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Compression-driven jamming of athermal frictionless spherocylinders in two dimensions
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We simulate numerically the compression-driven jamming of athermal, frictionless, soft-core spherocylinders
in two dimensions, for a range of particle aspect ratios α. We find the critical packing fraction φJ (α) for the
jamming transition and the average number of contacts per particle zJ (α) at jamming. We find that both are
nonmonotonic, with a peak at α ≈ 1. We find that configurations at the compression-driven jamming point are
always hypostatic for all α, with zJ < ziso = 2df = 6 the isostatic value. We show that, for moderately elongated
spherocylinders, there is no orientational ordering upon athermal compression through jamming. We analyze
in detail the eigenmodes of the dynamical matrix close to the jamming point for a few different values of the
aspect ratio, from nearly circular to moderately elongated. We find that there are low frequency bands containing
N (ziso − zJ )/2 modes, such that the frequencies of these modes vanish as φ → φJ . We consider the extended
versus localized nature of these low frequency modes, and the extent to which they involve translational or
rotational motion, and find many low frequency sliding modes where particles can move with little rotation. We
highlight the importance of treating side-to-side contacts, along flat sides of the spherocylinder, properly for the
correct determination of zJ . We note the singular nature of taking the α → 0 limit. We discuss the similarities and
differences with previous work on jammed ellipses and ellipsoids, to illustrate the effects that different particle
shapes have on configurations at jamming.
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I. INTRODUCTION

In a system of athermal (T = 0) granular particles with
only contact interactions, as the particle packing fraction φ

increases, the system will undergo a sharp transition from
a liquidlike state to a rigid but disordered solid state. In
the liquidlike state, particles have sufficient room to avoid
each other and so there are no contacts, and so no stress,
in the system. As φ increases, particles come into mutual
contact. In the disordered solid state, force chains percolate
across the system giving it a finite elastic rigidity, and the
system supports a finite stress. This transition from a stress-free
liquidlike state to a stress-supporting solid state is known as the
jamming transition [1,2]. For particles without intergranular
friction, and for a given protocol for compacting the system,
this jamming transition occurs at a well defined φJ and the
transition is continuous; stress increases continuously from
zero as φ increases above φJ [1].

Much of the work that has been done to analyze behavior
near the jamming transition has been for the simple case of per-
fectly spherical particles. It is therefore interesting to ask how
the jamming transition may be modified if the particles have
shapes with a lower rotational symmetry. Recently, several
works have considered the cases of nonspherical particles, in
particular monodisperse distributions of aspherical ellipsoids
[3–6], oblate ellipsoids [4–6], and prolate ellipsoids [4–9] in
three dimensions (3D), and bidisperse distributions of ellipses
[6,9,10] in two dimensions (2D). Spherocylinders [11–14]
have been used to model rod-shaped particles, and other work
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has considered cut spheres [12] in 3D. For a review, see
Ref. [15].

In this work, we consider in detail the compression-driven
jamming of athermal, frictionless, soft-core 2D spherocylin-
ders. By “compression driven” we mean a protocol in which
we start with a dilute system of nonoverlapping particles, then
isotropically shrink the system box to increase the density,
passing through the point at which the system jams. A sphe-
rocylinder in 2D consists of a rectangle with two circular end
caps. We will study the behavior of such spherocylinders as
a function of the aspect ratio of rectangular length to end cap
diameter. Spherocylinders are unlike ellipses and ellipsoids in
that they have parallel flat sides that could in principle lead to
configurations in which particles stack in parallel layers. In that
sense they share a similarity with the cut spheres in 3D consid-
ered by Wouterse et al. [12]. We will pay particular attention
to the effect of these parallel sides on the nature of elastic
vibrational modes at jamming. We will focus on two issues
that arise when considering particles with shape anisotropy:
(i) do spherocylinders show any orientational ordering as they
are compressed through the jamming transition; and (ii) are
configurations at jamming isostatic, and if not, what are the
characteristics of the unconstrained (to quadratic order in the
energy) modes?

Orientational ordering. It has long been known, since the
work of Onsager [16], that hard-core (no overlaps allowed)
rod-shaped particles in thermal equilibrium will undergo a
liquid to nematic phase transition as the density is increased.
Despite the absence of any globally preferred direction in
the system, there will be a spontaneous symmetry-breaking
transition in which the rods will show a macroscopic alignment
in a particular direction. Bolhuis and Frenkel [17] mapped out
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the phase diagram for thermalized hard-core spherocylinders
in 3D, finding the dependence of the nematic transition as a
function of the spherocylinder aspect ratio φc(α) (they also
found smectic and crystalline transitions). Monte Carlo simu-
lations for thermalized hard-core spherocylinders in 2D [18,19]
similarly observed a transition, upon increasing density, from
an isotropic liquid to a nematic phase with algebraically
decaying (rather than long range) orientational correlations.
Experimental studies of vibrated, but otherwise athermal,
elongated grains in 2D have observed several different types
of ordered states with both nematic and tetratic order [20–22].

In contrast to the above, one can ask if a system of athermally
compressed rod-shaped particles, in which there is neither
thermal nor mechanical random agitation of the particles,
will show any orientational ordering. Will the elastic forces
that act between particles as they are compressed into mutual
contact cause a spontaneous alignment so that the particles
can pack more densely, or will they jam into an orientationally
disordered state as the packing fraction φ increases? Using
a configurational statistical mechanics for athermal granular
systems with elongated grains, Mounfield and Edwards [23]
argued that the grains need not order nematically to be min-
imally compact. Experimental studies of athermal 3D oblate
ellipsoids [4] and aspherical ellipsoids [6] at jamming reported
only a small nematic order parameter that was interpreted
as consistent with no orientational ordering. Experiments on
prolate ellipsoids [7] similarly reported no orientational order-
ing. Simulations on cut spheres in 3D [12], however, did find
nematic ordering when the aspect ratio was sufficiently large
(i.e., thin disk shaped particles). In this work, we will present
a detailed investigation as to whether moderately elongated
spherocylinders in 2D show any orientational ordering when
athermally and isotropically compressed. We will find that they
do not.

Isostaticity. An important concept for the jamming transi-
tion is the notion of isostaticity. As first discussed by Maxwell
[24], a collection of N randomly positioned particles can only
be in a mechanically stable rigid state when the total number
of force constraints Nc is equal to or greater than the total
number of degrees of freedom Ndf , with df the number of
degrees of freedom per particle. When equality holds, the
system is said to be isostatic. For frictionless particles, where
contact forces are always normal to the particle surface, the
number of force constraints is just equal to the number of
particle pair contacts Nz/2, where z is the average number of
contacts per particle and the factor of 1

2 is because each contact
is shared by two particles. Hence, the isostatic condition is
ziso = 2df . For spherical particles, where rotations do not
change the state of the system and only translational degrees of
freedom are important, we have df = d, the spatial dimension
of the system, and so ziso = 4 and 6 for 2D disks and 3D
spheres, respectively. For nonspherical particles, rotational
degrees of freedom must be considered, and df depends on the
rotational symmetries of the particle. For aspherical ellipsoids
in 3D there is no rotational symmetry and so df = 6 with
ziso = 12. For prolate or oblate ellipsoids in 3D, df = 5 and
ziso = 10. For spherocylinders or ellipses in 2D, df = 3 and
so ziso = 6.

For frictionless spherical particles, the isostatic condition is
found to hold exactly at the jamming transition [1]; at jamming

the system is marginally stable: the average contact number
at jamming zJ satisfies zJ = ziso and removing one contact
causes the system to go unstable [25,26]. However, if the
particle shape is infinitesimally perturbed from sphericity, the
isostatic value of z would necessarily jump discontinuously
from 2d to 2df since even an infinitesimal perturbation will
change the rotational symmetry of the particle. However, it
seems unlikely that such an infinitesimal perturbation from
sphericity should result in a discontinuous structural change
in the state of the system at jamming, with an accompanying
discontinuous change in either the jamming φJ or the number
of particle contacts zJ . Numerical simulations and experiments
have confirmed that mechanically stable configurations of
ellipsoids in 3D [3–6,8,9], and ellipses in 2D [6,9,10], are
in general hypostatic at jamming with zJ < ziso, but with zJ

approaching ziso as the particles get increasingly elongated.
Spherocylinders and cut spheres in 3D are similarly hypostatic
at jamming, but seem to remain so even as the aspect ratio gets
very large [11,12], and one study of 2D spherocylinders [13]
suggests that they may remain hypostatic as well.

Donev et al. [6] proposed that the difference ziso − zJ at
jamming results from modes of the system that are uncon-
strained to quadratic order in the expansion of the elastic energy
in small particle displacements, and that such modes primarily
involve rotations of the particles; such modes were proposed to
increase the energy at quartic order, hence enforcing mechani-
cal stability of the system. Detailed analyses of the eigenmodes
of the dynamical matrix of systems of ellipses and prolate
ellipsoids near jamming [8–10] support this scenario. In this
work, we perform a similar analysis of the dynamical matrix
for spherocylinders in 2D. We will find that 2D spherocylinders
are similarly hypostatic at jamming, but that as the aspect ratio
increases and particles get increasingly elongated, zJ has a
peak near the peak value of φJ and then decreases, as opposed
to approaching ziso as was found for ellipses and ellipsoids. For
moderately elongated spherocylinders, we will find that the
unconstrained (to quadratic order) modes are sliding modes,
consisting primarily of translations of isolated particles along
the spherocylinder axis, rather than rotations.

