systems, hyperuniformity is
indicated by the behavior of the structure function, S(q) ∼ |q|
as |q| → 0. Hopkins et al. [12], using the same protocol as
Zachary et al. [10,11] for a system with N = 106 particles
(system length roughly 100 particle diameters), measure S(q)
at various φ approaching φJ from below. They find S(q) ≈
aq + b, with b → 0 as φ → φJ , and from this extract a length
scale ξ ∼ 1/b1/3 that diverges as jamming is approached and
the system becomes hyperuniform.

Ikeda and Berthier [32] study N = 512000 monodisperse
soft-core particles in three dimensions. Starting from a random
configuration of particles in a fixed cubic box at packing
fraction φ = 0.8, well above φJ ≈ 0.646, they use the FIRE
algorithm [33] to minimize the interaction energy and obtain
a mechanically stable state. They then decrease the particle
density in small steps, energy minimizing at each step, to
obtain configurations spanning a range of packing fractions
from φ = 0.8 to just above the jamming φJ . Their results
are averaged over eight independent starting configurations.
Computing S(q) they find, for all but their largest value of
φ = 0.8, that data at the different φ essentially overlap and
are linear in q, as expected for a hyperuniform system, over
an extended range of 0.4 < q < 7. However, at their smallest
q, they find S(q) saturates to a finite value ∼10−3, similar
in magnitude to what we have found in the present work for
χ (q); they, however, see a plateau in S(q) at small q rather
than the minimum that we find in χ (q). Ikeda and Berthier
thus conclude that hyperuniformity is only weakly dependent
on packing fraction φ but persists out to only a finite length
scale ≈15d. Ikeda and Berthier further find that this behavior
is stable to the addition of small finite thermal fluctuations.

The above results, combined with our own, suggest that
mechanically stable jammed packings above φJ do not display
hyperuniform fluctuations of the packing fraction out to
arbitrarily large length scales, but are hyperuniform only out
to a finite �∗(φ) that is weakly dependent on φ and does not
appear to diverge as φ → φJ from above. However, the results
of Zachary et al. [10,11] and Hopkins et al. [12] suggest that
hyperuniformity may exist in hard-core particle systems, when
compressed to φJ from below. It may therefore be that the
presence or absence of hyperuniformity out to arbitrarily large
length scales depends on the specific protocol used to construct
the jammed state at φJ . We also cannot rule out the possibility
that hyperuniformity may still exist in jammed packings above
φJ , but restricted to a region closer to φJ than we have been
able to explore in this work.

B. Alternative ensembles

To check how sensitive our results for φ > φJ are to the
particular system we have used above, we have considered
two other ensembles. The first is to use a Hertzian interaction,
with α = 5/2 in Eq. (22), in place of the harmonic interaction.
All other details of the system remain the same. In Fig. 16
we plot χ (qŷ), computed according to definition I of Eq. (5),
versus q for the four lowest p̃ that we used for the harmonic
interaction. We use a system size with N = 32 768 particles.
For the Hertzian interaction, pressure is expected [2] to scale
with packing fraction according to p̃ ∼ (φ − φJ )3/2, hence the
〈φ〉 for the Hertzian system (shown as the inset to Fig. 16) is
larger than that of the harmonic system at equal values of
p̃. The Hertzian interaction further differs from the hamonic
in that for the Hertzian system the bulk modulus vanishes
continuously as φ → φJ from above, while for the harmonic
system the bulk modulus approaches a finite constant as
φ → φJ from above, and then jumps discontinuously to zero
below φJ [2]. Nevertheless, we find that χ (qŷ) for the Hertzian
system is qualitatively the same as for the harmonic case, with
a well-defined minimum that does not appear to be moving to
smaller q as p̃ decreases.
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FIG. 16. (Color online) Fluctuation in packing fraction χ (qŷ) vs
q, using the definition I of Eq. (5) for the local packing fraction φ(r),
for the case of a Hertzian interaction [α = 5/2 in Eq. (22)]. Results
are shown for several different values of the stress per particle p̃,
for a system with N = 32 768 particles. The inset shows the average
packing fraction 〈φ〉 as a function of p̃.

