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We investigate the criticality of the jamming transition for overdamped shear-driven frictionless disks in
two dimensions for two different models of energy dissipation: (i) Durian’s bubble model with dissipation
proportional to the velocity difference of particles in contact, and (ii) Durian’s “mean-field” approximation
to (i), with dissipation due to the velocity difference between the particle and the average uniform shear
flow velocity. By considering the finite-size behavior of pressure, the pressure analog of viscosity, and the
macroscopic friction σ=p, we argue that these two models share the same critical behavior.
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Many different physical systems, such as granular
materials, suspensions, foams, and emulsions, may be
modeled in terms of particles with short ranged repulsive
contact interactions. As the packing fraction ϕ of such
particles is increased, the system undergoes a jamming
transition from a liquid state to a rigid but disordered solid.
It has been proposed that this jamming transition is a
manifestation of an underlying critical point, “point J,”with
associated scaling properties such as is found in equilib-
rium phase transitions [1,2]. Scaling properties are indeed
found when such systems are isotropically compressed,
with pressure, elastic moduli, and contact number increas-
ing as power laws as ϕ increases above the jamming ϕJ [3].
When such systems are sheared with a uniform strain rate _γ,
a unified critical scaling theory has successfully described
both the vanishing of the yield stress as ϕ → ϕJ from
above, the divergence of the shear viscosity as ϕ → ϕJ
from below, and the nonlinear rheology exactly at
ϕ ¼ ϕJ [4].
One of the hallmarks of equilibrium critical points is the

notion of universality; the critical behavior, specifically
the exponents describing the divergence or vanishing of
observables, depend only on the symmetry and dimension-
ality of the system, and not on details of the specific
interactions. For statically jammed states created by com-
pression, where only the elastic contact interaction comes
into play, it is understood that the relevant critical expo-
nents are simply related to the form of the elastic inter-
action, and are all simple rational fractions [3]. In contrast,
shear-driven steady states are formed by a balance of elastic
and dissipative forces, and it is thus an important question
whether or not the specific form taken for the dissipation is
crucial for determining the critical behavior.
In a recent work by Tighe et al. [5], it was claimed that

changing the form of the dissipation can indeed alter the
nature of the criticality for sheared overdamped frictionless
disks. In contrast to an earlier work [4], where particle
dissipation was taken with respect to a uniformly sheared

background reservoir, Tighe et al. used a collisional model
for dissipation. They argued that this change in dissipation
resulted in dramatically different behavior from that found
previously, specifically (i) there is no length scale ξ that
diverges upon approaching ϕJ, and so behavior can be
described analytically with a mean-field-type model,
(ii) critical exponents are simple rational fractions, and
(iii) there is no single critical scaling, but rather several
different flow regimes, each with a different scaling. In this
work we numerically reinvestigate the model of Tighe et al.
and present results arguing against these conclusions. In
particular, we conclude that the two models have rheology
that is characterized by the same critical exponents, and so
are in the same critical universality class.
We simulate bidisperse frictionless disks in two dimen-

sions, with equal numbers of big and small disks with
diameter ratio 1.4, at zero temperature. The interaction of
disks i and j in contact is Vij ¼ keδ2ij=2, where the overlap
is δij ¼ rij=dij − 1, with dij the sum of the disks’ radii. The
elastic force on disk i is feli ¼ −∇i

P
jVij, where the sum is

over all particles j in contact with i. We use Lees-Edwards
boundary conditions [6] to introduce a time-dependent
uniform shear strain γðtÞ ¼ _γt in the x̂ direction.
We consider two different models for energy dissipation.

