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Helicity Modulus and Meissner Effect in a Fluctuating Type-II Superconductor

Tao Chen and S. Teitel
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 28 May 1993)

The helicity modulus for a fluctuating type-II superconductor is computed within the elastic
medium approximation, as a probe of superconducting phase coherence and the Meissner effect

in the mixed state.

We argue that at the vortex line lattice melting transition, there remains

superconducting coherence parallel to the applied magnetic field, provided the vortex line liquid
retains a finite shear modulus at finite wave vector.

PACS numbers: 74.60.Ge, 64.60.—i, 74.40.+k

In the high T, superconductors, fluctuation effects are
important over a wide region of the H-T' phase diagram
[1-4], resulting in the melting of the vortex line lattice
well below the mean field H., line. It is generally be-
lieved that the resulting vortex line liquid is not truly
superconducting, and has only a smooth crossover to the
normal state [1,2]. Recently, however, Feigel’'man and
co-workers [5], using the 2D boson analogy, have argued
that for large magnetic penetration length A this line lig-
uid can retain superconducting coherence in the direction
parallel to the applied magnetic field. This conclusion
has been supported by recent numerical simulations [6]
in the special A — oo limit. Experimental evidence for
such a possibility is suggested in new studies of MoGe/Ge
multilayers [7]; below a well defined “decoupling temper-
ature” Tp, resistivity perpendicular to H remains linear
as in a vortex line liquid, while resistivity parallel to H
shows the onset of strong nonlinearities indicating coher-
ence between planes. To understand such experiments, it
is therefore vital that one establish the properties of the
thermodynamic states which may exist in the fluctuating
vortex line system.

In the present work we present a simple, physically
appealing, analytic demonstration that, for any A, su-
perconducting phase coherence parallel to the magnetic
field does indeed exist in a hezatic vortex line liquid [8];
or more generally in any vortex line liquid state which re-
tains a finite shear modulus at finite wave vector. Work-
ing within the elastic medium approximation we compute
the helicity modulus [9], which is equivalent to the lin-
ear response coefficient between a perturbation in applied
magnetic field and the resulting supercurrent. Hence it
directly probes one of the most characteristic properties
of a superconductor, the ability to screen out magnetic
fields. Parallel to H, we find a total screening as in the
Meissner effect, which we show persists into the hexatic
line liquid state. Our calculation also helps clarify recent
controversy (3,4,10-12] as to whether or not fluctuations
destroy superconducting coherence even in the vortex line
lattice state. For simplicity we carry out our calculation
for an isotropic superconductor; the extension to the uni-
axial case is straightforward. We work within the London
approximation which is valid provided one is not too close
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to ch.

The Landau-Ginzburg Helmholtz free energy [13] for
an isotropic uniform superconductor, within the London
approximation of constant wave function amplitude, can
be written as

M= %Jo/d3r{|ve —AP+ NV XA, ()

where 6 is the phase of the superconducting wave func-
tion, A is the “bare” magnetic penetration length, Jo =
@3/16m3)2 with ¢ the flux quantum, and (¢o/27)A is
the magnetic vector potential. V x A = 2xf, where
f(r) = B(r)/¢o is the local density of magnetic flux
quanta. The partition function Z is computed averag-
ing over independently [14] fluctuating § and A, subject
to the constraint that (f(r)) = fZ for a uniform average
magnetic induction BZ. In evaluating Eq. (1), the in-
tegration is to be cut off at the core of a vortex line, so
that the energy stays finite.

In terms of the supervelocity v = V6 — A, and its
Fourier transform v, = [ d®r e'37v(r), the helicity mod-
ulus is defined [9] as the linear response coefficient be-
tween induced supercurrent Jyv and an applied twist in
phase. If we take vq — v, + 6vgft in Eq. (1), then the
helicity modulus in direction f is

8%F J
gm0 =Jo {1 - V_gw('uqu”—qn)} » (2)