The second is to consider the harmonic interaction, but
to obtain our configurations by quenching at fixed φ within
a fixed square box. Such constant φ ensembles have usually
been used in earlier works [9–12,32]. Unlike the constant stress
ensemble, where configurations all have the same p̃ and so
can be viewed as all at the same distance from the jamming
transition p̃ = 0, the constant φ ensemble has a fluctuating p̃

and so different configurations i are at different distances from
their configuration specific jamming transition φJi [2,20]. The
constant φ ensemble in a fixed box also allows there to be a
finite residual shear stress in the quenched configuration [16].
In Fig. 17 we plot χ (qŷ), computed according to definition I
of Eq. (5), versus q for the case φ = 0.8422 close to φJ ≈
0.84159. We use a system size with N = 32 768 particles.
Again we see qualitatively the same behavior as before.

Note that the fixed value of φ = 0.8422 in Fig. 17 was
chosen as it is equal to the 〈φ〉 for a system with p̃ = 0.0002747

FIG. 17. (Color online) Fluctuation in packing fraction χ (qŷ) vs
q, using the definition I of Eq. (5) for the local packing fraction φ(r),
for the case of the harmonic interaction in an ensemble at fixed global
packing fraction φ = 0.8422. Results are shown for a system with
N = 32 768 particles.

in the fixed stress ensemble (our next to lowest value of
p̃). However, in the fixed φ = 0.8422 ensemble, we find
that the average stress per particle is 〈p̃〉 = 0.000180, lower
than the corresponding value in the fixed stress ensemble.
This suggests that the jamming density φJ of the constant
φ ensemble is slightly larger than the jamming density of
the constant stress ensemble. That is consistent with our
estimate of φJ ≈ 0.84159 for the constant stress ensemble
from Fig. 3, as compared with the estimate of φJ ≈ 0.84177 for
the constant φ ensemble from Ref. [19]. We also note that the
width of the distribution of p̃ found in this fixed φ ensemble is
rather large,

√
〈p̃2〉 − 〈p̃〉2/p̃ = 0.40, while the corresponding

width of the distribution of the residual deviatoric stress per
particle σ̃ is rather small,

√
〈σ̃ 2〉/p̃ = 0.00053.

C. Rattlers and polydispersity

It has been suggested [4,32] that rattlers may play a
role in the breaking of hyperuniformity on large length
scales. Rattlers result when a particle has an insufficient
number of contacts to constrain its motion in all directions.
Determining the number of rattlers according to the method
described in Sec. IV A, in Fig. 18 we plot the fraction of
particles that are rattlers 〈Nrattlers〉/N versus the stress per
particle p̃. For the harmonic interaction, we plot results for
systems with N = 8192 to 65 536 particles. For the Hertzian
interaction, we plot results for N = 32 768 only. We see
that 〈Nrattlers〉/N is independent of the system size N and
decreases with increasing p̃. For the harmonic interaction,
〈Nrattlers〉/N changes by an order of magnitude over the range
of p̃ we study. If rattlers were responsible for the breaking
of hyperuniformity, we might expect that the length �∗ to
which hyperuniformity extends should increase as the density
of rattlers decreases, i.e., as p̃ increases. However, our results
in Fig. 7 show exactly the opposite trend; the q∗ that locates the
minimum of χ (qŷ) increases slightly with increasing p̃, and
so �∗ = 2π/q∗ decreases with increasing p̃. Our results thus
provide no obvious relation between rattlers and the breaking
of hyperuniformity.