The first, which we call “contact dissipation” (CD), is the
model introduced by Durian for bubble dynamics in foams
[7], and is the model used by Tighe et al. [5]. Here
dissipation occurs due to velocity differences of disks in
contact,

fdisCD;i ¼ −kd
X

j

ðvi − vjÞ; vi ¼ _ri: ð1Þ

In the second, which we call “reservoir dissipation” (RD),
dissipation is with respect to the average shear flow of a
background reservoir,

fdisRD;i ¼ −kd(vi − vRðriÞ); vRðriÞ≡ _γyix̂: ð2Þ
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RD was also introduced by Durian [7] as a “mean-field” [8]
approximation to CD, and is the model used in many earlier
works on criticality in shear-driven jamming [4,8–10].
The equation of motion for both models is

mi _vi ¼ feli þ fdisi : ð3Þ

Here we are interested in the overdamped limit,mi → 0 [7].
In RD it is straightforward to set mi ¼ 0, in which case the
equation of motion becomes simply vi ¼ vRðriÞ þ feli =kd;
we call this limit RD0. In CD, because the dissipation
couples velocities one to another, settingmi ¼ 0 effectively
requires inverting the matrix of contacts to rewrite the
equation of motion in a form suitable for numerical
integration. Instead of that numerically difficult procedure,
our approach here is to simulate particles with a finite mass,
and verify that the mass is small enough for the system to
be in the overdamped mi → 0 limit; we call this limit CD0.
For our simulations we use units in which ke ¼ kd ¼ 1,
length is in units such that the small disk diameter ds ¼ 1,
time is in units of τ0 ≡ kdd2s=ke ¼ 1, and particles with
equal mass density, such thatmi for a particle of diameter di
is mi ¼ 2mπd2i =4, with m ¼ 1. In our Supplemental
Material [11] we confirm that this choice is sufficient to
be in the mi → 0 limit. For RD0 our simulations use N ¼
65 536 particles, while for CD0 we use N ¼ 262 144,
unless otherwise noted. For RD0 our slowest strain rate
is _γ ¼ 10−9, while for CD0 we can reach only _γ ¼ 10−7.
Before presenting our evidence that the two models

RD0 and CD0 have the same critical rheology, we first
comment on one quantity that is clearly very different in
the two models, the transverse velocity correlation,
gyðxÞ≡ hvyð0ÞvyðxÞi. In RD0 gyðxÞ shows a clear mini-
mum at a distance x ¼ ξ, and this length diverges as one
approaches the critical point (ϕJ, _γ → 0) [4]. In CD0

however, it was found [5] that gyðxÞ decreases monoton-
ically without any obvious strong dependence on either ϕ
or _γ. This led Tighe et al. to conclude that there is no
diverging length ξ in model CD0, that the only macroscopic
length scale is the system length L, and thus there are no
critical fluctuations. In our own work we have confirmed
this dramatic difference in the behavior of gyðxÞ, but see our
Supplemental Material for further comments [11].
However the apparent absence of a diverging ξ in gyðxÞ

for CD0 does not necessarily imply that such a diverging
length does not exist. In the following we present evidence
for such a diverging ξ in CD0 by considering the finite-size
dependence of the pressure p as a function of strain rate _γ at
ϕJ. By a critical scaling analysis of the pressure analogue of
viscosity, ηp ≡ p=_γ, we further show that the rheology in
CD0 is characterized by the same critical exponents as is
RD0. Finally, we consider the macroscopic friction μ≡
σ=p in the two models, with σ the shear stress, and show
that they behave similarly. There is no sign of the roughly
square root vanishing of μ at ϕJ that would be expected

from the model of Tighe et al., but rather μ appears to be
finite passing through ϕJ, as found in recent experiments on
foams [12].
Finite-size dependence of pressure.—We consider here

only the elastic part of pwhich is computed from the elastic
contact forces in the usual way [3]. If jamming behaves like
a critical point, we expect p to obey finite-size scaling at
large system lengths L [13],

pðϕ; _γ; LÞ ¼ L−y=νP(ðϕ − ϕJÞL1=ν; _γLz): ð4Þ

Exactly at ϕ ¼ ϕJ the above becomes [14]

pðϕJ; _γ; LÞ ¼ L−y=νPð0; _γLzÞ: ð5Þ

For sufficiently small L, where _γLz ≪ 1, we get p ∼ L−y=ν.
For sufficiently large L, where _γLz ≫ 1, p becomes
independent of L and so p ∼ _γy=zν. The crossover occurs
when L ¼ ξ at _γLz ≈ 1 ⇒ ξ ∼ _γ−1=z, giving a diverging
correlation length as _γ → 0.
In Fig. 1(a) we plot p vs L for RD0 and CD0 at ϕ ¼