The remainder of the paper is organized as follows. In
Sec. II, we discuss the details of our model system and
our procedure for slowly compressing the system through
jamming. In Sec. III A, we present our results on the lack of ori-
entational ordering of moderately elongated spherocylinders.
In Sec. III B, we present our results for pressure as a function
of packing fraction, and determine the packing fraction at
jamming as a function of spherocylinder aspect ratio φJ (α)
for compression-driven jamming in the quasistatic limit. In
Sec. III C, we describe our energy minimization method for
constructing mechanically stable states, and show that it is
necessary to treat side-to-side contacts, where two sphero-
cylinders contact along their flat edges, carefully. Doing so, we
find that spherocylinders are hypostatic for the entire range of
aspect ratios we consider. We also note the strong propensity of
spherocylinders to have contacts along their flat sides, even for
very small α, thus suggesting that the α → 0 limit is singular.
In Sec. III D, we analyze the eigenmodes of small vibrations for
both nearly circular and moderately elongated spherocylinders
near jamming, and relate these results to the hypostaticity of
the system. In Sec. IV, we summarize our conclusions.
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FIG. 1. Geometry of the spherocylinders: (a) an isolated sphe-
rocylinder indicating the spine half-length Ai , end cap radius Ri ,
center of mass position ri , and angle of orientation θi ; (b) two
spherocylinders in tip-to-side contact, indicating the minimal spine
separation rij and the moment arms sij and sji ; (c) two spherocyliners
in tip-to-tip contact. (d) Two spherocylinders in side-to-side contact
with the contact point and separation distance rij taken midway
between the spine end points (indicated by the vertical dashed lines).

II. MODEL AND SIMULATION METHOD

A two-dimensional spherocylinder consists of a rectangle
with two circular end caps. We will denote the half length of
the rectangular part of spherocylinder i as Ai . The radius of the
end cap, which is also the half width of the rectangle, we denote
as Ri , as illustrated in Fig. 1(a). We will refer to the “spine”
of the spherocylinder as the axis of length 2Ai that goes down
the center of the rectangle, as indicated by the solid lines in
Fig. 1. For every point on the perimeter of the spherocylinder,
the shortest distance from the spine is Ri . We define the aspect
ratio of the spherocylinder as

αi = Ai/Ri, (1)

so that αi → 0 describes a circular particle, and the ratio of
the total tip-to-tip length to width is 1 + αi . In this work, we
consider only systems in which all particles have the same
aspect ratio α.

Our system consists of N such spherocylinders confined
within a square box of length L. We use periodic bound-
ary conditions in both the x̂ and ŷ directions. The packing

fraction is

φ = 1

L2

N∑
i=1

Ai , Ai = 4AiRi + πR2
i , (2)

where Ai is the area of spherocylinder i. Unless otherwise
stated, the results in this work are for a bidisperse mixture of
spherocylinders, with equal numbers of big and small parti-
cles, with Rb/Rs = 1.4. However, we have also considered a
monodisperse system.

We specify the position of a spherocylinder by the location
of its center of mass ri = (xi,yi), which lies at the center of
the rectangle. The orientation of the spherocylinder is given
by the angle θi that the spine makes with respect to the x̂ axis,
as shown in Fig. 1(a). Two spherocylinders i and j come into
contact when the shortest distance between their spines, rij , is
less than the sum of their radii dij = Ri + Rj . When rij < dij ,
the contact between the spherocylinders may be one of three
types, as illustrated in Figs. 1(b), 1(c), and 1(d), respectively:
(i) tip-to-side, (ii) tip-to-tip, or (iii) side-to-side. In order to
have a side-to-side contact (iii) rather than a tip-to-side contact
(i), in principle it is necessary that the two spherocylinders be
perfectly parallel, i.e., θi = θj ; in practice, due to limitations in
the numerical accuracy of our contact detection algorithm [27],
we take two spherocylinders as parallel whenever |θi − θj | <

10−8. When this happens, we take the point of contact to be
midway between the corresponding end points of the spines of
i and j , as indicated in Fig. 1(d).

To determine when two spherocylinders are in contact, and
if so to then determine the value of rij and the location of
the contact point, we use the efficient algorithm defined in
Ref. [27]. In such a case, we model the elastic contact force
as a simple one-sided harmonic repulsion which acts at the
point of contact only when rij < dij . The elastic force on
spherocylinder i due to contact with j is thus given by

Fel
ij = (ke/dij )(1 − rij /dij )r̂ij , (3)

where ke sets the energy scale and r̂ij is the unit normal
to the surface at the point of contact, pointing inward to
spherocylinder i. The total elastic force on spherocylinder i

is therefore

Fel
i =

∑
j

′
Fel

ij , (4)

where the sum is over all spherocylinders j in contact with i.
Although the elastic force always acts normal to the surface,
there can nevertheless be a torque exerted on the spherocylinder
due to the noncircular shape. The total elastic torque on i is

τ el
i = ẑ ·

∑
j

′
sij × Fel

ij , (5)

where sij is the moment arm from the center of mass ri of
spherocylinder i to the point of contact with spherocylinder j ,
as illustrated in Fig. 1(b).

In this work, we are interested in the jamming of the system
when it is uniformly compressed from a dilute state. To model
a uniform compression, we shrink the box length at a constant
rate dL/dt = −κL. We can then regard the substrate area of
the box as undergoing a similar affine contraction, with the
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local velocity of the substrate at position r being

vsub(r) = −κr. (6)

The shrinking box then interacts with the spherocylinders via
a viscous drag force between spherocylinder and substrate. We
denote the local velocity of a position r on spherocylinder i by

vi(r) = dri

dt
+ dθi

dt
ẑ × (r − ri), (7)

where the first piece is due to the center of mass motion and
the second piece is due to the spherocylinder’s rotation. The
total dissipative force on spherocylinder i is then

Fdis
i = −kd

∫
i

d2r [vi(r) − vsub(r)], (8)

where the integral is over the area of spherocylinder i. There
is similarly a dissipative torque on the spherocylinder

τ dis
i = −kd ẑ ·

∫
i

d2r [r − ri] × [vi(r) − vsub(r)]. (9)

Using
∫
i
d2r [r − ri] = 0 by symmetry, taking the area of

spherocylinder i as
∫
i
d2r = Ai , and defining

I =
∫

i

d2r |r − ri |2/Ai , (10)

we can write the dissipative force and torque as

Fdis
i = −kdAi

[
dri

dt
+ κri

]
, (11)

τ dis
i = −kdAiI

dθi

dt
. (12)

For spherocylinders with aspect ratio α we have I = R2(3π +
24α + 6πα2 + 8α3)/(6π + 24α). Note, τ dis

i is independent of
the compression rate κ , and serves only to damp out rotations
that result from the collisional elastic torque τ el

i .
We take the elastic and dissipative forces as the only forces

acting on the spherocylinders; there is no interparticle fric-
tional force or collisional dissipation. Taking an overdamped
equation of motion

Fel
i + Fdis

i = 0, (13)

τ el
i + τ dis

i = 0, (14)

Eqs. (13) and (14) can then be numerically integrated to find
the motion of the center of mass ri(t) and the orientation θi(t).

In the absence of collisions, the above equations of motion
become Fdis

i = 0, τ dis
i = 0, and from Eqs. (11) and (12) we

have vi = −κri for the center of mass motion of spherocylin-
der i, while dθi/dt = 0. The spherocylinders thus would move
according to an isotropic affine compression of the system
length L at finite rate κ , with no rotation. Collisions then
result in the nonaffine fluctuations about this affine motion.
Our dynamics is thus a continuous-in-time analog of the
compression protocol used in Refs. [9,10], in which the system
is affinely compressed a small discrete amount �φ, and then
energy minimized to reduce the resulting particle overlaps,
before another compression step of �φ is applied. Rather than
compressing in small discrete steps, we compress continuously

at a finite, tunable, rate κ . Our method of compressing contin-
uously at a finite rate is similar to the Lubachevsky-Stillinger
protocol [6,28], except that our dissipative force allows us to
use an overdamped rather than an inertial dynamics, so that
configurations at low compression rates are always close to
being in energy minimized states.

For our simulations we will take 2Rs = 1 as the unit of
distance, ke = 1 as the unit of energy, and t0 = (2Rs)2kd/ke =
1 as the unit of time. We numerically integrate the equations
of motion using a two-stage Heun method with a step size of
�t = 0.01. With these choices, at each step of integration the
packing fraction changes by �φ/φ = 2κ�t = 0.02κ . We start
our compressions from random zero-energy configurations
(i.e., no overlapping spherocylinders) at an initial packing φinit ,
and integrate to whatever is the desired final packing fraction
φ. We use nonoverlapping spherocylinders for our initial
configurations, rather than completely randomly positioned
spherocylinders, since the latter case could result in sphero-
cylinders which completely pass through each other forming a
cross; in such a configuration, it becomes ambiguous what is
the point of contact at which the repulsive elastic force should
be acting. Our results are typically averaged over Ms separate
runs starting from different independent initial configurations.
We will denote each such run as one compression “sample.”

For determining mechanically stable configurations very
close to the jamming transition, we will also use a conjugate
gradient energy minimization applied to the configurations
generated by the above compression protocol. We defer dis-
cussion of this minimization procedure to Sec. III C.

III. RESULTS

A. Lack of orientational ordering

To measure n-fold orientational order in two dimensions,
the magnitude of the order parameter Sn and its direction
of orientation θn, for any particular configuration, can be
computed as [29]

Sn = max
θn

[
1

N

N∑
i=1

cos (n[θi − θn])

]
, (15)

where the θn that maximizes the sum is the ordering direction.
One can then show that

Sn =

√√√√[
1

N

N∑
i=1

cos(nθi)

]2

+
[

1

N

N∑
i=1

sin(nθi)

]2

, (16)

tan(nθn) =
N∑

i=1

sin(nθi)

/ N∑
i=1

cos(nθi). (17)

Choosing n = 2 measures the nematic order while n = 4
measures tetratic order.