FIG. 18. (Color online) Fraction of the particles that are rattlers,
〈Nrattlers〉/N vs stress per particle p̃ = �N/N . For the harmonic
interaction we show results for systems with N = 8192 to 65 536
particles; the points for different N in the figure overlap each other.
For the Hertzian interaction we show results for N = 32768.
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FIG. 19. (Color online) Packing fraction fluctuation χ (qŷ) vs q,
using definition II of Eq. (7) for a system of N = 65 536 particles, at
two different values of the stress per particle p̃. We compare results
where the weight of each particle is taken as the circular area of the
isolated particle (denoted as “counting overlaps twice”) versus where
the weight of each particle is taken as the nonoverlapping part of that
circular area, as illustrated by the shaded region for particle i in the
inset (denoted as “counting overlaps once”). A small difference is
seen between these two sets of weights at the larger value of p̃, but
not at the smaller value.

Another possibility that might lead to the breaking of
hyperuniformity is suggested by the work of Dreyfus et al.
[15]. Their work is primarily concerned with the detection of
hyperuniformity in experimental systems, where particles are
polydisperse, and the exact size of individual particles is not a
priori known but must be determined by optical measurements.
Errors in the determination of the exact particle sizes were
found to result in an apparent breaking of hyperuniformity
at small wave vectors (large length scales). As an extreme
example of this effect, one can consider the error introduced
if, in a bidisperse or polydisperse system, one approximated
all particles as having the same average size. In that approx-
imation, the packing fraction fluctuation χ (q) just becomes
proportional to the structure function S(q), which clearly does
not show hyperuniformity at small q, as seen in Fig. 6.

In our bidisperse particle simulations, we of course know
the position and size of each and every particle exactly.
Nevertheless, an effective polydispersity may be viewed to
arise from the following effect. Both our definitions I and
II count each particle with a weight equal to the area of
the particle in isolation. However, in our jammed packings,
particles in contact necessarily have some amount of overlap.
Our definitions I and II therefore count this overlap area
twice, once for each particle. One might imagine that a more
“correct” definition of the local packing fraction should count
this overlap area only once, dividing it proportionally between
the two contacting particles. For example, as sketched in the
inset to Fig. 19, particle i should have a weight equal to only
the shaded area, rather than the full area of the corresponding
circle. If vi = π (di/2)2 is the area of the circle of particle i,
then the weight with which particle i enters the local packing
fraction should instead be taken as ṽi ≡ vi − ∑′

j δvij , with
δvij the area subtracted due to the overlap with particle j .

The weights ṽi are therefore polydisperse, depending on the
varying overlaps in the system. If one computes χ (q) using the
bidisperse weights vi rather than the more correct polydisperse
weights ṽi , it could lead to a breaking of hyperuniformity that
is only apparent, i.e., a consequence of using incorrect weights.

However, if δij ≡ (di + dj )/2 − rij is the overlap length of
the contact, then δvij /vi ∝ (δij /di)3/2 ∝ p3/2, where the last
result follows since the pressure p ∼ 〈δij 〉 for the harmonic
interaction potential. Thus this effect should vary with the
pressure and vanish continuously as p → 0, as one approaches
the jamming transition. To test this notion, we have therefore
computed χ (qŷ) according to definition II of Eq. (7), but
using the weights ṽi as described above, computed exactly for
each particle according to its own specific overlaps. We use
definition II since it is easier to implement than definition I,
in the case where each particle has a unique, nonsymmetric
(i.e., circle minus overlaps), shape. However, we expect from
Fig. 9 that χ (qŷ) will be identical for definitions I and II
at the small q of interest. In Fig. 19 we plot the resulting
χ (qŷ) for our largest system with N = 65 536 particles, at
both our smallest and largest values of p̃. We compare the
χ (qŷ) obtained from using the original weights vi (denoted as
“counting overlaps twice”) with that using the new weights ṽi

(denoted as “counting overlaps once”).
At the largest p̃ = 0.0183105, we see a clear shift between

the results from the different sets of weights; however, the
qualitative behavior remains the same, with a clear minimum
at the same q∗, and χ increasing as q decreases below q∗. At
our smallest p̃ = 0.0001373, however, the results from the two
sets of weights are essentially equal. Thus taking overlaps into
account does not result in a restoration of hyperuniformity on
large length scales, and the insensitivity of our results to the
different choices of weights at our smallest p̃ is yet another
indication that our smallest pressures are, by all relevant
measures, quite close to jamming.

