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We carry out Monte Carlo simulations of the two-dimensional classical neutral Coulomb gas of in-
teger charges on a square lattice, as a function of temperature and chemical potential, and find new criti-
cal behavior. At low temperature, as density increases, the system has a first-order transition to an
ordered-charge lattice. As temperature increases, this dense phase has a Kosterlitz-Thouless transition
followed by an Ising transition. The first-order line joins the line of Ising transitions at a new tricritical

point.
PACS numbers: 05.50.+q, 64.60.—i

The two-dimensional classical neutral Coulomb gas
(CG) of integer charges has been the subject of much
theoretical research.! Via the mapping to the 2D XY
model,? the CG has served as a model for the behavior of
vortices in superconducting and superfluid films.> In the
low-density limit, the CG has a Kosterlitz-Thouless
(KT) transition.* As the temperature 7 is increased, the
inverse dielectric function ¢ ~'(T) has a universal
discontinuous jump to zero.®> At higher densities, howev-
er, there have been suggestions that the transition may
be more complicated. Several workers® have introduced
modified XY models and found evidence for a first-order
transition. More recently, Minnhagen’ has studied
higher-order corrections to the KT scaling equations in
the continuum CG, finding nonuniversal jumps in ¢ ~' at
high densities. This has been associated with a first-
order liquid-gas transition in the charge density.® A
direct simulation of the CG in the dense limit is there-
fore of great interest. Uniformly frustrated XY models,
which describe Josephson arrays in a magnetic field, can
be described in terms of a dense Coulomb gas of frac-
tional charges.’ Non-KT features of the transition have
been found in these systems, due to the domainlike exci-
tations which become possible in these dense systems.”!!
Study of the dense-integer CG may thus improve our un-
derstanding of these uniformly frustrated XY models as
well.

We present here the first direct Monte Carlo simula-
tions of the 2D neutral-integer CG where the chemical
potential is directly varied to study the dense limit. We
find new critical behavior, including a new tricritical
point. The Hamiltonian we study is

H=12qV'(ti—r)g—uXqe’+X(g—g¢7). (1)
12Y) i i

The first term above is the ordinary Coulomb gas: The
sum is over all pairs of sites of a square lattice;
V'(e)=V(r) —V(0), where V(r) solves D;V(r;—r;)
= —2nd;; with D;; the lattice Laplacian, is the two-
dimensional Coulomb potential with singularity re-
moved; ¢; =0, £ 1, + 2, ... is the integer charge at site /;
and neutrality X;q; =0 is imposed. The second term
controls the chemical potential for charges; increasing u

increases the average charge density. The third term
helps suppress charges with |g;| > 1 and is necessary to
stabilize the system in the very dense limit.

Our results are summarized by the u-T phase diagram
shown in Fig. 1. At small u and 7, in the insulating
phase A, the ground state is the vacuum and charges ex-
ist in bound neutral pairs. As T increases from within
A, there is a KT transition (dashed line) to a conducting
phase B determined by the vanishing of € !. At small T
within A, as u increases (increasing density), there is a
first-order transition (thick solid line) to an insulating
phase D. In D, the ground state is an ordered-
checkerboard lattice of + 1, — 1 charges, which is doubly
degenerate and characterized by an Ising-like order pa-
rameter M (analogous to the staggered magnetization of
an Ising antiferromagnet). As T increases within D,
there is first a KT transition (dashed line) to a conduct-
ing phase &, measured by the vanishing of € ~!. This is
followed by a transition to phase B, measured by the
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FIG. 1. Phase diagram for the classical neutral-integer-

charge 2D Coulomb gas, as a function of temperature T and
parameter u. Increasing u increases the average charge densi-
ty. Dashed lines are Kosterlitz-Thouless transitions where the
dielectric function e diverges. The thick solid line is a first-
order transition to a charge lattice ground state. The thin solid
line is an Ising-like second-order transition at which the charge
lattice melts. @ is a tricritical point where the Ising and first-
order lines meet. The KT lines meet the first-order line at a
temperature below €.
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vanishing of the Ising order parameter M (thin solid
line). This combination of XY and Ising transitions is
reminiscent of behavior in the fully frustrated XY mod-
el.>~!!" The first-order line and the Ising line meet at a
new tricritical point @. The KT lines meet the first-
order line at a temperature below the critical point €.
At both KT lines, we find no strong evidence for
nonuniversal jumps in € "'

The first-order line is easily explained. Taking the
Fourier transform of the first two terms in the Hamil-
tonian (1) gives # =X (§ Vi —u)gxq —x. When u be-
comes greater than ming ( V), the system will order in
a state with nonzero average qx. As min(V;)=nr/4 at
k =#X+ny, there is a discontinuous change in ground
state to the checkerboard lattice at u. =nz/8. The third
term in 7, Eq. (1), stabilizes the lattice at unit charges.

