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We model a two-dimensional periodic array of Josephson junctions in a transverse magnetic field by
the uniformly frustrated XY model. We report the results of extensive nonequilibrium simulations of the
array within the resistively-shunted-junction model. I-V curves are computed for the unfrustrated and
fully frustrated cases, and consistency with recent experiments is found. For the fully frustrated case,
new theoretical ideas are presented which show the Ising degrees of freedom to dominate nonequilibrium

behavior near T..
PACS numbers: 74.60.Ge, 64.60.—i, 74.50.+r, 85.25.Dq

A two-dimensional periodic array of Josephson junc-
tions in a uniform transverse magnetic field provides a
direct experimental realization' of the class of uniformly
frustrated XY models.>®> Such models display a rich
range of critical behavior, including a Kosterlitz-
Thouless (KT) transition® in the unfrustrated case, and a
combined KT-Ising transition in the fully frustrated
case.’® Theoretical work>® has focused primarily on
the equilibrium properties of these models. Experimen-
tal studies®’ make nonequilibrium measurements, par-
ticularly current-voltage (I-V) curves, and resistivity. In
this paper we present a theoretical analysis of the none-
quilibrium case, based on numerical simulations and
simple stability arguments. The interaction of excita-
tions of the ordered, field-induced, vortex structures
present in equilibrium, with an applied external current,
results in resistance due to net vortex motion in the none-
quilibrium driven state. Understanding this phenomenon
is of great fundamental interest, as well as important for
making closer contact with experiment.

We consider a two-dimensional square N XN array of
lattice constant a, with a Josephson junction on each
bond. Along one edge of the array (x=0) a uniform
current [ is injected into each node, while along the op-
posite edge (x =N) a current I is extracted from each
node. Periodic boundary conditions are taken in the y
direction. The pseudo-Hamiltonian is

H = —J0<2:)COS(9f —Gj —A[j)
i
—J2(0¢, =0) = 0, =n,ip) . (1)
Iy

The first term in (1) gives the usual uniformly frus-
trated XY model’: 6; is the phase of the superconduct-
ing node at site i =(iy,i,), (ij) is the junction formed by
nearest-neighbor nodes i,J, A,~j=(2e/hc)f,jA-d1 is the
integral of the vector potential from node i to j, and the
bare critical current of an isolated junction is
Io=(2e/h)Jo. The A;; obey the constraint that the sum

around any unit cell of the array is constant
A,‘j +Ajk +Ak[ +A[,' =27l'f N

where f=Ha?/®, is the number of flux quanta & of
external magnetic field A per unit cell of the array. The
unfrustrated case is f=0. The fully frustrated case is

= 4. The second term in (1) gives the effects of the
external current, I =(2e/h)J, making (1) the analog for
arrays of the “washboard potential,” commonly used for
a single junction.® Minimization of % with respect to
the 6; gives supercurrent conservation at each node, the
requirement for a time-independent solution to the dy-
namics. Defining the phases to have values
— o0 < f; < +oo, this term makes # unbounded, with
ever lower minima at increasing 6;. Thermal activation
of the system over barriers separating equivalent local
minima of #, differing only by shifts of 27 in the 6;, will
provide the mechanism for an average rate of phase slip-
page dA6O/dt, and hence voltage V, across the array.

We assume the resistively shunted-junction (RSJ)
model for the dynamics of an individual junction®

h d(ex'—ej)
Vi 2e dt
=R,,[I,-j—10sin(0i—Gj—Afj)+n;j] , (2)

where V;; is the voltage across junction {ij), R, is the
normal resistance, [;; is the total normal plus super
current through the junction, and n;; is a thermal noise
current with

<7],‘j(t)17,'j(l')) = (2T/R,, )5([ —t') s

with T the temperature. 1o and R, are implicit functions
of temperature and magnetic field, and these dependen-
cies must be known for detailed comparison with experi-
mental junctions. The RSJ model should be valid when
capacitance effects may be ignored, as in the proximity
coupled junctions of Ref. 7(b). It may be more ques-
tionable for tunnel junctions as in Ref. 7(a).
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Following Shenoy,® we sum (2) over all junctions exit-
ing a given node. Inverting the resulting matrix equation
gives the equations of motion for the 6;

h db; 2e OH

—R.YGy |2 > 3)
2e @ R2Gh | 30, %'7“*“

where # is as in (1) and Gj; is the two-dimensional lat-
tice Green’s function with periodic boundary conditions
in the y direction and free boundary conditions in the x
direction. As X, 6; is a constant of motion, the singular
piece of the Green’s function, corresponding to a uniform
rotation of all phases, has been subtracted out in the
construction of G'° For large separations, Gj;
=(1/20)In(|r; —r;|/a). The variables /i range over all
directions exiting a given node.