Finally, it is interesting to note that the experiments on
PINIPAM microgel particles, reported in Dreyfus et al. [15],
may actually correspond more closely to our conclusions than
to the claim in favor of hyperuniformity. As these authors
note, the small q behavior of χ (q) for PINIPAM, shown in
the inset to their Fig. 9(b), does not suggest hyperuniformity;
indeed, it is qualitatively similar to what we see in our Fig. 7.
However, the q∗ at which χ (q) has its minimum is so much
larger in the experiments of Dreyfus et al. than what we find
here, that in their case it may well be an artifact of system
size, such as Dreyfus et al. claim. However, if we consider
the real space decay of var(φR) with R, our results in Fig. 11
for definition I (corresponding to the usage in Dreyfus et al.)
show that the initial decay, before the minimum is reached, is
var(φR) ∼ R−λ, with λ ≈ 2.4 for our smaller p̃, and λ ≈ 2.3
for our larger p̃. This is not far from the value λ ≈ 2.2 reported
in Dreyfus et al. for a similar range of R, using their j-PSR
reconstruction as shown in their Fig. 9(a). Yet in our case, our
λ > 2 does not demonstrate that the system is hyperuniform;
we see hyperuniformity is broken only by looking at larger
length scales. This comparison thus suggests that the PINIPAM
experiments may actually be above the jamming φJ and are
not inconsistent with the absence of hyperuniformity on long
length scales.
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FIG. 20. (Color online) (a) Relative fluctuations in the system
box lengths Lx and Ly vs stress per particle p̃, for system sizes
N = 8192 to 65 536. Solid symbols show the fluctuations in Lx ,
while open symbols show Ly . (b) Fluctuations in the dimensionless
box skew parameter γ versus p̃. See Fig. 2 for the definition of
parameters Lx , Ly , γ . In both cases the fluctuations scale as 1/

√
N .
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APPENDIX

In this Appendix we provide some further details about the
minimization procedure of Sec. III that we use to obtain our
mechanically stable configurations at fixed isotropic stress.

Since our minimization procedure is carried out at fixed to-
tal system stress 	αβ , the system box parameters Lx , Ly , and γ

(see Fig. 2) will vary from specific minimized configuration to
configuration. In Fig. 20 we show the extent of these variations
for the different system sizes N = 8192, 16 384, 32 768, and

FIG. 21. (Color online) Average box skew 〈γ 〉 vs stress per
particle p̃, for system sizes N = 8192 to 65 536. Error bars represent
one standard deviation of estimated statistical error, showing that
〈γ 〉 = 0 within the estimated errors.

FIG. 22. (Color online) Accuracy parameters (a) δ1, (b) δ2, and
(c) δ3 of Eqs. (A2), (A3), and (A4), that measure the relative deviations
of the stress tensor 	αβ from the target isotropic �Nδαβ , versus stress
per particle p̃ = �N/N , for system sizes N = 8102 to 65 536.

65 536. In Fig. 20(a) we show the relative fluctuations in box
lengths,

√
var(Lx)/〈Lx〉 and

√
var(Ly)/〈Ly〉, versus the stress

per particle p̃ = �N/N . Solid symbols are for Lx while open
symbols are for Ly . Since the system is on average isotropic,
we expect the fluctuations in Lx and Ly to be equal, and we
indeed find that to be so. The fluctuations are also found to
scale as 1/

√
N , as would naively be expected. In Fig. 20(b)

we show the fluctuations in the dimensionless skew parameter,√
var(γ ) versus p̃. The size of the fluctuations in γ are slightly

larger but comparable to the fluctuations in the box lengths.
Again we find that the fluctuations scale as 1/

√
N . We also

note that, as expected, the average skew 〈γ 〉 = 0 within the
estimated statistical error, as shown in Fig. 21.