0.8433 ≈ ϕJ for several different _γ. Both models clearly
behave similarly. To determine the crossover ξ we fit our
data to the simple empirical form p ¼ Cð1þ ½ξ=L&xÞ that
interpolates between the two asymptotic limits. This fit
gives the solid lines in Fig. 1(a). The resulting ξ is plotted in
Fig. 1(b). We see that ξ is essentially identical in the two
models, growing monotonically as _γ decreases, reaching
values as large as ξ≃ 20 for our smallest _γ. Such a large
length, many times the microscopic length set by the
particle size, is clear evidence for cooperative behavior
[15]. Thus, our results indicate a growing macroscopic
length scale in CD0, just as was found for RD0. The
exponent z ≈ 5.6 found in Fig. 1(b) must, however, be
viewed with caution since corrections to scaling are large at
the sizes L considered here [16], and the neglect of such
corrections can skew the resulting effective exponents away
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FIG. 1 (color online). (a) Finite-size behavior of pressure p in
model RD0 (open symbols) and model CD0 (closed symbols) at
different strain rates _γ. For _γ ¼ 10−8 we only have results for
model RD0. The crossover from power law behavior at small L to
a constant at large L determines the correlation length ξ, plotted
vs _γ in (b). We see that ξ is essentially identical in both models,
growing monotonically as _γ decreases, reaching values as large as
ξ ≈ 20 for our smallest _γ. As L varies, the number of particles
varies from N ¼ 24 to 4096.
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from their true values at criticality. See our Supplemental
Material [11] for a more in depth discussion.
Pressure analog of viscosity.—We now seek to compute

the critical exponents of the two models, RD0 and CD0, to
see if they are indeed in the same universality class. To do
this we consider data at various packing fractions ϕ and
strain rates _γ close to the jamming transition. We use system
sizes large enough (N ¼ 65 536 for RD0 and N ¼ 262 144
for CD0), such that finite-size effects are negligible for the
data presented here. As in our recent work on RD0 [13], we
consider here the pressure analog of viscosity ηp ≡ p=_γ,
since corrections to scaling are smaller for p than for shear
stress σ [13].
To extract the jamming fraction ϕJ and the critical

exponents we use a mapping from our system of soft-core
disks to an effective system of hard-core disks. We have
previously shown [17] this approach to give excellent
agreement with results from a more detailed two variable
critical scaling analysis [13] for RD0. We use it here
because it requires no parametrization of an unknown
crossover scaling function and so is better suited particu-
larly to CD0 where the range of our data is more limited
(10−7 ≤ _γ) as compared to RD0 (10−9 ≤ _γ).
This method assumes that the soft-core disks at ϕ and _γ

can be described as effective hard-core disks at ϕeffð_γÞ, by
modeling overlaps as an effective reduction in particle
radius [17]. Measuring the overlap via the average energy
per particle E, we take

ϕeff ¼ ϕ − cE1=2y; ð6Þ

where y is the exponent with which the pressure rises as ϕ
increases above ϕJ along the yield stress curve _γ → 0, as in
Eq. (4), and c is a constant. We can then express the
viscosity of this effective hard-core system as

ηpðϕ; _γÞ ¼ ηhdp ðϕeffÞ ¼ AðϕJ − ϕeffÞ−β: ð7Þ

Our analysis then consists of adjusting ϕJ, the exponents y
and β, and the constants c and A in Eqs. (6) and (7), to get
the best possible fit to our data.
In Fig. 2 we show the results of such an analysis for CD0.

Panel (a) shows our raw data for ηp vs ϕ, for several
different _γ, in the narrow density interval around ϕJ that is
used for the analysis. Panel (b) shows the result from fitting
ηp for _γ ≤ 10−6 to Eq. (7). Our fitted values ϕJ ¼ 0.8434,
β ¼ 2.5' 0.2, and y ¼ 1.07' 0.05 for CD0 are all very
close to our earlier results for RD0 (ϕJ ¼ 0.8433,
β ¼ 2.58' 0.10, y ¼ 1.09' 0.01) [17] thus suggesting
that the critical behavior in CD0 is the same as in RD0.
In quoting the fitted values of ϕJ, β, and y we note that