For an orientationally disordered system we expect to have
Sn = 0. However, when there are a finite number of particles
N , even if particles are oriented completely at random, any
individual configuration will in general have a small finite value
of Sn as a statistical fluctuation away from the expected average
of zero. For such statistical fluctuations we expect that, for an
orientationally disordered state, we would find Sn ∼ 1/

√
N .

To test for the presence or absence of nematic order, we
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therefore plot in Fig. 2 the quantity
√

N〈S2〉 vs φ, where 〈S2〉
is the value of S2 averaged over Ms independent samples. The
error bars shown in Fig. 2 are the estimated statistical error
as obtained from the variance over the independent samples√

N var[S2]/(Ms − 1). Error bars for other quantities shown
later in this work are computed similarly.

In Fig. 2(a), we show results for a bidisperse system with
aspect ratio α = 4 and N = 1024, 2048, 4096 particles, using
Ms = 40, 30, and 20, respectively. Our compression rate is
κ = 10−7 and we start from initial random configurations
at φinit = 0.2. Our results span a range of φ from below to
above the jamming transition [for α = 4, φJ ≈ 0.866, see
Fig. 3(a)]. We see that the curves for different N are all
roughly equal within one or two factors of the estimated
statistical error, confirming the S2 ∼ 1/

√
N scaling expected

for an orientationally disordered system. Thus, unlike rods in
thermal equilibrium, athermally compressed bidisperse sphe-
rocylinders show no nematic ordering transition. In Fig. 2(b)
we show similar results, but now for a monodisperse sys-
tem. Although we see some mild increase in the value of√

N〈S2〉 as φ increases, we again see behavior consistent with
S2 ∼ 1/

√
N , and so no nematic ordering. We find similar

results at other compression rates, down to our slowest κ =
10−10, but using fewer independent samples Ms . We have
also computed the tetratic order parameter 〈S4〉, and find
that it shows similar behavior, as shown in Figs. 2(c) and
2(d). Finally, we have also considered the case of bidisperse,
nearly circular, spherocylinders with α = 0.01, compressed at
a rate of κ = 10−8. Again, we find no evidence for orienta-
tional ordering. We thus conclude that athermally compressed
states of spherocylinders show no orientational order upon
jamming.

B. Jamming transition

In this section, we investigate the jamming transition of
a bidisperse mixture of spherocylinders as a function of the
aspect ratio α. Here, and in subsequent sections, we use a
system with N = 1024 spherocylinders. At sufficiently small
packing fraction φ, the spherocylinders are dilute enough that
they may avoid all contact with each other and the system is
at zero pressure. As φ increases, the system will ultimately
become so dense that spherocylinders will necessarily come
into mutual contact, force chains will percolate across the
system, and a finite pressure will develop. For frictionless
particles, the pressure increases continuously from zero at a
specific packing fraction φJ , known as the jamming transition.

To find the density at which systems of different aspect
ratios α jam, we compress at finite rates from κ = 10−6 to
κ = 10−10. For each aspect ratio and compression rate we
start from random zero-energy configurations at φinit = 0.4.
For each configuration, we compute the pressure tensor

p = − 1

L2

N∑
i=1

∑
j

′
sij ⊗ Fel

ij , (18)

where the primed sum is over all spherocylinders j in contact
with spherocylinder i, sij is the moment arm from the center
of mass ri of spherocylinder i to the point of contact with
spherocylinder j , as in Eq. (5), and Fel

ij is the elastic force on

FIG. 2. For systems with N = 1024 (circles), 2048 (squares),
and 4096 (diamonds) spherocylinders of aspect ratio of α = 4.0,
scaled nematic order parameter

√
N〈S2〉 vs φ for (a) bidisperse size

distribution with Rb/Rs = 1.4 and (b) monodisperse distribution;
and scaled tetratic order parameter

√
N〈S4〉 vs φ for (c) bidispserse

size distribution and (d) monodisperse distribution. Averages are
calculated over Ms = 20 to 40 independent samples compressed at
a rate κ = 10−7, starting from random zero-energy configurations at
φinit = 0.2.
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FIG. 3. Average pressure 〈p〉 vs packing fraction φ during com-
pression of bidisperse systems of N = 1024 spherocylinders with
aspect ratio (a) α = 0.01 and (b) α = 4.0, at compression rates from
κ = 10−6 (circles) to κ = 10−10 (diamonds). Each rate is averaged
over 6 to 10 independent samples starting from random zero-energy
configurations at φinit = 0.4. The straight line to the right serves to
guide the eye.

particle i from j , as in Eq. (3). The pressure is then defined as

p = 1
2 Tr[p] = 1

2 (pxx + pyy). (19)

We perform such compression runs for a bidisperse system
with N = 1024 spherocylinders, computing the pressure of
configurations at regular time intervals and averaging over
the Ms independent samples. In Fig. 3, we plot the resulting
average pressure 〈p〉 vs φ for the two specific cases of (a) nearly
circular disks with α = 0.01, and (b) moderately elongated
spherocylinders with α = 4. We use Ms = 6 to 10, depending
on the compression rate κ .

We see that p = 0 at low φ and then p increases to finite
values as φ increases above some φJ (κ). As κ decreases, φJ (κ)
increases, the curves sharpen up near φJ (κ), and 〈p〉 increases
linearly in φ sufficiently above φJ (κ), as expected for our
harmonic elastic force [1]. For κ � 10−9 we see no change in
the 〈p〉 vs φ curve, and we have reached the limit of quasistatic
compression. The value of φJ in this quasistatic limit is the
critical packing fraction of the compression-driven jamming
transition. The small tail that is seen near φJ in this quasistatic
limit is a finite size effect. For finite N , each sample s has
a slightly different, sample specific, value of φJs , as has been
observed previously for circular disks [1] and as we confirm for

FIG. 4. Pressure p versus packing fraction φ for two different
samples at compression rate κ = 10−10 in bidisperse systems of N =
1024 spherocylinders with aspect ratio α = 4.0. Linear fits overlaying
the plots of pressure show the extrapolation to the configuration
specific jamming density φJs for each sample. There are 5 × 106

compression steps between the data points shown in the curves.

spherocylinders below; as N → ∞, this spread in φJs shrinks
to zero.

To estimate the value of φJ for each aspect ratio α, we
consider the runs at κ = 10−10, which are in the quasistatic
limit. We look at each of the Ms samples separately and fit
the part of the p vs φ curve where the pressure first develops
a linear behavior upon increasing φ, before there occurs any
plastic rearrangements that may lead to discontinuous drops
in pressure. Extrapolating this linear region to p = 0 then
determines φJs for this particular sample. In Fig. 4 we show
two examples of such determinations for the case α = 4.0. We
then average over these φJs to determine 〈φJ 〉. In Fig. 5 we plot
the resulting 〈φJ 〉 vs aspect ratio α. At α = 0 we find 〈φJ 〉 =
0.8412 ± 0.0005, consistent with earlier results for circular
disks [1,30]. As α increases, 〈φJ 〉 increases to a maximum
〈φJ 〉 ≈ 0.8875 around α ≈ 1, and then decreases. The results
we see here for φJ (α) are qualitatively similar to those found in
previous simulations of ellipsoids and spherocylinders in 3D
[3–7,11,12].

FIG. 5. The compression-driven jamming density 〈φJ 〉 vs sphe-
rocylinder aspect ratios α, for a bidispserse system of N = 1024
spherocylinders.
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C. Mechanically stable configurations and lack of isostaticity

To investigate the question of isostaticity at jamming in
spherocylinders, we will want to consider the density of states
for vibrational modes at the jamming transition. The density
of states is found by expanding the energy of the system about
a mechanically stable state (i.e., a local energy minimum)
to second order in small displacements of the degrees of
freedom, and finding the eigenstates of the resulting dynamical
matrix. Since the configurations we obtain from compressing
are the result of a dynamical (albeit slow) process, they are
not necessarily in exact mechanical equilibrium. We therefore
wish to energy minimize the configurations we obtain from
compression.

To get configurations close to jamming, we will consider
configurations in which the total elastic energy U (defined
below) is fixed to the value U0/L

2 = 10−15. We choose
configurations at a fixed value of U , rather than a fixed value
of φ, since the jamming point φJs varies slightly from sample
s to sample s ′; fixing U , rather than φ, ensures that all our
samples will be about the same distance from their sample
specific jamming transition. For our harmonic elastic force
we have U/L2 ∝ (φ − φJs)2, and we find that U0/L

2 = 10−15

corresponds to (φ − φJs) � 10−7.
To locate configurations with the desired U0, we start with

a configuration with U > U0 obtained from our continuous
compression runs at a fixed rate κ , and energy minimize it using
a conjugate gradient algorithm (see Appendix A for details).
Depending on whether the resulting minimized energy U is
greater or less than U0, we carry out an affine decompression
or compression of the box

L → (1 ± λ)L, ri → (1 ± λ)ri, (20)

and then energy minimize the resulting configuration. We con-
tinue such decompression or compression steps until U crosses
the value U0. We then reduce λ by half, and reverse direction,
i.e., if we had been decompressing, we now compress, and vice
versa. We continue in this fashion until we have narrowed in
on the desired value U = U0. We start this process with a value
λ = 10−6 and stop when λ < 10−16, which we find gives and
accuracy in the energy of |U − U0|/U0 � 10−7.

To implement the above minimization procedure, we must
define a global energy function consistent with the elastic
forces of Eq. (3). We use

U ({rk,θk}) =
∑
(i,j )

Vij (rij ), (21)

with

Vij (rij ) = 1

2
ke

(
1 − rij

dij

)2

, (22)

where the sum is over all pairs of contacts between sphero-
cylinders i and j, rij is the shortest distance between their two
spines, and dij = Ri + Rj is the sum of their end cap radii.