Our minimization procedure necessarily produces the de-
sired isotropic stress configurations only to a certain numerical
accuracy. We now provide details of the degree of that
accuracy.

We first look at how well our procedure produces a
packing with the desired isotropic global stress tensor, 	αβ =
�Nδαβ . We compute the global stress tensor 	αβ for our
minimized configurations using the usual formula [2] for a
static frictionless system,

	αβ = −
∑
i<j

rijαFijβ, (A1)

FIG. 23. (Color online) Average magnitude of the residual net
force on a particle Fi , normalized by the average magnitude of the
contact force Fij , at the termination of our minimization procedure.
Results are plotted versus the stress per particle p̃ = �N/N for
systems sizes N = 8192 to 65 536.
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FIG. 24. (Color online) Distribution P(|Fi |/〈|Fij |〉) of the resid-
ual net force on particles |Fi |, normalized by the average magnitude
of the contact force |Fij |, versus |Fi |/〈|Fij |〉, for different system
sizes N = 8102 to 65 536, at our (a) smallest p̃ = 0.0001373 and
(b) largest p̃ = 0.0183105.

where rij ≡ rj − ri is the center-to-center displacement from
particle i to particle j , Fij = −∂Vij /∂ri is the contact force
on i due to j , and the sum is over all distinct pairs of particles
in contact. We then define three measures of the deviation of
our minimized stress from the isotropic target value,

δ1 ≡
√〈[

1
2 (	xx + 	yy) − �N

]2〉
�N

, (A2)

δ2 ≡
√〈[	xx − 	yy]2〉

�N

, (A3)

δ3 ≡
√〈

	2
xy

〉
�N

. (A4)

δ1 measures the relative spread in the trace of 	αβ about the
target value �N ; δ2 measures the relative spread in anisotropy
of the diagonal elements of 	αβ ; and δ3 measures the relative
spread in the off-diagonal elements of 	αβ . In Fig. 22 we show

FIG. 25. (Color online) Distribution P(|Fi |/〈|Fij |〉) of the resid-
ual net force on particles |Fi |, normalized by the average magnitude
of the contact force |Fij |, versus |Fi |/〈|Fij |〉, for different values of the
accuracy parameter ε that terminates our minimization of Ũ . Results
are for a system of size N = 65 536 at p̃ = 0.0001373. Data labeled
“10−10∗” are results for a minimization of Ũ to accuracy ε = 10−10,
followed by an additional minimization of interaction energy U to
accuracy 10−10 while holding the box parameters constant.

our results for δ1, δ2, and δ3 versus p̃ = �N/N , for systems
sizes N = 8192 to 65 536. We see that δ1 is less than 0.01%,
while δ2 and δ3 are less than 0.004%, indicating a high accuracy
in the desired stress tensor. In all cases the accuracy improves
as the stress per particle p̃ increases and as the number of
particles N increases.

Next we look at how well our procedure produces a
mechanically stable packing in which the net force on each
particle vanishes. The net force Fi on particle i is just the sum
over its contact forces, Fi = ∑

j Fij . In Fig. 23 we plot the
average magnitude of the net force, normalized by the average
magnitude of the contact force, 〈|Fi |〉/〈|Fij |〉, versus the stress
per particle p̃ = �N/N , for system sizes N = 8102 to 65 536.
We see that the residual net force on a particle at the end of
our minimization procedure is less than 0.05% of the average
contact force. This decreases as either p̃ or N increases.