our results for RD0 include data to much lower strain rates
10−9 ≤ _γ as compared to CD0 where 10−7 ≤ _γ. For a more
accurate comparison of the two models, we should fit our
data over the same range of strain rates _γ. We therefore

carry out a fitting to Eqs. (6) and (7) using data in the
interval _γmin ≤ _γ ≤ _γmax. In Fig. 3 we show our results for
ϕJ and β, where we plot the fitted values vs _γmin for two
different fixed values of _γmax ¼ 1 × 10−6 and 2 × 10−6. For
RD0 we can extend this procedure down to _γmin ¼ 10−9,
while for CD0 we are limited to _γmin ¼ 10−7. We see that
for equivalent ranges of _γ, the fitted values of β agree nicely
for the two models, for the smaller value of _γmax. We see
that ϕJ for CD0 is just slightly higher than for RD0. We
cannot say whether this is a systematically significant
difference, or whether ϕJ would decrease slightly to match
the value found for RD0 were we able to study CD0 down to
comparably small _γ. Whether or not the ϕJ of the two
models are equal, or just slightly different, the equality of
the exponents β strongly argues that models RD0 and CD0

are in the same critical universality class.
To return to the results of Tighe et al. [5], we note that

their value ϕJ ¼ 0.8423 for CD0 is clearly different from
our above value of 0.8434. We believe that this difference is
due to two main effects: (i) their data are restricted to
10−5 ≤ _γ and so do not probe as close to the critical point as
we do here, and (ii) their analysis was based on the scaling
of shear viscosity η≡ σ=_γ rather than the pressure viscosity
ηp. As we have noted previously [13] corrections to scaling
for σ are significantly larger than they are for p, and without
taking these corrections into account, one generally finds a
lower value for ϕJ, such as was also found in the original
scaling analysis of RD0 [4]. Their lower value of ϕJ, and
their higher window of strain rates _γ, we believe are also
responsible for the different value they find for the
exponent describing nonlinear rheology exactly at ϕJ,
σ ∼ p ∼ _γq; they claim q ¼ 1=2 whereas our present result
finds a clearly different value q ¼ y=ðβ þ yÞ ≈ 0.30 [17].
Macroscopic friction.—Finally we consider the macro-

scopic friction, μ≡ σ=p. In Fig. 4 we plot μ vs ϕ for several
different values of strain rate _γ. We also show results from
quasistatic simulations [16,18], representing the _γ → 0
limit [19]. We use a system with N ¼ 1024 particles to
more explicitly compare with the results of Tighe et al.,

(a) (b)

FIG. 2 (color online). Pressure analog of viscosity ηp ≡ p=_γ for
model CD0. Panel (a) shows the raw data for _γ ¼ 10−7 through
10−5 in a narrow interval of ϕ about ϕJ . Solid lines interpolate
between the data points. Panel (b) shows our scaling collapse of
ηp vs ϕeff , with ϕJ, β, and the parameters in Eqs. (6) and (7)
determined from the analysis of data with _γ ≤ 10−6. The solid line
is the fitted power law scaling function.
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who used a similar size system.While μ for the models RD0

and CD0 differ slightly at the lower ϕ, we see that near ϕJ
they become essentially equal at the smaller _γ, and both
RD0 and CD0 approach the quasistatic limit as _γ → 0. We
thus conclude that μ is finite as ϕ passes through ϕJ,
consistent with recent experiments on foams by Lespiat
et al. [12].
From our fit to ηp in Fig. 2 we conclude that for both

models CD0 and RD0 the pressure along the yield stress
line, i.e., _γ → 0, ϕ > ϕJ, vanishes upon approaching ϕJ as
p0 ∼ ðϕ − ϕJÞy with y≃ 1.08. Our results in Fig. 4 then
argue that the shear stress along the yield stress line, σ0,
vanishes similarly, so that μ stays finite. However, the
prediction of Tighe et al. is that the yield shear stress
vanishes as σ0 ∼ ðϕ − ϕJÞ3=2. Were this conclusion correct,
we would expect μ ∼ ðϕ − ϕJÞ0.42, vanishing as ϕ → ϕJ