Once we have found energy minimized states sufficiently
close to jamming, we will then wish to construct the dynamical
matrix. We find it convenient to convert the orientation angle
θi into a length, and thus we take the coordinates of a given
spherocylinder i to be written as ζ i = (xi,yi,Aiθi), where ζi1 =
xi, ζi2 = yi , and ζi3 = Aiθi . The dynamical matrix is then the

3N × 3N matrix

Mia,jb = ∂2U

∂ζia∂ζjb

∣∣∣∣
min

, (23)

where i,j = 1,2 . . . ,N , and a,b = 1,2,3, and the derivatives
are evaluated at the energy minimized configuration.

To evaluate Mia,jb we need to know how rij depends on the
coordinates ζ i and ζ j of the two spherocylinders in contact
since we have

∂Vij (rij )

∂ζia

= − ke

dij

(
1 − rij

dij

)
∂rij

∂ζia

. (24)

The dependence of rij on the spherocylinder coordinates de-
pends on which of the three types of contacts of Figs. 1(b)–1(d)
that one is considering. For the tip-to-tip contact of Fig. 1(c),
a small displacement of any of the two spherocylinder’s
coordinates will keep the contact tip-to-tip. We can therefore
write

rij =
√

(�xij )2 + (�yij )2, (25)

where

�xij = [xi ± Ai cos θi] − [xj ± Aj cos θj ], (26)

�yij = [yi ± Ai sin θi] − [yj ± Aj sin θj ], (27)

with the appropriate signs taken so as to minimize |�xij | and
|�yij |.

For a tip-to-side contact, as in Fig. 1(b), a motion of either
spherocylinder parallel to the side with the contact, or a rotation
of the spherocylinder with the tip contact, will result in a sliding
of the location of the side contact. The calculation of rij must
be done more carefully. If i is the spherocylinder with the side
contact and j is the spherocylinder with the tip contact, then

rij = |(yj − yi) cos θi − (xj − xi) sin θi

±Aj sin(θj − θi)|,
(28)

where the sign is taken so as to minimize rij .
For a side-to-side contact, if we take the location of the

contact bond as illustrated in Fig. 1(d), then a small rotation
of either spherocylinder changes the configuration from a
side-to-side contact to a tip-to-side contact, with a resulting
discontinuous jump in the location of the contact point, and
hence in the torques on the spherocylinders. This discontinuity
makes the derivatives needed for the dynamical matrix ill
defined, and moreover also causes difficulties carrying out
the conjugate gradient minimization procedure. We therefore
modify the contact energy for this case as illustrated in Fig. 6.
Instead of a single contact located midway between the ends of
the opposing spines (dotted line in Fig. 6), we now model the
side-to-side contact as two bonds located at the corresponding
ends of the spines (solid lines labeled r

(a)
ij and r

(b)
ij in Fig. 6).

We use the same convention when doing our conjugate gradient
minimization of the energy U , provided both r

(a)
ij and r

(b)
ij are

points of spherocylinder overlap, i.e., r
(a)
ij ,r

(b)
ij < dij . Taking

spherocylinder j as the one whose tip comes closest to the spine
of spherocylinder i, then the bond where the spherocylinder
overlap is larger (i.e., r

(a)
ij in Fig. 6), is given by the same
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rij

i

j

•

••
(b)rij

rij(a)

j

FIG. 6. Configuration of two spherocylinders that are in approxi-
mate side-to-side contact. For energy minimization and for computing
the dynamical matrix, we consider this case as if there were two
contacts at the points indicated by the separations r

(a)
ij and r

(b)
ij .

relation as Eq. (28). The bond where the overlap is smaller
(i.e., r

(b)
ij in Fig. 6) is given by

r
(b)
ij = |(yj − yi) cos θj − (xj − xi) cos θj

±Ai sin(θj − θi)|,
(29)

where the sign is taken so as to maximize r
(b)
ij .

Modeling a side-to-side contact by two contact bonds as
described above, rather than one, is also physically reasonable
since in the hard-core limit a side-to-side contact will constrain
two degrees of freedom: translational motion perpendicular
to the spherocylinder spine, as well as rotational motion.1

In contrast, tip-to-side and tip-to-tip contacts constrain only
one degree of freedom. Hence, when counting the number of
contact bonds per particle z, we count each side-to-side contact
as two bonds. A similar observation was made in Ref. [31] for
polyhedral shaped particles.

Using the above procedure, we construct mechanically
stable configurations with the desired U0/L

2 = 10−15, very
close to jamming. Having obtained the mechanically sta-
ble configurations, we then remove any “rattler” particles.
We take a rattler to be any particle which has only zero or one
contact with another particle (here, and here only, a side-to-side
contact is counted as one contact). For a particle with only two
contacts, we also take it to be a rattler unless the two contacts
are oriented on opposite sides parallel to the spherocylinder
spine; in this case, the spherocylinder may still be important for
the stability of the contact network, even if it has a zero-energy
sliding mode in the direction parallel to the spine. Passing
through the configuration to remove such rattlers, we then
iterate the process until no further rattlers are found.

In Fig. 7 we show snapshots of sample configurations
resulting from this procedure for α = 0.01, corresponding to
nearly circular spherocylinders, and α = 4.0, corresponding
to moderately elongated spherocylinders. In our systems with
N = 1024 spherocylinders, we find roughly Nr = 34 rattlers

1in Ref. [12], a similar effect was noted for plane-to-plane contacts in
cut spheres, where each such planar contact constrains three degrees
of freedom. However, the authors of that work continued to count
such planar contacts as a single contact. Their result for the number
of contacts as a function of aspect ratio is therefore an underestimate
of the correct constraint counting that should be done to test for
isostaticity.

(a) α = 0.01

(b) α = 4.0

FIG. 7. Snapshots of energy minimized configurations of N =
1024 bidisperse spherocylinders, at U/L2 = 10−15, very close to the
jamming transition. Results are shown for aspect ratios (a) α = 0.01
and (b) α = 4.0. Big and small spherocylinders are colored blue and
green, respectively, while rattlers are gray. Solid black lines on each
spherocylinder denote the direction of the spine. Red dots indicate
contacts between adjacent spherocylinders; for side-to-side contacts,
we show the two contact bonds as illustrated in Fig. 6.

(3.3%) for α = 0.01, while Nr = 1.2 (0.1%) for α = 4.0.
For α = 1, which we will see gives the maximum number
of contacts per particle, we find Nr = 0. For the remaining
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FIG. 8. (a) Average number of contacts per particle at jamming
〈zJ 〉 vs spherocylinder aspect ratio α. Rattler particles do not enter the
average. Circular data points give the values of 〈zJ 〉 when counting
each side-to-side contact as two bonds (see discussion in the main
text). For comparison, diamond shaped data points give the values
of 〈z̃J 〉 when counting each side-to-side contact as only a single
bond. (b) 〈zJ 〉 − 4 and 〈z̃〉 − 4 vs α on a log-log scale, so as to
highlight the behavior as α → 0; for perfectly circular particles, with
α = 0, 〈zJ 〉 = 4. Solid lines are fits to a + bαx . For 〈zJ 〉 we find
x = 0.68 ± 0.13 and a = 0.31 ± 0.08, demonstrating that the α → 0
limit of 〈zJ 〉 is discontinuous. For 〈z̃J 〉 we find x = 0.67 ± 0.11 and
a = −0.048 ± 0.065, consistent with a = 0, and demonstrating that
the discontinuity in 〈zJ 〉 at α = 0 is due to the side-to-side contacts.
The system has N = 1024 spherocylinders.

N = N − Nr particles forming the rigid backbone of the
system, we can then compute zJ , the average number of
contacts per particle, counting each side-to-side contact twice
as discussed above, to determine if the system is isostatic at
jamming or not. We find 〈zJ 〉 = 4.43 ± 0.03 for α = 0.01 and
〈zJ 〉 = 5.64 ± 0.01 for α = 4.0, both smaller than ziso = 6.
Hence, both cases are hypostatic.

Having such mechanically stable configurations, obtained
by energy minimization as discussed above, will be essential
for our analysis of the eigenmodes of the small elastic vi-
brations of the system, to be discussed in the next section.
However, we find in practice (checking explicitly for α =
0.01, 1.0, and 4.0) that 〈zJ 〉 changes negligibly if we compare
the value computed in these energy minimized configurations
with the value computed in the quasistatically compressed con-
figurations from which we start the minimization procedure.
Rather than carry out energy minimization at all values of α, we
therefore use the values of 〈zJ 〉 found from our quasistatically

FIG. 9. Fraction of side-to-side, tip-to-side, and tip-to-tip contact
bonds in configurations of N = 1024 bidisperse spherocylinders at
the jamming transition, as a function of spherocylinder aspect ratio
α. Each side-to-side contact is counted as two contact bonds, as
explained in the main text.

compressed configurations. In Fig. 8(a) we plot the resulting
〈zJ 〉 vs α. In this figure, the circular data points give the
values of 〈zJ 〉 when we count each side-to-side contact as two
bonds, as illustrated in Fig. 6; we believe this is the correct
approach to properly count the number of constraints, and all
cited numerical values for 〈zJ 〉 represent values computed in
this way. We see that 〈zJ 〉 has a peak near the same value of
α ≈ 1 that gives the peak in 〈φJ 〉, and that it decreases as α

increases further. Thus, unlike 2D ellipses and 3D ellipsoids
[3–6,8–10], spherocylinders in 2D are not approaching the
isostatic limit as they get increasingly elongated. At the peak
value, 〈zJ 〉 ≈ 5.91 ± 0.01, close to the isostatic value of 6, but
still smaller, so the system is always hypostatic.