Tﬂ(q) - a(évq)z
where F = —T'InZ is the total free energy, and V =
L,L? is the system volume. Because of the symmetry
with which V6 and A enter v, T, equivalently gives the
induced supercurrent that flows in response to an ap-
plied perturbation in magnetic field, given by the vector
potential A, = dvgft. In evaluating Y,(q), the phys-
ically relevant case is the limit g, — 0. This follows
from the convention of Baym [15], where to describe a
system with a current flowing in the direction fi, the ap-
propriate thermodynamic limit is to take the system size
L, — oo first, followed by L, — oo for the directions
U L fi (equivalently, q - §A4 = 0 in the London gauge).
Defining the vortex line density n by V x V8 = 27n,
one can write an arbitrary configuration v, in gauge in-
variant form as
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o q X (ng —fy) where 6f; = f, — 0 is the fluctuation of the magnetic flux
Vg = 2mi {qxq + q? } ) (3) density away frorfl the value fé’ =ng,/(1+ )\g‘g;]), which
X is a smooth function which gives the longitudinal part ~ Minimizes the Hamiltonian for a given vortex configura-
of v, while the transverse part of v, is determined by tion n,. The partition sum is now an average over all
Vxv = 2r(n—f). Substituting Eq. (3) into the Hamilto- ~ Smooth functions x,,all 6f; such that q- 6f, = 0 (so that
nian (1), and decoupling the n, and f, degrees of freedom V -B = 0), and all vortex configurations n. The vortex

by completing the square in f,, we get line interaction in Eq. (4) is just the familiar London
9 result [13,16].
H= 2m°Jo Z{QZXqX—q + _15(1 + \2g?)6f, - 6F_, The helicity modulus is evaluated by substituting Eq.
VT < q (3) into Eq. (2), and using the Hamiltonian (4) to evalu-
22 ate the averages over x, and 6f;. Taking the limit g, — 0
R Aeg2 e e (4)  one gets

|

JoA?g? 1— 4m2JoA? (B X @)a(ft X @)g(Ngan—gp)
vT 1+ A2¢2 '

qL“_"}O Tu(q) = lim

2.—0 1 + A2¢2 (5)

For an uncharged superfluid or spin model [9] phase ! tion [18] and average over n(r) as if it was a continuous
coherence is indicated by a nonvanishing T, in the limit ~ function, subject to the constraint that vorticity is con-
q — 0. For the superconductor, however, the gauge field served q - n, = 0. Using the Hamiltonian (4) one gets
A is free to adjust itself to screen out the applied phase = Y,(q) = 0 as expected. At low T, one can evaluate the
twist (or perturbation §A), and so even in the supercon-  vortex line correlations using the elastic approximation
ducting state T, (q — 0) ~ ¢?, as seen in Eq. (5) above  for small fluctuations about a vortex line lattice. If u;(2)
[17]. In fact, if no vortex lines are present (ny = 0), Eq.  is the transverse displacement of vortex line i at height
(5) just gives the familiar total screening response of the  z from its position R; in the vortex line lattice, then
Meissner state [15]. With the presence of vortex lines in  n(ry,z) =) ,6(r1 — R; — u;(2))(2 + du;/dz). To eval-

the mixed state, we can generalize the form of the Meiss-  uate Eq. (5) to lowest order in T, it is only necessary to
ner response, by defining a renormalized coupling (JA?)g  consider the expansion of n, to linear order in the strain,
and penetration length Ar such that q - ug. For small ¢ > 0 we have
2y 2 . -

lm 7, = (T (6) B = £(q 1 = gsg), @

? RY where r;, R;, and u; lie in the z-y plane, ¢, and q,
where Ag and (JA\)gr may depend on the direction §.  are the components of q parallel and perpendicular to Z,
Thus to examine superconductivity it is necessary tocon- and uq = fY, [dz e'@=2+a1Ri)y,(3). Correlations of
sider the form of T, at small but finite q. u, may be evaluated using the elastic Hamiltonian, as

At high T, one can make a hydrodynamic approxima- | derived by Brandt [16],

1
Hel = V% Z {(caaq? + c11¢3 uqru—qr + (C2492 + C6643 ) UqTU—qT } » (8)
q

where ugr, and ugr are the components of u, parallel and transverse to q., and cs4(q), c11(q), and ces(q) are the
tilt, compression, and shear moduli, respectively.