The rest of the phase diagram we map out using
Monte Carlo simulations on square lattices with N =L?
sites, and periodic boundary conditions. ¥ (r) is comput-
ed exactly by Fourier transform.'® At each step of the
simulation, a nearest-neighbor pair (i,j) is selected at
random; g; is increased by one, and g; decreased by one.
This excitation is then either accepted or rejected ac-
cording to the standard Metropolis algorithm.

The line of Ising transitions in the dense phase is given
by observing a temperature at which the specific heat C
scales logarithmically with size (from L=4 to 16) at
values ¥ =0.45, 0.5, and 0.6. The Ising order parameter
M=(1/N)X;q:(—1)%*" is also observed to vanish on
this line. At u =0.4, however, where the Ising line meets
the first-order line, distinctly non-Ising scaling is ob-
served. As the Ising and first-order lines appear to meet
tangentially, we assume @ to be a tricritical point rather
than a critical end point.

Scaling of the free energy f= — (1/N)InZ near a tri-
critical point is given by '?

f(gi.g2,h,L)Y~L ~4f(g\L”" g,L”* hL" 1) , (2)

where the scaling fields g,(T,u) and g,(T,u) give the
most, and next most, relevant directions in the u-T phase
space (y;>y,>0); gi.=g2 =0, and A is a field which
couples to the order parameter M. Assuming that the T
direction at @ has a nonzero projection onto g,, we have
for the leading finite-size behavior of the specific heat
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FIG. 2. (a) Ratio of specific heats C(L)/C(L') and (b) ratio
of charge-density susceptibilities y,(L)/x,(L"), plotted along a
trajectory perpendicular to the phase boundary (see Fig. 1)
passing through the point @. Three different sets of lattice
lengths L:L' with equal ratio 5 are shown. The common inter-
section of the three curves is at (uc,(L/L)”' ™). Both C and
Xq show the same scaling behavior.

0.401
u

where K=1/T. From Egs. (2) and (3), plots of
Rc(L,L')=C(L)/C(L"), along a trajectory in the u-T
plane, for different L and L', but the same ratio L/L’,
should intersect only at the critical point'?® @, giving the
value Re=(L/LY?' ™% In Fig. 2(a) we plot C(L)/
C(L') for ratios 12:6, 16:8, and 20:10 as a function of u,
computed along a trajectory passing through € roughly
perpendicular to the phase boundary. The three curves
do indeed intersect at a single point u. =0.4, T.=0.138,
with Rc=2.15+0.25, giving 2y;—d=1.10%0.16.
Since d =2, we have y,=1/v=1.55+0.08.

Similarly, if 4 has a nonzero projection on g,, then the
charge-density susceptibility,

s ([~ (57

2{_‘
a—Tg 2~L2y|_d, (4)
u

should have the same scaling behavior as the specific
heat C. In Fig. 2(b) we plot R, (L,L")=yx,(L)/x,(L")
along the same trajectory as before, for the same L:L'.
Again all curves intersect at the same single point
(u,T.), with R,=2.2+0.3 giving y, =1.57 +0.10.

Similarly, one can compute at the point @ the second
derivative of f along any direction € in the T-u plane,
Sfee=(E- V(T u.),

(5)

/e T2(1+s2)

where s=du/dT is the slope of the unit vector €. For any direction with €- =0, we expect the scaling L' ™% For
é-8, =0, however, the scaling L > s expected. By varying the direction € we find the most relevant direction g, as
that giving the greatest growth in f,, with L; we find the direction g, as that of least growth in f,, with L. In Fig. 3 we
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FIG. 3. Second derivative of the free energy f(T,u), in the
direction €, evaluated at the critical point @, as a function of
lattice length L. For the T and u directions (corresponding to
specific heat C and density susceptibility y,) we have the ap-
proximately linear scaling L¥'7?—L (solid line is the best
linear fit) found from Fig. 2. For direction g, tangent to the
phase boundary, we have the scaling Lzyz_d, with y; <y, cor-
responding to the second most relevant direction in the u-T
phase space. The most relevant direction g, lies perpendicular
to the phase boundary.