For comparison, we also consider the average contact
number at jamming when we count each side-to-side contact
as only as single bond. We denote this alternative value as
〈z̃J 〉 and plot it as the diamond shaped data points in Fig. 8(a).
The noticeable difference between 〈zJ 〉 and 〈z̃J 〉 is therefore
a measure of the fraction of contacts which are side-to-side,
and we see that this increases as α increases. For perfectly
circular particles, i.e., α = 0, the jamming transition is isostatic
[1] with 〈zJ 〉 = 4. In Fig. 8(b) we therefore plot 〈zJ 〉 − 4
and 〈z̃J 〉 − 4 vs α on a log-log plot, so as to highlight the
behavior as α → 0. The solid lines in Fig. 8(b) are fits of
the four smallest α data points to the form a + bαx . For 〈zJ 〉
we find x = 0.68 ± 0.13 and a = 0.31 ± 0.08, while for 〈z̃J 〉
we find x = 0.67 ± 0.11 and a = −0.048 ± 0.065, consistent
with a = 0. This demonstrates that the contact number 〈zJ 〉
for spherocylinders is discontinuous as α → 0, taking a jump
from 4 at α = 0 to 4.31 as α becomes finite, and that this
discontinuity is due to the persistence of a finite fraction of
side-to-side contacts even as α → 0. This discontinuity in
〈zJ 〉 is thus specifically a consequence of the flat sides of
the spherocylinders, which constrain two degrees of freedom
whenever there is a side-to-side contact. We would expect no
such discontinuity in 〈zJ 〉 for ellipses or other shapes without
flat sides.

In Fig. 9 we show the fraction of contact bonds of each of the
three different types (i.e., side-to-side, tip-to-side, tip-to-tip) as
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FIG. 10. Probability distribution P (ϕ) for there to be a contact on
the surface of a spherocylinder at an angle ϕ relative to the direction of
the spherocylinder spine, as illustrated in the inset, for mechanically
stable configurations at U/L2 = 10−15 very close to jamming. Results
are shown for aspect ratios α = 0.01, 0.12, and 1.0, and represent
averages over both big and small spherocylinders.

a function of the aspect ratio α. As we do in computing z, each
side-to-side contact is counted as two bonds. Not surprisingly,
the fraction of side-to-side contacts increases as α increases.
However, consistent with our preceding arguments concerning
〈zJ 〉, we find that the fraction of side-to-side contacts remains
finite as α → 0. The fraction of tip-to-side contacts similarly
stays finite as α → 0. Indeed, for α = 0.01, we find that
virtually all the particles (96.3% of them) have a contact on
at least one of their two flat sides, even though the flat sides
represent only 0.63% of the perimeter length. This is readily
seen in Fig. 7(a).

To examine this propensity for spherocylinders at small α

to have contacts on their flat sides, we measure the probability
for a spherocylinder to have a contact at a particular point on
its surface. Defining ϕ as the polar angle that a given point on
the spherocylinder surface makes with respect to the spine (see
inset to Fig. 10), we measure the probability density P (ϕ) to
have a contact at angle ϕ. We average over both big and small
particles. In calculating this distribution, we will count side-to-
side contacts as only a single bond, located along the flat side
as in Fig. 1(b), since we are more interested in the geometry of
the contacts rather than counting constraints. In Fig. 10 we plot
P (ϕ) vs ϕ for values of α = 1.0, 0.12, and 0.01. We see clearly
that as α decreases, a sharp peak grows at ϕ = 90◦, i.e., along
the flat side. In contrast, for a circular disk this distribution
would be flat. The smaller, broader, side peaks observed near
ϕ = 30◦ and 150◦ may be interpreted as a shadow effect; if
a contact exists at an angle ϕ, then a neighboring contact is
generally no closer than ϕ ± 60◦.

The prevalence of contacts along the flat sides of the
spherocylinders, even as α → 0 and the length of these flat
sides becomes a negligible fraction of the total spherocylinder
surface, suggests that the presence of flat sides makes the
α → 0 limit in some sense singular. As the length 2L of the
spherocylinder spine shrinks to zero, the system nevertheless
seems to remember what direction that spine is in. This
conclusion appears to be robust, as we have demonstrated
by the following check. Rather than starting our energy
minimization to obtain mechanically stable states from our

quaistatically compressed configurations, we start from a
jammed configuration of perfectly circular disks (α = 0). We
then choose a random spine direction for each particle and
distort it into a spherocylinder with α = 0.01. We then follow
the procedure discussed above to vary the system box size,
and energy minimize, so as to obtain a new mechanically
stable state of the spherocylinders at U/L2 = 10−15, close to
jamming. The resulting P (ϕ) for these configurations is found
to be the same as in Fig. 10.

In response to our above observation, Vanderwerf et al. [32]
have recently computed the analogous P (ϕ) for a bidisperse
distribution of 2D elliptical particles with minor to major axis
ratio b/a. Although the effect is not as dramatic as we find for
spherocylinders, they similarly find an increasing probability
for contacts along the minor axis of the ellipse, as one takes the
limit b/a → 1. This suggests that the effect may hold generally
for barely aspherical particles, rather than be specifically due
to the flat sides of the spherocylinders.

D. Density of states and eigenmodes

Having obtained mechanically stable configurations and
eliminated rattler particles, in this section we analyze in detail
the spectrum of the eigenmodes of the 3N × 3N dynamical
matrix Mia,jb of Eq. (23), determining the matrix eigenvalues
λm and the corresponding normalized eigenvectors

ûm = (u1m,u2m, . . . ), (30)

where

uim = (δxim,δyim,Aiδθim) (31)

gives the small displacement of spherocylinder i in eigenmode
m. The frequencies of elastic vibration are then ωm = √

λm.
We define the resulting density of vibrational states D(ω) by
counting the number of modes within bins of equal relative
widths �ω/ω. We normalize the density of states so that∫

dω D(ω) = 1.
We will also wish to characterize the nature of the eigen-

vectors, in particular whether they correspond to localized
or extended modes, and the extent to which they involve
translational or rotational motion of the particles. To mea-
sure the extent to which the modes are extended, involving
the correlated motion of large groups of spherocylinders, or
localized, involving only a few spherocylinders, we compute
the participation ratio Pm, defined as [8]

Pm =
[∑N

i=1[(δxim)2 + (δyim)2 + (Aiδθim)2]
]2

N
∑N

i=1[(δxim)4 + (δyim)4 + (Aiδθim)4]
, (32)

where δxim, δyim,Aiδθim give the components of the eigen-
vector ûm as in Eq. (31). For an extended mode in which each
degree of freedom is excited equally, we have Pm = 3; for a
localized mode in which only a single degree of freedom is
excited, we have Pm = 1/N . Taking the average of Pm over
all eigenmodes with frequencies ωm within bins of equal width
�ω/ω, we then define the participation ratio P (ω) for modes
at frequency ω.

To measure the extent to which a given eigenvector involves
translational motion parallel to the spherocylinder’s spine,
translational motion perpendicular to the spine, or rotational
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motion about the center of mass, we define [8–10] quantities
u2

‖m, u2
⊥m, and u2

θm:

u2
‖m =

N∑
i=1

[δxim cos θi + δyim sin θi]
2, (33)

u2
⊥m =

N∑
i=1

[δyim cos θi − δxim sin θi)]
2, (34)

u2
θm =

N∑
i=1

[Aiδθim]2. (35)

Because each eigenvector is normalized to unity, we have
u2

‖m + u2
⊥m + u2

θm = 1. Taking the average of these quantities
over all eigenmodes with frequencies ωm within bins of equal
width �ω/ω, we then define u2

‖(ω), u2
⊥(ω), and u2

θ (ω) to
describe the average behavior of modes at frequency ω.

1. Nearly circular spherocylinders: α = 0.01

In this work, we will treat in detail three specific cases: as-
pect ratio α = 0.01, corresponding to nearly circular particles,
α = 4.0, corresponding to moderately elongated particles, and
α = 1.0, corresponding to the peak value of the packing
fraction and also the largest value of 〈zJ 〉 ≈ 5.91. We start
by considering α = 0.01. In Fig. 11(a) we plot our results
for the density of states D(ω) vs ω for mechanically stable
configurations at energy U/L2 = 10−15, very close to the
jamming transition. For comparison, we also show results
for α = 0, i.e., perfectly circular disks; for α = 0 there is
also a delta function contribution (not shown) at ω = 0 that
represents the N noninteracting rotational modes of the N
disks. Our results here, and for other quantities in this section,
are averaged over six independent samples.

For α = 0.01 we find behavior qualitatively similar to that
found previously for elliptical and ellipsoidal particles [8–10].
D(ω) shows two distinct bands of frequencies, separated by
a clear gap. The upper frequency band consists of the finite
energy modes usually associated with disordered granular
solids near jamming. Rather than the D(ω) ∼ ω2 behavior
found in uniform elastic solids, there is a proliferation of floppy
modes (the “boson peak” [1]) as ω decreases, causing D(ω) to
drop sharply as one goes to the low frequency edge of this upper
frequency band. We find that the total number of modes in this
upper frequency band is precisely N 〈z〉/2, corresponding to
theN 〈z〉 contacts that serve to constrain any large-length scale
motion, so that the system is jammed and can support a finite
pressure.

Note, we see a substantial difference in the frequency of the
lower cutoff for the upper frequency band when comparing
α = 0.01 with α = 0. Although we have not systematically
explored the dependence of this cutoff on the spherocylinder
aspect ratio α, Schreck et al. [9] have done such calculations
for ellipses, and find that as the asphericity of the ellipse
α = a/b − 1 vanishes (with a/b the ratio of the major to
minor axis lengths), the lower cutoff frequency of the upper
frequency band vanishes as ωcut ∼ α1/2. For α = 0.01 they
find this cutoff to be ωcut ∼ 0.1, similar to what we find here
for the spherocylinders.