from above. Nothing in Fig. 4, where we see that μ ¼ σ=p
is a monotonically increasing function as ϕ decreases,
suggests any such vanishing of μðϕJÞ. We thus conclude
from Fig. 4 that the predicted scaling of σ0 by Tighe et al. is
not correct, and moreover the two models CD0 and RD0

behave qualitatively the same for both pressure p and shear
stress σ.
To conclude, we have examined the issue of the

universality of the jamming transition for overdamped
shear-driven frictionless soft-core disks in two dimensions.
We have considered two different dissipative models that
have been widely used in the literature: the collisional
Durian bubble model CD0 and its mean-field approxima-
tion RD0. Contrary to previous claims [5], we find clear
evidence that CD0 does exhibit a growing macroscopically
large length ξ that appears to diverge as the jamming critical
point is approached. We further provide strong evidence
that CD0 and RD0 are in fact in the same universality class
with the same critical exponents at jamming, and have
qualitatively the same rheological behavior more generally.
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TRANSVERSE VELOCITY CORRELATION

FUNCTION

The one quantity for which models RD0 and CD0

are clearly different is the transverse velocity correlation
function, gy(x) ≡ 〈vy(0)vy(x)〉. Defining the normalized
correlation, Gy(x) ≡ gy(x)/gy(0), we plot in Fig. 1(a)
Gy(x) vs x, for several different values of strain rate γ̇, for
model RD0 at φ = 0.8433 ≈ φJ in a system of N = 4096
particles. We see that Gy(x) has a clear minimum at a
distance x = #, and that # increases as γ̇ → 0 and one ap-
proaches the critical point. In Ref. [1] # was interpreted
as the diverging correlation length ξ. In CD0 however, it
was found [2] that Gy(x) decreases monotonically with-
out any obvious strong dependence on either φ or γ̇. In
Fig. 1(b) we plot Gy(x) vs x, for several different γ̇, at
φ = 0.8433 ≈ φJ in a system of N = 4096 particles,
confirming this result.
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FIG. 1. Normalized transverse velocity correlation function
Gy(x) = gy(x)/gy(0) at φ = 0.8433 ≈ φJ for a system of
N = 4096 particles. Panel (a) is for model RD0 with shear
rates γ̇ = 10−7 through 10−4. Panel (b) for model CD0 at
shear rates γ̇ = 10−6, through 10−4.

As an alternative way to consider the difference in
this correlation between the two models, we now con-
sider the Fourier transformed correlation gy(kx) =∫
dx gy(x)eikxx, which we show in Figs. 2(a) and 2(b)

for RD0 and CD0 respectively at packing fraction φ =
0.8433 ≈ φJ . For RD0 we see a maximum in gy(kx)
at a k∗x that decreases for decreasing γ̇; # ∼ 1/k∗x gives
the corresponding minimum of the real-space correlation.
For CD0 we show results only for the single strain rate
γ̇ = 10−6 since from Fig. 1(a) we expect no observable
difference as γ̇ varies. We see an algebraic divergence
gy(kx) ∼ k−1.3

x as kx → 0. It is this algebraic divergence
that causes the real space Gy(x) in CD0 to become solely
a function of x/L as the system length L increases, as was
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FIG. 2. Fourier transform of the transverse velocity corre-
lation function gy(kx) at φ = 0.8433 ≈ φJ . Panel (a) is
for model RD0 with shear rates γ̇ = 10−8 through 10−5.
The peak in gy(kx), moving to smaller kx as γ̇ decreases,
is related to the minimum in the real space gy(x) moving to
larger x. The algebraic behavior in panel (b) for model CD0

at γ̇ = 10−6, is consistent with the absence of any apparent
length scale, as reported in Ref. [2]. The number of particles
in these figures are N = 262144 except for the two smallest
shear rates for RD0 for which N = 65536.

reported in Ref. [2].
To try and give a qualitative understanding of this

differing behavior of gy(kx), we can consider how en-
ergy is dissipated in each model. In RD0 the dissipa-
tion is (1/N)