We have numerically simulated'® the stochastic equa-
tions of motion (3) as a function of temperature 7, and
applied current I, for both the unfrustrated (f=0) and
the fully frustrated (f= 5 ) cases. For each run we have
computed the average voltage drop V across a unit cell of
the array

V/R,, =1_10<<Siﬂ(0,‘_9i+;_AI-‘,-+,\:)>>, (4)

where ((---)) is a combined thermal average and aver-
age over all junctions on the horizontal bonds of the lat-
tice (the direction of the external current). The equation
of motion was integrated with discrete time steps of
At=0.05QeR,Io/h). N,=10° time steps were used to
compute averages. Both Az and NV, were varied to verify
that steady state was achieved. Arrays of length
N =6-16 were studied, and for the range of current re-
ported, finite-size effects appear negligible for the largest
arrays. Standard block averaging and independent runs
were used to estimate sampling errors. We have been
able to study voltages over 3 orders of magnitude,
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FIG. 1. Numerically computed I-V curves for the Josephson

junction array for the (a) f=0 and (b) f=7% cases, as func-
tions of temperature kg7/Jo. Solid lines are guides to the eye
only.

674

V/R,Io~1— 0.005, with typical errors of order 0.0025.
Calculations were done on a vectorized Cyber 205, with
computation time growing as N* For N =16 a typical
run took 0.7 CPU hours.

The resulting I-V curves for f=0 and % are shown in
Figs. 1(a) and 1(b). For f=0, theoretical arguments'!
predict a power-law relation for 7' < 7T,

V~1'*teM () =2Y(T)/T, (5)

where Y(T') is the helicity modulus, or renormalized
spin-wave stiffness of the XY model. In Fig. 2 we plot
a(T) for £=0. Solid circles are results from power-law
fits to our data in Fig. 1(a). We estimate an error of
25% in these fits, due to statistical error in computed V.
The dashed line is the theoretical prediction (5) using
numerical results for Y(7') from the equilibrium simula-
tions of Ref. 3(a). A jump in a(T) from the value 2 to 0
at T, results from the universal discontinuous jump in
Y(T.), characteristic of the KT transition of f=0.'" In
any experiment or simulation, this jump will be smeared
out due to finite current effects. Agreement with theory
has been observed experimentally,” and as seen in Fig. 2,
our simulation results are consistent.

Following recent experimental analysis,” we have also
fitted our I-¥ data for f= % to a power-law form. Our
results are shown as squares in Fig. 2, and are seen to lie
within the scatter of the experimental data from van
Wees, van der Zant, and Mooij’® (triangles) and
Carini’® (open circles). a(T) appears to go continu-
ously to zero at T, and disagrees with Eq. (5) (shown as
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FIG. 2. Exponent a(T) of the current-voltage relation
V~1I1'"9vys Jo/T. For the unfrustrated case: solid circles are
results from fits to the data of Fig. 1(a); dashed line is the
theoretical prediction (5). For the fully frustrated case:
squares are results from fits to the data of Fig. 1(b); dot-
dashed line is from Eq. (5); triangles are experimental results
of van Wees, van der Zant, and Mooij [Ref. 7(a)]; open circles
are experimental results of Carini [Ref. 7(b)]. Arrows indicate
transition temperatures 7.(f=0) and 7.(f=7%). Estimated
errors of 25% are shown as error bars on our numerical results.
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dot-dashed line), where now Y is taken to be the helicity
modulus of the fully frustrated model.3®

The lack of agreement with (5) for the fully frustrated
model can be understood in terms of the following
theoretical arguments. The uniformly frustrated XY
model with external current corresponds to an equivalent
Coulomb gas problem, in a uniform external electric
field oriented perpendicular to the applied current. The
Coulomb gas Hamiltonian is

7{Cg= —ZEZJOZn,-G,’jnj _27L'Janl',"§’ , (6)
ij i

where n;=m; —f are fractional charges and
m;=0,%£1,%2,.... Neutrality X,;n, =0 is imposed
and G' is again the lattice Green’s function. The first
term in (6) is the usual Coulomb gas.? The second term
is a dipole interaction between the charges n; and a uni-
form electric field.!" The helicity modulus Y of the orig-
inal XY model is related to the dielectric function e of
the Coulomb gas'? by Y(T')/Jo=¢"'(T).

For the fully frustrated case, f= %, at zero current
J =0, the doubly degenerate ground state is a lattice of
alternating n; =+ R charges. At low tempera-
tures the model possesses quasi-long-range order in the
phase 6;, with finite Y, and long-range order in a chirali-
ty variable that measures the ordering of the ground-
state charge lattice y=(/N)X;n(—1)%"" At a
temperature T, the helicity modulus goes to zero with a
discontinuous jump, Y(7.)/kgT,= 2n. The chirality {y)
vanishes with Ising-type critical behavior’® at a tem-
perature 7;= T.. Numerical'® and theoretical'* argu-
ments indicate 77 is extremely close or equal to 7.