FIG. 11. For a bidisperse system of N = 1024 nearly circular
spherocylinders with aspect ratio α = 0.01, at energy U/L2 = 10−15

close to the jamming transition, (a) the density of vibrational modes
D(ω) vs ω, and also for comparison D(ω) for circular disks with
α = 0; (b) the participation ratio P (ω) vs ω; (c) the average rotational
motion u2

θ (ω) (circles), parallel translational motion u2
‖(ω) (squares),

and perpendicular translational motion u2
⊥(ω) (diamonds) vs ω.

“Parallel” and “transverse” refer to directions relative to the direction
of the spherocylinder spine. Each point is averaged over all of
the modes in the same frequency bin for six different independent
samples.

The total number of modes in the lower frequency band is
N (ziso − 〈z〉)/2, with ziso = 2df = 6 the isostatic value for
noncircular particles, so that the total number of modes in
both bands is simply Ndf . The low frequency band may be
thought of as the modes that evolve from the noninteracting
rotational modes of pure disks (α = 0) once the particle
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shape is perturbed away from perfect circularity. As we will
demonstrate later in this section, these low band modes are in
principle zero-frequency modes exactly at jamming, consisting
of cooperative small displacements of the particles that are
unconstrained at the level of a quadratic approximation to
the energy minimum. The frequency of these modes is small
but finite in Fig. 11(a) because we are at a finite energy
U/L2 = 10−15 slightly above jamming. Note, the equality we
find between the number of modes in the upper band and
N 〈z〉/2 holds only at the jamming point; above the jamming
point, the formation of additional contacts does not necessarily
act to constrain previously unconstrained modes of the lower
band, but rather may act to overconstrain modes in the upper
band.

In Fig. 11(b) we show the participation ratio P (ω). We see
that modes at the edges of either the high frequency band or the
low frequency band are localized, with small values of P (ω).
But, modes in the center of either band are fairly extended. In
Fig. 11(c) we plot the quantities u2

θ (ω), u2
‖(ω), and u2

⊥(ω). We
see that modes in the high frequency band are mixed in nature,
with roughly equal participation in each of the rotational and
translational degrees of freedom. For the lower frequency band,
however the situation is different. Modes in the upper part of
this band involve primarily rotational motions, similar to what
was found for the entire low frequency band for ellipses and
ellipsoids [8–10]. However, unlike with ellipses and ellipsoids,
modes towards the lower edge of this band involve only
translational motion, with motion parallel to the spherocylinder
spine somewhat greater than motion perpendicular to the spine.
That the lowest energy modes involve translational motion is
presumably a reflection of the flat surfaces that exist on the
sides of the spherocylinders.

In Fig. 12 we illustrate graphically two examples of eigen-
modes in the low frequency band. In these figures, arrows
on each spherocylinder are proportional to the translational
displacement of the spherocylinder, while the color of each
spherocylinder indicates the degree of rotation: blue is a
counterclockwise rotation, while red is clockwise, with the
darkness of the color proportional to the amount of the rotation.
Figure 12(a) is for a mode at ωm = 3 × 10−3, somewhat in the
middle of the band. As expected from Fig. 11, one clearly sees
that this mode is extended throughout the system and is mixed
between translational and rotational motion. In contrast, the
mode in Fig. 12(b) at ωm = 3 × 10−2, near the upper edge
of the band, is clearly seen to be more localized and consists
primarily of rotational motion.

When displacing the spherocylinders an amount δ in the
direction of a given eigenmode ûm, the energy of the system
will increase by �U = ω2

mδ2, to lowest order in δ. It is
interesting to see how �U (δ) behaves as one increases δ away
from the small δ limit. Note, for a highly localized mode we
expect that δ ∼ 1 corresponds to the displacement of a particle
on the order of a particle diameter 2Rs ; for a highly delocalized
mode, we expect that δ ∼ 1 corresponds to the displacement
of particles on the order of 2Rs/

√
3N ∼ 2Rs/50. In Fig. 13

we plot �U (δ) vs δ for several typical modes m at the different
frequencies ωm as shown. For ωm in the high frequency band,
we see that �U ∼ δ2 for the entire range 0 � δ � 1. For ωm

in the low frequency band, we see that �U crosses over from
a form Aδ2 at small δ to a form Bδ2 at larger δ, with A � B.

(a) ωm = 3 × 10−3

(b) ωm = 3 × 10−2

FIG. 12. For N = 1024 nearly circular spherocylinders with
aspect ratio α = 0.01, at energy U/L2 = 10−15 very close to the
jamming transition, (a) eigenmode at ωm = 3 × 10−3 near the middle
of the low frequency band, and (b) eignemode at ωm = 3 × 10−2

near the upper edge of the low frequency band. Arrows on the
spherocylinders indicate the relative translational motion, and color
the relative rotational motion, according to the legend on the right
hand side.

The small A corresponds to the small eigenvalue λm = ω2
m

of the lower band; this λm would be zero if the system were
exactly at φJ . The crossover region to the larger B suggests the
quartic nature of these low band modes (i.e., �U ∼ δ4) that
has been predicted [6] to hold exactly at the jamming φJ . As
δ increases further, we find that the contact network starts to
change significantly; the “grazing” particle overlaps (overlap
∼δ2) that characterize the quartic nature of the low band modes
at small δ start to break, and new “ordinary” contacts start to
form as particles push into each other with overlaps similar to
those found in the modes of the higher band (overlap ∼δ). This
results in the larger value B, which is comparable to similar
values found in the high frequency band.
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FIG. 13. Change in energy �U vs displacement δ for pertur-
bations of spherocylinder positions δûm along different eigenmode
directions ûm at frequencies ωm as indicated. The system of N = 1024
bidisperse spherocylinders is at energy U/L2 = 10−15, very close to
jamming, and the aspect ratio is α = 0.01. Solid black lines indicate
the behaviors �U ∼ δ2 and �U ∼ δ4.

Finally, we explore the dependence of the eigenmodes on
the energy of the system U . In Fig. 14(a) we plot D(ω) vs
ω for mechanically stable configurations at several different
values of U . As was found previously for ellipses and ellipsoids
[8–10], we see that as U increases, the upper frequency band
changes relatively little, while the lower frequency band in-
creases, the gap between the two bands narrows, and ultimately
the two bands merge. Defining ω̄0 as the average frequency of
the modes in the lower band, in Fig. 14(b) we plot ω̄0 vs U/L2.
We see a perfect power law dependence, strongly suggesting
that the lower band of modes collapses to ω → 0 as U/L2 → 0
at jamming. In particular, we find ω̄0 ∼ (U/L2)1/4. Since, for
our harmonic elastic interaction U/L2 ∼ (φ − φJ )2, this gives
ω̄0 ∼ (φ − φJ )1/2, in agreement with results found previously
for ellipses and ellipsoids [9].

2. Moderately elongated spherocylinders: α = 4.0

We now consider the case of moderately elongated sphero-
cylinders with aspect ratio α = 4.0. In Fig. 15(a) we plot our
results for the density of states D(ω) vs ω for mechanically
stable configurations at energy U/L2 = 10−15, very close to
the jamming transition. In this case, we see three bands of
eigenmodes: a high frequency band similar to that found for
α = 0.01, a low frequency band, and a narrow middle band. We
note that the frequencies in the lowest band are so exceedingly
small that it was necessary to adopt a perturbative approach
to compute them accurately (see Appendix B). We will show
below that both the low and middle frequency bands scale
to zero as U → 0 and the system approaches the jamming
transition; hence, these lower two bands correspond to the
modes which are unconstrained, to quadratic order, exactly
at the jamming φJ . As with α = 0.01, we find that the number
of modes in the high frequency band is exactly N 〈z〉/2, while
the total number of modes in the low and middle frequency
bands is N (ziso − 〈z〉)/2. The fraction of modes in the low,
middle, and high frequency bands is 0.0638, 0.00033, and
0.936, respectively.

FIG. 14. (a) The density of vibrational states D(ω) for N = 1024
bidisperse spherocylinders with aspect ratio α = 0.01 at configuration
energies U/L2 = 10−15, 10−14, and 10−12, corresponding to packing
fractions of φ − φJ ≈ 7.4 × 10−8, 2.4 × 10−7, and 2.4 × 10−6, re-
spectively. (b) Average frequency of modes in the lower frequency
band ω̄0 vs energy U/L2. We find ω̄0 ∼ (U/L2)1/4.

In Fig. 15(b) we plot the participation ratio P (ω), and in
Fig. 15(c) we plot the quantities u2

θ (ω), u2
‖(ω), and u2

⊥(ω).
We see that the high frequency band consists of a set of
mostly extended modes with mixed rotational and translational
motion, similar to what was found for α = 0.01. However, we
see that all the modes in the low and middle bands are strongly
localized. In the low band these modes are entirely translational
in the direction parallel to the spine of the spherocylinder. In
the middle band these modes are primarily rotational.

In Fig. 16 we illustrate graphically two examples of eigen-
modes, one in the low frequency band and one in the middle
frequency band. Because these modes are highly localized,
we show only a subregion of the system containing the
spherocylinder that moves, rather than the entire system.
Figure 16(a) is for a mode at ωm = 10−8, in the low band. It
is clear that this mode consists of only a single spherocylinder
that slides parallel to its spine. Figure 16(b) is for a mode at
ωm = 10−4, in the middle band. Again, this mode consists of
only a single spherocylinder, but now the motion is primarily
rotational. In both cases, although the isolated spherocylinder
may move along one degree of freedom with low cost in energy,
its presence is nevertheless clearly important for the global
rigidity of the system.
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FIG. 15. For a bidisperse system of N = 1024 moderately elon-
gated spherocylinders with aspect ratio α = 4.0, at energy U/L2 =
10−15 close to the jamming transition, (a) the density of vibrational
modes D(ω) vs ω; (b) the participation ratio P (ω) vs ω; (c) the average
rotational motion u2

θ (ω) (circles), parallel translational motion u2
‖(ω)

(squares), and perpendicular translational motion u2
⊥(ω) (diamonds)

vs ω. “Parallel” and “transverse” refer to directions relative to the
direction of the spherocylinder spine. Each point is averaged over all
of the modes in the same frequency bin for six different independent
samples.