∑
i〈|δvi|2〉 ≈

∫
dk〈δv(k) · δv(−k)〉. For

CD0, however, the dissipation is (1/N)
∑

i,j〈|vi−vj |2〉 ≈∫
dk〈δv(k) · δv(−k)〉|k|2 , where the sum is over only

neighboring particles i, j in contact. Here δv is the
non-affine part of the particle velocity. If we make an
equipartition-like ansatz, and assume that as k → 0
all modes k, and both spatial directions x, y, con-
tribute equally to the dissipation, we would then con-
clude that for RD0 〈vy(k)vy(−k)〉 ∝ constant, while
for CD0 〈vy(k)vy(−k)〉 ∝ 1/k2. Noting that gy(kx) =∫
dky〈vy(k)vy(−k)〉, we then conclude that for RD0 we

have g(kx) ∝ constant as kx → 0, while for CD0 we
have the divergence g(kx) ∝ 1/kx. This saturation of
gy(kx) for RD0, as compared to the algebraic divergence
of gy(kx) for CD0, is what is qualitatively seen in Fig. 2.
The physical reason for this dramatic difference can be

viewed as follows. For CD0, since the dissipation depends
only on velocity differences, uniform translation of a large
cluster of particles with respect to the ensemble average
flow has little cost, thus enabling long wavelength fluc-
tuations. For RD0 the dissipation is with respect to a
fixed background, so uniform translation of a large clus-
ter causes dissipation that scales with the cluster size;
long wavelength fluctuations are suppressed.
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That the observed divergence in CD0 is ∼ k−1.3
x rather

than the simple k−1
x predicted above, suggests that our

equipartition ansatz is not quite correct, and that the
different modes interact in a non-trivial way. That the
exponent of this divergence is not an integer or simple ra-
tional fraction suggests the signature of underlying criti-
cal fluctuations, even though the correlation gy(x) itself
does not yield any obvious diverging length scale.

FINITE-SIZE-SCALING OF PRESSURE

In Fig. 1 of the main article we showed data for the
dependence of pressure p on system size L at different
strain rates γ̇, at the jamming fraction φJ ≈ 0.8433. We
argued that these results provided evidence for a simi-
lar growing, macroscopically large, correlation length ξ
in both models RD0 and CR0. Here we attempt a finite-
size-scaling analysis of this data. We must note at the
outset, however, that our earlier work [3] demonstrated
that it is important to consider corrections-to-scaling to
get accurate values for the exponents at criticality, and
that corrections-to-scaling are in fact large at the smaller
sizes L considered in Fig. 1 of the main article [4]. Since
our data for p(L) is not extensive enough to try a scal-
ing analysis including corrections-to-scaling, our results
based on a fit to Eq. (5) must be viewed as providing only
effective exponents describing the data over the range of
parameters considered, rather than the true exponents
asymptotically close to criticality. We restate Eq. (5),

p(φJ , γ̇, L) = L−y/ν P(0, γ̇Lz). (1)

We can equivalently write the above in the form

p(φJ , γ̇, L) = γ̇y/zνf(Lγ̇1/z), (2)

using f(x) ≡ x−y/ν P(0, xz). We can now adjust the
parameters q ≡ y/zν and z to try and collapse the data
to a single common scaling curve. Plotting p/γ̇q vs Lγ̇1/z

we show the results for RD0 and CD0 in Figs. 3(a) and
(b). For RD0 we find the effective exponents z = 6.5
and q = 0.290, while for CD0 we find z = 6.0 and q =
0.317. The values of z found in the present analysis are
comparable to the value z = 5.6 found in the cruder
analysis in Fig. 1(b) of the main article. Note that for
both models the scaling function f(x) → constant as x →
∞, which gives p ∼ γ̇q, q ≡ y/zν, in the limit of an
infinite sized system.
The closeness of these fitted effective exponents for the

two models is one more piece of evidence that RD0 and
CD0 behave qualitatively the same, and do not have dra-
matically different rheology as was claimed by Tighe et
al. in Ref. [2].
Finally we consider how the effective exponents found

here compare to the true exponents asymptotically close
to criticality. From our most accurate analysis [3] of
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FIG. 3. Scaling collapse of pressure according to Eq. (2) for
models RD0 and CD0.