Substituting Eq. (7) into Eq. (5), and evaluating the displacement correlations using He1, we find for perpendicular
and parallel responses

. Jo)\2q2 B2 q2
lim T =1 1-— , 9
4o =(q) o T+ A2q2 4m(1 + A2¢?) caaq? + c1192 ©)

. JO }\2 q2 Bz q2
lim Y = li 1- Z . 10
P :(@) o0 T+ A2q2 4m(1 + A2¢2) caaq? + ce6q? (10)

For the transverse response Y ;(q) there are two cases |
to consider: (i) q = g2, and (ii) q = ¢. In (i) the per- ' (ii) T, depends on c11. We consider in detail case (i). A
turbation 6A, gives a magnetic induction along §, oscil-  comparison of Eq. (9) with Eq. (6) shows that (JA?)g
lating in the % direction. It is thus a tilt modulation of  is determined by csa(q = 0), while Ag is determined by
the original induction BzZ. In (ii), the perturbation gives  dcs4(0)/ dg?. Using the result of Brandt [16],

a magnetic induction along %, which oscillates along ¥; B2 1 dH
it is thus a compression modulation of Bz. Accordingly, Cag = —— [ — + ( i _ 1)] ; (11)
Eq. (9) shows that in (i) T, depends on c44, while in dr [1+ X% dBy
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we find
(JX2)g dB; /\fz dB;
=1- 2 =1-—. 12
JoA? 1 dH,’ A2 dH, (12)

For an isotropic system, the factor dH, /dB) in cy4
above, where the derivative is evaluated at the aver-
age magnetic induction BZ, is equal to the more fa-
miliar H/B [19]. The renormalization factor for the
coupling (JA?)g has a simple physical interpretation.
Since the induced magnetic induction is determined from
Maxwell’s equations as Ajnq = —[Yz(q)/JoA%¢%]6A, Eq.
(12) results in a fraction dB, /dH, of the perturbation
6Hy = V x 6A penetrating the superconductor, while
the remainder is screened out as in the Meissner effect.

We now consider the more interesting parallel response
T, of Eq. (10). As long as the shear modulus ¢ is fi-
nite as g; — 0, the term in Eq. (10) due to vortex line
fluctuations vanishes, and one has total screening of the
perturbation as in the Meissner state. Such total screen-
ing we take as the signature of superconducting coherence
along the direction of the magnetic field. If, however, cgg
is identically zero, T,(q.) has exactly the same form as
T.(g%), with the greatly reduced coupling 1 —dB, /H |,
resulting in the loss of total screening. A related analy-
sis of order parameter correlations [12] has led Ikeda et
al. to conclude that vortex line lattice melting [where
ce6(0) — 0] results in the loss of superconducting corre-
lations along H. However, a careful analysis of Eq. (10)
shows that T, continues to be unaffected by vortex line
fluctuations provided that ces(g.,q1) does not vanish as
fast (or faster than) ¢2, as g, — O for finite q, .

‘We now use this result to extend our analysis into the
vortex line liquid state. For long-wavelength behavior
(small g), Nelson has shown [20] that the average vortex
line density, even in a liquid, may still be expressed in
terms of a well defined strain field, and that the free
energy of the line liquid can be expressed in terms of this
strain field and effective elastic moduli, as in Eq. (8)
(see also Ref. [18]). Furthermore, Marchetti and Nelson
[8] show that a hezatic vortex line liquid, believed [8,21]
to lie in between the line lattice and normal line liquid
states, can be described by a continuum elastic theory
in which one includes free dislocation loops. Averaging
over these dislocations, they find in the ¢ — 0 limit, that
vortex correlations are described precisely by an effective
elastic theory in which the elastic moduli ¢;; and c44 are
largely unchanged from the vortex lattice state, however,
the shear modulus is renormalized to cgs(g; = 0,91 ) ~
g2. Thus, while cgs(0) = O as expected for a liquid,
ces remains finite for finite q,. Applying Eq. (10), we
therefore find total screening of the perturbation, and
hence superconducting coherence parallel to H, in the
hexatic line liquid state [22]. This is the main result of
our paper.