In Fig. 17 we show the change in energy �U (δ) as the
spherocylinders are displaced a distance δ in the direction
of several given eigenmodes ûm. For the modes in the high
frequency band, we see �U ∼ δ2 for most of the range of
δ. For the two lowest modes shown, at ωm = 10−4 and 10−8

in the middle and low band, respectively (these are the same

(a) ωm = 10−8

(b) ωm = 10−4

FIG. 16. For N = 1024 moderately elongated spherocylinders
with aspect ratio α = 4.0, at energy U/L2 = 10−15 very close to the
jamming transition: (a) eigenmode at ωm = 10−8 in the low frequency
band; the red arrow denotes the spherocylinder with the largest
motion. And (b) eigenmode at ωm = 10−4 in the middle band; the dark
blue spherocylinder denotes the one with the largest motion. Arrows
on the spherocylinders indicate the relative translational motion, and
color the relative rotational motion, according to the legend on the
right hand side. In each case we show only a subregion of the entire
system.

two modes illustrated in Fig. 16), we do not have sufficient
numerical accuracy to compute �U at the smallest values of
δ. For the middle band mode, which is mostly rotational, we see
behavior similar to that found for the low band modes of α =
0.01. As δ increases, �U (δ) transitions from a small δ behavior
of Aδ2, with A = ω2

m, to Bδ2 with A � B; the transition region
has a quartic dependence ∼δ4. For the translational mode in
the low band, the small δ behavior �U = ω2

mδ2 is too small
to be computed accurately and so does not appear in our plot.
We believe this very small energy is due to the fact that the
spherocylinder involved in this mode is not exactly parallel
with its neighbors, and so the energy in the side-to-side contact
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FIG. 17. Change in energy �U vs displacement δ for pertur-
bations of spherocylinder positions δûm along different eigenmode
directions ûm at frequencies ωm as indicated. The system of N = 1024
bidisperse spherocylinders is at energy U/L2 = 10−15, very close to
jamming, and the aspect ratio is α = 4.0. Solid black lines indicate
the behaviors �U ∼ δ2 and �U ∼ δ4.

changes ever so slightly as the spherocylinder slides parallel to
its spine. The sharp step upwards seen for this mode in Fig. 17
corresponds to a displacement large enough that the tip of the
sliding spherocylinder starts to contact and overlap a neighbor
that it previously did not touch. We suspect that exactly at φJ ,
such sliding modes may be strictly unconstrained (for small
enough δ), rather than quartic.

Finally, in Fig. 18(a) we show how the density of states D(ω)
changes as U increases and the system moves further from
jamming. As U increases, the high frequency band changes
little. For sufficiently large U , the middle band merges with
the upper band. Defining the average frequency of the modes
in the lowest band of localized, translational, modes as ω̄t

0,
and the average frequency of the modes in the middle band of
localized, primarily rotational, modes as ω̄r

0, we plot ω̄t
0 and ω̄r

0
vs U/L2 in Fig. 18(b). We see that they both vary as a power law
as U/L2 decreases, strongly indicating that the frequencies of
the modes in these two bands vanish exactly at φJ . However, we
see that they vanish with different power laws. We find for the
middle band modes that ω̄r

0 ∼ (U/L2)1/4 ∼ (φ − φJ )1/2, the
same as was found for the low band modes for nearly circular
spherocylinders with α = 0.01, and the same as was found for
ellipses and ellipsoids [9]. However, for the low band modes
we find that they vanish more rapidly as U → 0, with ω̄t

0 ∼
(U/L2)1/2 ∼ (φ − φJ ).

3. Spherocylinders near the peak packing fraction: α = 1.0

Finally, in this section we consider spherocylinders with
aspect ratio α = 1.0, thus being a case between those consid-
ered in the two previous sections; α = 1 also corresponds to
the aspect ratio that gives the peak packing fraction 〈φJ 〉 ≈
0.8875 and which is also closest to being isostatic, with
〈zJ 〉 = 5.91 ± 0.01.

In Fig. 19(a) we plot our results for the density of statesD(ω)
vs ω for mechanically stable configurations at energy U/L2 =
10−15, very close to the jamming transition. In Fig. 15(b) we
plot the participation ratio P (ω), and in Fig. 15(c) we plot the
quantities u2

θ (ω), u2
‖(ω), and u2

⊥(ω). We see that the situation

FIG. 18. (a) The density of vibrational states D(ω) for N = 1024
bidisperse spherocylinders with aspect ratio α = 4.0 at configuration
energies U/L2 = 10−15, 10−11, and 10−9, corresponding to pack-
ing fractions of φ − φJ ≈ 9.1 × 10−8, 9.3 × 10−6, and 4.3 × 10−4,
respectively. (b) Average frequency ω̄t

0 of modes in the low fre-
quency band, and average frequency ω̄r

0 of the modes in the middle
frequency band, vs energy U/L2. We find ω̄r

0 ∼ (U/L2)1/4, while
ω̄t

0 ∼ (U/L2)1/2.

at α = 1.0 is a natural combination of the two previous cases.
There are three distinct frequency bands, with the two upper
bands looking essentially the same as was found for α = 0.01.
States are localized near the edges of these bands but extended
in the middle. The highest frequency band consists of modes
that are mostly of mixed translational and rotational character.
The middle frequency band is primarily rotational towards its
upper edge, but primarily translational towards its lower edge.
The lowest frequency band is like that found for α = 4.0,
consisting of highly localized sliding modes that are purely
translational parallel to the spherocylinder spine. We may thus
speculate that this represents the generic case. As α decreases
from unity, the low frequency band of sliding modes shrinks
and disappears while the middle frequency band grows. As α

increases from unity, the middle frequency band shrinks while
the low frequency band grows. For α = 1.0 we find the fraction
of modes in the low, middle, and high frequency bands to be
0.0039, 0.0105, and 0.986, respectively.

It is interesting to note that three frequency bands were
also reported for ellipses and ellipsoids at low aspect ratios
[9,10]. In that case, the authors argued that it was only
their lowest frequency band that represented the quadratically
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FIG. 19. For a bidisperse system of N = 1024 spherocylinders
with aspect ratio α = 1.0, at energy U/L2 = 10−15 close to the
jamming transition, (a) the density of vibrational modes D(ω) vs ω;
(b) the participation ratio P (ω) vs ω; (c) the average rotational motion
u2

θ (ω) (circles), parallel translational motion u2
‖(ω) (squares), and

perpendicular translational motion u2
⊥(ω) (diamonds) vs ω. “Parallel”

and “transverse” refer to directions relative to the direction of the
spherocylinder spine. Each point is averaged over all of the modes in
the same frequency bin for six different independent samples.

unconstrained states. In our case of spherocylinders at α =
1.0, however, it is both the lowest two bands that represent
quadratically unconstrained states. Our high frequency band
is found to contain all the N 〈z〉/2 modes expected for the
quadratically constrained states, while the modes in the lowest
two bands scale to zero as U → 0 at the jamming transition.
To demonstrate this, we compute the average frequency ω̄r

0 of
modes in the middle band, and the average frequency ω̄t

0 of
modes in the lower band, as a function of the system energy

FIG. 20. For a bidisperse system of N = 1024 spherocylinders
with aspect ratio α = 1.0, the average frequency ω̄t

0 of modes in the
low frequency band, and average frequency ω̄r

0 of the modes in the
middle frequency band, vs energy U/L2. We find ω̄r

0 ∼ (U/L2)1/4,
while ω̄t

0 ∼ (U/L2)1/2.

U/L2. As we found in the preceding section for α = 4.0, we
similarly find here that ω̄r

0 ∼ (U/L2)1/4 while ω̄t
0 ∼ (U/L2)1/2

(see Fig. 20).

IV. CONCLUSIONS

In this work, we have considered the behavior of ensem-
bles of two-dimensional soft-core spherocylinders as they are
isotropically compressed, under athermal (T = 0) conditions,
from dilute packing fractions φinit to packings above the
jamming transition φJ . We use particles obeying an over-
damped dynamics, in response to an affinely shrinking box, to
model the compression. We then use conjugate gradient energy
minimizations to relax these configurations to mechanically
stable states at their local energy minimum, so as to explore
further details of the small vibrational modes of the system.

We first considered the question of orientational ordering.
Rod-shaped particles in thermal equilibrium are known to
have a normal-liquid to nematic-liquid phase transition as the
density increases, where the orientational ordering increases
from zero as one goes above the transition. In contrast, we
find that, for moderately elongated spherocylinders with aspect
ratio α = 4.0, there is no orientational ordering as the system
is athermally compressed to above jamming. We find this
to be true for both monodisperse and bidisperse ensembles.
Thus, the fluctuations induced by athermal collisions under
compression would seem to be qualitatively different from
thermally induced fluctuations.

We then investigated the dependence of the jamming
transition packing fraction φJ , and the average number of
contacts per particle at jamming zJ , as a function of the
spherocylinder aspect ratio α. As was found previously for
ellipses and ellipsoids, we find that φJ increases, reaches a
maximum, and then decreases as α increases. The maximum
occurs at α ≈ 1, which gives a maximal packing fraction
φJ ≈ 0.8875. Also, as found for ellipses and ellipsoids, we
find that for spherocylinders only slightly distorted from
circular (i.e., at small α) the configurations at the jamming
φJ are hypostatic, with the average number of contacts per
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particle zJ < ziso = 2df = 6 smaller than the isostatic value.
However, unlike ellipses and ellipsoids where zJ → ziso as
the aspect ratio increases, for spherocylinders we find that zJ

reaches a maximum value zJ ≈ 5.91 < ziso = 6 at α ≈ 1, and
then decreases as α increases further. 2D spherocylinders at
jamming are hypostatic for all aspect ratios.