At finite current I =(2e/A)J, the low-temperature or-
dered phase becomes unstable with respect to two
different types of excitations. The first, Fig. 3(a), we call
KT type. It consists of the interchange of a given pair of

+ 5, — 5 charges with separation r. For large r, the
free energy for such an excitation is
Fpai,(r)=i(Joln|r/al —Jr-y). (7)
e(T)
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FIG. 3. Instabilities of the fully frustrated XY model with
finite current. (a) KT-type excitations are formed by the inter-
change of a single pair of charges, and are unstable for separa-
tions r>r.=Jo/J. (b) Ising-type excitations are domains
formed by flipping nearest-neighbor pairs in the direction per-
pendicular to the applied current, and are unstable for sizes
L>L.~e€o/nJ{y.

A pair oriented in the y direction with separation
r > r.=Jo/J will decrease its free energy by increasing r
and unbinding. The rate for such pair unbinding is

_Fpai,(r,)/k,,T"_Jan/kBT. ®)

In Ref. 11(a) it was shown that the unbinding and
recombination of pairs gives rise to a density of free
charges ny~ (W) /2. Making the analogy between
the charges in the Coulomb representation and vortices
in the phase representation, we have that the resistivity
due to pair unbinding is R =V/I~n;~J"" “s7 the ori-
gin of Eq. (5).

A second instability results from excitations of Fig.
3(b), which we call Ising type. These consist of a
domain of the oppositely ordered charge lattice, within
the ordered phase. When the domain is formed by inter-
changing all + §,— + nearest-neighbor pairs in the
same direction parallel to §, a domain of area L2 will
have a net dipole moment {y)L? with respect to the or-
dered phase. The free energy to create such a domain is
therefore

Fsing(L) ~o(T)AL —27J )L ?/¢, )

Wpair""‘e

where o(T) is the surface tension between the two or-
dered phases. The system is unstable for domains with
L> L.=o0¢/nJ{y). Once a domain reaches a size L > L,
it is energetically favorable for it to grow, filling the en-
tire array, and resulting in a net shift of the ground-state
charge lattice by one site, with a reversal in the sign of
{x). The Josephson array will have a net shift of vortices
perpendicular to the applied current, resulting in a net
voltage. The rate for nucleating such critical domains is

W ising ~€ —Flsi"g(Lc)/k5T~e _40‘26/2RJ<1)/(BT. (10)
One would thus expect a contribution to the voltage from
these Ising excitations V ~ Wi It is problematic,
however, to fit our numerical results to the form (10).
For too small current J, finite lattice effects and finite
simulation time prevent an accurate computation of volt-
age (when V/R,1,50.005). For too large J~J., where
J.=0.35J¢ is the T =0 critical current of the array,!’ o
has a strong anisotropic dependence on J as the metasta-
ble minima of # (1) vanish. For large J the isolated
domain nucleation picture may also become invalid. The
exact range of J where (10) should hold is not clear,
even for the simpler analogous case of the nearest-
neighbor Ising model in a magnetic field.'® However,
measurements of the chirality {y) during our simulations
do indicate the Ising excitations to be playing a consider-
able role for the range of J of our numerical data. For all
applied currents which produced a statistically clear
nonzero voltage, {y» was observed to flip sign over the
course of the simulation with a rate increasing with J.
Thus the nucleation of these Ising domains causes the
system to switch between the two ground states of the
system, destroying the Ising order present in equilibrium,
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after a sufficiently long time.

Although the above considerations make difficult an
expression for the I-V relationship in the fully frustrated
model, the following general features must remain true.
For a fixed temperature T, as current [ is decreased the
pair mechanism must eventually dominate as the alge-
braic rate (8) will decay more slowly than the exponen-
tial rate (10). However, for fixed I, as T— T, , a tem-
perature will eventually be reached at which the Ising
mechanism msut dominate, since Y(7,.”) and hence
F pair (rc) remains finite, while

Flsing(Lc)~O'2(T)/<x)~ | T—T. | 2v=p__, 0

for the two-dimensional Ising model. Thus for any ex-
perimental measurement at finite 7, it will be the Ising
excitations that dominate the nonlinear I-V curves
sufficiently close to T.. The prediction (5) will no longer
hold and thus it will be difficult to extract information
about the discontinuous jump in Y(7.”) from such mea-
surements.

Although our simulations have been based on the par-
ticular dynamics of the RSJ model, the energetic stabili-
ty arguments above should have more general validity.
Thus even for arrays in which capacitance may not be
ignorable, one would expect to see significant differences
between the unfrustrated and fully frustrated cases, due
to the crucial role of the Ising-type excitations.
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