the critical behavior in RD0, using a large system size
N = 65536 and including the leading corrections-to-
scaling, we have found the critical exponents q = y/zν =
0.28± 0.02 and y = 1.08± 0.03, yielding zν = 3.9± 0.4.
This value of q is in reasonable agreement with that found
above from the finite-size-scaling analysis of p(φJ , γ̇, L).
If we take the value of z ≈ 6 found in the finite-size-
scaling analysis, we would then conclude ν ≈ 0.65. We
note that earlier scaling analyses [1, 5] that similarly ig-
nored corrections-to-scaling found similar values for ν.
However our recent [4] more detailed finite-size-scaling
analysis of the correlation length exponent, which in-
cluded corrections-to-scaling, found that ν ≈ 1, there-
fore implying z ≈ 3.9 as the true critical value. We thus
conclude that the larger than expected value of z found
here from the finite-size-scaling of p is due to the strong
corrections-to-scaling that effect the correlation length at
small L.

As another way to see the effect of corrections-to-
scaling on the correlation length, in Fig. 4 we plot our
results for p vs L at φ = 0.8433 ≈ φJ , as obtained
from quasistatic simulations [4, 6] representing the γ̇ → 0
limit. From Eq. (1) we expect as γ̇ → 0 the behavior,
p ∼ L−y/ν. If we fit the data at small L in Fig. 4 to a
power law, we then find the exponent, y/ν ≈ 1.79. Using
y = 1.08 this then gives ν ≈ 0.60, in rough agreement
with the value of ν obtained from the measured z of our
finite-size-scaling of p with γ̇. If, however, we fit the data
at only the largest L to a power law, we then find the
exponent y/ν ≈ 1.11. Again using y = 1.08, we then get
ν ≈ 0.97, in better agreement with the expected ν ≈ 1.
Fig. 4 thus shows in a very direct way that corrections-
to-scaling are significant for small system lengths L.

To conclude this section, although our finite-size-
scaling of the pressure data in Fig. 1(a) of the main article
is effected by corrections-to-scaling, and so gives a larger
value for the dynamic exponent z than we believe is ac-
tually the case at criticality, nevertheless the correlation
length ξ extracted from this data and shown in Fig. 1(b)
demonstrates that RD0 and CD0 are behaving qualita-
tively the same, and that both have a macroscopic length
scale ξ that is growing (and we would argue diverging)
as the jamming transition is approached.
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FIG. 4. Pressure p vs system length L at φJ ≈ 0.8433 for
quasistatic shearing. Dashed line is a power law fit to the
data at the smallest L, giving an exponent y/ν ≈ 1.79; solid
line is a power law fit to the data at the largest L, giving an
exponent y/ν ≈ 1.11.
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FIG. 5. Pressure p vs. shear strain rate γ̇ at packing fractions
φ = 0.80, 0.8433, 0.85 for: (a) model CD with m = 1 and
m = 10 for N = 262144 particles, and (b) model CD with
m = 1 and model CD0 with m = 0 for N = 1024 particles.

EFFECT OF FINITE MASS ON MODEL CD

We wish to verify that the mass parameter m = 1,
which we use in model CD, is indeed sufficiently small
so as to put our results in the overdamped m → 0 limit
corresponding to model CD0, for the range of parameters
studied here. In Fig. 5(a) we show results for the elastic
part of the pressure p vs γ̇ for model CD, with N =
262144 particles, at three different packing fractions: φ =
0.80, φ = 0.8433 ≈ φJ , and φ = 0.85. We compare
results for two different mass parameters, m = 1 and
m = 10. We see that the results agree perfectly for small
γ̇; significant differences are only found for γ̇ ≥ 10−3

which is higher than the largest shear rate used in our
scaling analysis. In Fig. 5(b) we similarly compare results
for model CD with m = 1 with explicit results for model
CD0, as obtained from simulations using the more costly
matrix inversion dynamics for m = 0. In this case we are
restricted to N = 1024 particles because our algorithm
for CD0 scales as N2. We see that in all cases there is
no observed difference between the two models. Thus we
conclude that our results from CD with m = 1 are indeed
in the overdamped m → 0 limit.
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