Figure 23 shows the average net residual force on par-
ticles. In Fig. 24 we show the distribution of such forces,
P(|Fi |/〈|Fij |〉) versus |Fi |/〈|Fij |〉, for different system sizes

FIG. 26. (Color online) Fluctuation in packing fraction χ (qŷ) vs
q, using definition I of Eq. (5) for the local packing fraction φ(r).
Results are shown for system size N = 65 536, for (a) our smallest
value of the stress per particle, p̃ = 0.0001373, and (b) our largest
value p̃ = 0.0183105. We compare the values of χ (qŷ) obtained
when using different values of the parameter ε that determines the
stopping criterion for our minimization of Ũ . Data labeled “10−10∗”
in panel (a) are results for a minimization of Ũ to accuracy ε = 10−10,
followed by an additional minimization of interaction energy U to
accuracy 10−10 while holding the box parameters constant.
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N = 8102 to 65 536, at our (a) smallest p̃ = 0.0001373 and
(b) largest p̃ = 0.0183105. We see that the large force tail
grows as N increases but shrinks as p̃ increases. For our
largest system, N = 65 536, at our lowest stress per particle,
p̃ = 0.0001373, there exist a very few particles whose net
force is comparable to the average contact force.

The average residual force 〈|Fi |〉, and the large force tail
of the distribution, is controlled by the accuracy parameter ε

that determines when we stop our minimization procedure,
(Ũi − Ũi+50)/Ũi+50 < ε. In the body of this work, and in
the above results, we have used ε = 10−10. In Fig. 25 we
show the distribution P(|Fi |/〈|Fij |〉) for several different
values of the accuracy parameter 10−10 � ε � 10−5, for
our biggest system N = 65 536 at our lowest stress p̃ =
0.0001373. We see that as ε decreases, the average net force
and the large force tail decrease. Thus, as would be expected,
decreasing ε improves the accuracy of force balance on the
particles in our minimized configurations.

We have attempted to improve upon the accuracy of force
balance by adding a separate step of minimization in which,
after the above criterion on Ũ is met, we then hold the
box parameters Lx , Ly , and γ constant while adjusting the
particle positions to minimize the interaction energy, (Ui −
Ui+50)/Ui+50 < 10−10. The resulting distribution of net resid-
ual forces on particles is shown in Fig. 25 labeled as “10−10∗”.
We find a significant reduction in the net force, with the
average 〈|Fi |〉/〈|Fij |〉 decreasing roughly by a factor of 100.
However, we also find that the accuracy of the system to have

the desired target global stress decreases, with the parameters
δi of Eqs. (A2)–(A4) increasing roughly by a factor 10. We
have not tried to optimize the sequence of minimizing Ũ and
U as we have found our results for χ (q) to be insensitive to this
additional step of minimization (see below), and so we have
not used it for the results presented elsewhere in this paper.

Finally, to determine whether the accuracy parameter ε =
10−10 used in this work is sufficient for our needs, we now
check the sensitivity of χ (qŷ) to the value of ε. In Fig. 26
we plot χ (qŷ) versus q [using definition I of Eq. (5) for φ(r)]
for different values of ε = 10−5 to 10−10, for a system with
N = 65 536 particles (we consider our largest system since
that has the force distribution with the largest tail at large
|Fi |). We show results for our smallest and largest values of
the stress per particle p̃ = �N/N . We see that if ε is too large,
the results at small q are clearly dependent on ε. But as ε

decreases, our results converge to a fixed ε-independent curve.
For the smallest p̃ = 0.0001373 this happens for ε � 10−9,
while for our largest p̃ = 0.0183105 we have convergence
for ε � 10−8. For the lowest p̃ in panel (a) we also show
results for the case where ε = 10−10 and we add the second
step of minimization described above, in which we fix the
box parameters and only move particle positions to minimize
U . This data are labeled as “10−10∗” in the figure. We see
that this additional step of minimization does not result in any
noticeable change in χ (qŷ). We thus conclude that using ε =
10−10 with a single-step minimization of Ũ gives sufficient
accuracy for our needs.
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