plot this directional second derivative of the free energy
at the critical point @, for directions € =g,, T, 14, and &,
evaluated by computing the appropriate correlation func-
tions (5). We find, as expected, that g, lies tangential to
the phase boundary. g, is found to lie perpendicular to
the phase boundary. For é=g,, T, and d, we see the ap-
proximately linear scaling with L implicit in the results
of Fig. 2. Along é=g,, the scaling is consistent with a
less divergent, sublinear behavior. The relatively large
error bars along this direction, however, prevent a mean-
ingful estimate of y,. The data shown in Figs. 2 and 3
represent Monte Carlo runs of 200000 passes through
the lattice, with an initial 10000 passes discarded for
equilibration. Error bars are estimated by block averag-
ing.

To find the order-parameter exponent y,, we have
computed the square of the order parameter M2 along
the same trajectory as for C and y, above. As this tra-
jectory is along the most relevant direction g, we expect
the scaling

2 a2

MZ-T% =%g71-§ =% "0l —u)L’'].  (6)
In Fig. 4 we show the results for lattice lengths from
L=6 to 16. Here, runs of 800000 passes were used for
greater accuracy. The data for various L in Fig. 4 all ap-
pear to intersect at a single point, giving d —y, =p/v
=0. We have fitted the scaling form (6) to a fourth-
order expansion in u —u,, using the procedure of Ref.
14. To test whether we have reached the large-L scaling
limit, we drop data from successively lower values of L
until the fitted parameters remain constant. In this way,
using sizes from L =10 to 16, we find the best fit (solid
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FIG. 4. Square of the Ising order parameter,

M=(/N)Xiq:(=1) " vs u along the same trajectory as
for Fig. 2, for various lattice lengths L. The intersection of all
the curves close to a common point indicates a scaling exponent
B=0. Solid lines are best fits to an expansion of the scaling
function (6) using data from L =10 to 16.

lines in Fig. 4) to yield d—y,=0.04%0.02,
y1=1.67+0.08, and u.=0.4=10.0003, giving good
agreement for y; and u. as found in the analysis of C
and y,.

As the Hamiltonian (1) has the symmetry of an anti-
ferromagnetic Blume-Emery-Griffiths model,'* one
might expect that the point € is an Ising tricritical point.
However, the exact exponents of the ordinary Ising tri-
critical point are'? y1=1.8, d —y, =0.075. If we com-
pare the directly measured quantity 2y, —d, our finite-
size scaling gives 1.10 £ 0.16 versus the Ising tricritical
value of 1.6. We thus believe the point @ is not the usual
Ising tricritical point, and perhaps reflects the effects of
the long-range interaction between charge-density fluc-
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FIG. 5. Inverse dielectric function € ~'(T) for constant (a)

u =0.38 (just below first-order line) and (b) u=0.4 (just above

first-order line) for various lattice sizes L. The common inter-

section of the curves for different L locates Txr. Intersection

with the dashed line 4T gives the Kosterlitz-Thouless predic-

tion € '(T.”)=4Txr. Good agreement with this universal
jump is found.
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tuations.

Finally, the KT transitions (dashed lines) in Fig. 1
have been determined by calculating the inverse dielec-
tric function,®'%!!

2
Tk?

which we evaluate at the smallest kK =2x/L in a finite lat-
tice. Since ¢ ~! maps onto the helicity modulus of the
XY model,’ the Josephson scaling relation'® gives to
leading order ¢ '(T,L)~L? *HIL/E(T)]. As d=2,
the intersection of the curves of different L locates Tkr.
In Fig. 5 we plot e "'(T,L) at values u =0.38 just below
the first-order line, and u =0.4 just above the first-order
line. In both cases the value of Tkt given by scaling, lies
very close to the KT prediction e ~'(Tkt) =4Tkr, as
determined by the intersection with the dashed line 47.
We thus find no strong evidence'’ for nonuniversal
jumps in €~ !. We note, however, that the KT lines are
terminated by the first-order line at a temperature only
slightly lower than the value T*=0.14 below which
Minnhagen predicts nonuniversal behavior.” Thus, devi-
ation from the universal value, if it exists, might be too
small for us to have detected.

We have benefited greatly by discussions with Profes-
sor P. Minnhagen, Professor E. Domany, Professor D.
Mukamel, Professor K. K. Mon, and Dr. Y.-H. Li. This
work has been supported by the Department of Energy
under Grant No. DE-FG02-89ER 14017.
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