We then considered the limit α → 0, in which sphero-
cylinders are approaching the limit of perfectly circular disks.
Surprisingly, we found that this limit appears to be singular,
with a strong probability developing for the spherocylinders
to form contacts along their flat edges, even as those flat
edges shrink to a negligible fraction of the particle surface.
Similar results have recently been found for 2D ellipses [32],
suggesting that this may be a general behavior for nonspherical
particles.

Finally, we examined the density of states and the nature of
the vibrational eigenmodes. As with ellipses and ellipsoids,
we find that for φ slightly above φJ , the density of states
D(ω) splits into distinct bands. In general, as illustrated by
the case α = 1.0, there are three frequency bands. The high
frequency band is similar to the modes found for circular
disks, and consists of Nz/2 modes of mixed rotational and
translational character; these modes remain at finite frequency
even at φJ . The lower bands consist of N (ziso − z)/2 modes
that, as φ → φJ , become unconstrained at quadratic order in
the expansion of the elastic energy; such modes are the reason
the system is hypostatic at jamming. The middle frequency
band, with extended modes in the center and localized modes
at the edges, consists mostly of rotational motion towards the
upper side of the band, but mostly translational motion towards
the lower side of the band. The modes in the middle band appear
to be quartically constrained exactly at φJ . The low frequency
band consists of highly localized sliding modes, involving the
translation of single spherocylinders parallel to their spine.
It is unclear if such modes are constrained at all, for small
displacements, when one is exactly at φJ . As the aspect ratio
α decreases from unity, we find that the number of modes in
the middle band increases, while the number of modes in the
lowest frequency band decreases and eventually vanishes. As α

increases above unity, we find that the number of sliding modes
in the lower band increases, while the middle band shrinks
and becomes very narrow (and possibly disappears for large
enough α).

Our results confirm that small distortions of particles
from a perfect circular shape result in hypostatic states at
jamming, however, we show that behavior for very elongated
particles depends in detail on the particle shape: for ellipses
and ellipsoids, particles approach isostaticity at jamming as
the aspect ratio increases, while for spherocylinders they
remain hypostatic. We believe that this hypostatic behavior
for elongated spherocylinders is a consequence of the long flat
sides of the particles, which have a strong effect on the nature
of the quadratically unconstrained modes at jamming. As we
were completing this work, we learned of similar work being
carried out by Vanderwerf et al. [32].
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APPENDIX A

In this Appendix, we provide details of our energy min-
imization procedure, and tests that show how well our pro-
cedure results in mechanically stable jammed states. Starting
from an initial state obtained by our slow compression algo-
rithm, we energy minimize to obtain a mechanically stable
configuration by using the Polak-Ribiere conjugate gradient
method.

With ζ = (ζ 1,ζ 2, . . . ) a vector giving the initial position
of our configuration in the N particle coordinate space, we
compute the steepest descent gradient v = −∂U/∂ζ , take as
our initial search direction the unit vector v̂ = v/|v|, and
perform a line search to find the approximate minimum in this
direction. We begin the line search by choosing a small step
size ε and finding the energies of the current configuration
U (ζ ) as well as U (ζ + εv̂) and U (ζ + 2εv̂). If the energy
increases when moving to ζ + εv̂, i.e., U (ζ ) < U (ζ + εv̂), we
take ε′ = ε/2 and find the new set of energies with ε′. If the en-
ergy decreases monotonically to ζ + 2εv̂, i.e., U (ζ ) > U (ζ +
εv̂) > U (ζ + 2εv̂), then we take ε′ = 2ε and find the new set of
energies. Once we have a series of three points with the lowest
energy at ζ + εv̂, we make a quadratic fit to the points, and
determine the location of the minimum ζ 0 of that quadratic fit.
If U (ζ 0) < U (ζ + εv̂), we then move the configuration to ζ 0;
otherwise, we move it to ζ + εv̂. We then use the Polak-Ribiere
method to define the new, orthogonal, search direction. For our
system size and packings near jamming, we find empirically
that an initial value of ε = 10−4 is a good choice. Recall,
in our units, the smaller spherocylinders have a diameter
of unity.

As the algorithm narrows in on a local minimum of U ,
the step size ε needed to complete a line search gets ever
smaller. Once ε < 10−16, we no longer have sufficient machine
precision in the particle coordinates to accurately compute
the energy difference U (ζ ) − U (ζ + εv̂), and so we stop
the line search, and reinitialize the search using the steepest
descent direction at the current configuration coordinates.
When the search in the steepest descent direction similarly
fails to find a new minimum with ε > 10−16, we terminate the
search.

A configuration in perfect mechanical equilibrium will
satisfy the conditions that the net force and net torque on
each particle from its elastic contacts vanish, i.e., Fel

i = 0 and
τ el
i = 0. In practice, the net force and torque on particles will

have some small residual value, due to the finite numerical
accuracy of our minimization procedure. As a measure of
how well our minimization procedure is finding the desired
mechanically stable states, we therefore look at the net residual
forces and torques, and see how large they are compared to
the average force and torque at individual particle contacts.
For each minimized configuration, we therefore compute the
average contact force

F̄ el
ij = 2

zN

∑
(i,j )

|Fel
ij |, (A1)
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FIG. 21. Distribution of (a) net residual forces on spherocylinders
|Fel

i | relative to the average contact force F̄ el
ij , and (b) net residual

torques on spherocylinders |τ el
i | relative to the average contact torque

τ̄ el
ij , for configurations of N = 1024 bidisperse spherocylinders at

energy U/L2 = 10−15, very close to jamming, as obtained by our
conjugate gradient energy minimization. In each panel, circles are for
α = 0.01 and diamonds are for α = 4.0. Results are averaged over
six independent samples and the contact averages F̄ el

ij and τ̄ el
ij are

computed separately for each sample.

where the sum is over all particle contacts (i,j ), Fel
ij is

the elastic force of Eq. (3), and z is the average number
of contacts per particle. We similarly compute the average
contact torque

τ̄ el
ij = 1

zN

N∑
i=1

∑
j

′∣∣ẑ · (
sij × Fel

ij

)∣∣. (A2)

Here, sij is the moment arm from the center of mass of
spherocylinder i to the point of contact with spherocylinder
j , the second sum is over all spherocylinders j in contact with
spherocylinder i, and each contact gives rise to two terms, one
for the torque on spherocylinder i and one for the torque on
spherocylinder j .

We then compute the distribution of net residual forces
P(|Fel

i |/F̄ el
ij ) and net residual torques P(|τ el

i |/τ̄ el
ij ), averaging

these over our different independent samples. In Fig. 21 we
plot these distributions for the two cases α = 0.01 and 4.0, for
configurations minimized to energy U/L2 = 10−15, very close
to the jamming transition φ − φJ � 10−7. We see that, on the

scale of the contact forces and torques, the net residual forces
and torques on the spherocylinders are indeed generally quite
small.

APPENDIX B

In this Appendix, we discuss our method to determine the
eigenmodes and density of states D(ω) for our system of
spherocylinders with aspect ratios α = 1.0 and 4.0. Because
the eigenmodes in the lowest frequency band have exceedingly
small frequencies ωm, we find that a direct analysis of the
dynamical matrix results in large errors in these smallest
eigenvalues. We therefore follow Refs. [6,9,25,26] and split
the dynamical matrix into two pieces:

Mia,jb = ∂2

∂ζia∂ζjb

⎡
⎣∑

(i,j )

Vij (rij )

⎤
⎦ = Hia,jb − Sia,jb, (B1)

where

Hia,jb =
∑
(i,j )

∂2Vij (rij )

∂r2
ij

(
∂rij

∂ζia

)(
∂rij

∂ζjb

)
(B2)

is known as the stiffness matrix, and

Sia,jb = −
∑
(i,j )

∂Vij (rij )

∂rij

(
∂2rij

∂ζia∂ζjb

)
(B3)

is known as the stress matrix.
From Eq. (22), for our harmonic elastic interaction

∂2Vij /∂r2
ij = ke/d

2
ij at each contact is O(1) in our units (where

ke = 1 and ds = 1), while ∂Vij /∂rij = −ke(1 − rij /dij )/dij

is proportional to the particle overlap and hence very small
close to jamming. Hence, we can regard Sia,jb as a small
perturbation of Hia,jb. The eigenvectors û(0)

m and eigenvalues
λ(0)

m of the stiffness matrix Hia,jb are therefore the zeroth order
approximates to those of Mia,jb. We thus compute these û(0)

m

and find them to include a set of degenerate eigenvectors
with λ(0)

m = 0. These would be the unconstrained (to quadratic
order) modes present in a hypostatic system, were the system
exactly at the jamming transition where Sia,jb = 0. At finite
energy U above jamming, we take these as the zeroth order
approximates to the modes in the lower frequency bands, while
the eigenvectors with λ(0)

m > 0 are the approximates to the
modes in the upper frequency band.

We can then compute the first order corrections to the
eigenvalues, due to the nonzero Sia,jb at finite U , in the
usual way. For a mode in the upper frequency band, we have
δλm = −ûm · S · ûm. For such a mode in the upper frequency
band, we find that û(0)

m and λ(0)
m + δλm differ negligibly from

the ûm and λm we obtain from a direct analysis of Mia,jb.
For the modes in the lower frequency bands, we project

Sia,jb onto the subspace spanned by the set of degenerate eigen-
vectors {û(0)

m } with λ(0)
m = 0, and then diagonalize −Sia,jb on

that subspace. The resulting eigenvectors ûm and eigenvalues
λm are then the next level approximates to the eigenmodes of
the lower frequency bands of the full dynamical matrix Mia,jb,
and these values are then used in the construction of the density
of states D(ω).
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