Continuing the expansion as in Eq. (7) to next or-
der in the strain, we find a correction only to Agr of or-
der \%/A? ~ (3.8T/mJo)\/B/¢o (using B ~ 0.2H.;).

Evaluating at the vortex line lattice melting tempera-
ture, which we find to be Tas ~ 1.7c¢2 wJo\/do/B (where
cr ~ 0.15 is the Lindemann parameter), we find a small
correction to A% of order 15%. Thus the conclusions
above from the lowest order expansion continue to hold
23).

[ If one considers the above calculation in the limit of
an extreme type-II superconductor where A — oo, and
all fluctuations of the gauge field A are frozen out, we
return to the case analogous to an ordinary superfluid.
Taking the A — oo limit in Egs. (9)-(11), we find that
T.(q — 0) = Jj is finite, and hence the system has phase
coherence in the % direction, even in the vortex line lig-
uid state (provided cgs > O for q; # 0). T, however,
vanishes at all temperatures, as B = H when A — oo.
This explains the recent numerical results of Li and Tei-
tel [6] in a lattice A — oo model. There Y, was found
to vanish at a T,,, well into the vortex line liquid state,
while T, vanished at a much lower T, , where the vortex
line lattice melted. The finite T, for this model at low T
is due to the effects of pinning introduced by the discrete
numerical mesh, which creates a finite energy barrier to
small g elastic distortions. This effectively adds a q inde-
pendent constant to the denominator of the second term
in Eq. (9), so that as ¢ — 0, T, = Jy. Only when the
vortex line lattice melts will thermal fluctuations dom-
inate over pinning, and one recovers Eq. (12) with the
resulting T, = 0.

Much work has been done using an analogy between
fluctuating vortex lines, and the imaginary time world
lines of two dimensional bosons [1,5]. Feigel’'man et al.
[5] have used this analogy to argue that in the large A
limit, there will exist a boson normal fluid phase interme-
diate between the boson lattice and the boson superfluid
phases. They predict that the corresponding phase of the
superconductor is characterized by coherence parallel to
the applied magnetic field, but not transverse to it. It
is interesting to examine this analogy within the above
elastic approximation. A convenient expression for the
2D boson superfluid density has been given by Ceperley
and Pollock [24] in terms of the “winding number” W
of boson world lines, ps = mT(W?)/2h2. If there are
only magnetic field induced vortex lines fluctuating in a
directed fashion [25] [i.e., a single valued displacement

u;(2)],
)
L

where n_, is the average vortex line density transverse
to the average magnetic induction BZ. Translating [1]
from 2D bosons to vortex lines (A/Tvoson — L, B —
Tyiortexs M — €1 ~ wJy the single vortex line tension),
and evaluating (W?) within the elastic approximation,
one finds [26]

2 L w(L,) — u,
)= (| Stz —w o)

= IT(H&I;O : n£q=0)7 (13)
1
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2 2 2
ps = lim lim 2 { LE + E }
910 ¢.—0 2 | c4aq? + 6%  caaq? + c110?
(14)
The second term above always vanishes when one takes
q. — 0 first, as c¢;; is always finite. The first term is just
the same factor as appears in Eq. (10) for T,. Hence
in the vortex line liquid, if cge(qL # 0) > 0, we have
both total Meisnner screening of perturbations 64, Z,
and p, = 0, consistent with the predictions of Feigel’'man
et al.

When cgg vanishes identically, Eq. (14) gives p, =
€1f2/2c44(0). This result also follows from a direct eval-
uation of Eq. (13) within a hydrodynamic approximation
[18]. If the 2D boson normal to superfluid transition is
of the Kosterlitz-Thouless (KT) type, then the univer-
sal jump in p, at the transition may be written [24] as
(W2) = 4/n. This gives a transition temperature for the
vortex lines, Tkt = (¢2/m2L,)dH, /dB, . For H ~ H,,
this result gives Tkt ~ 1/B in good agreement with
an earlier estimate by Nelson [27]. At larger B, where
dH, /dB, ~ 1, Tk is independent of B. For sufficiently
large L., however, this KT transition is presumably pre-
empted by the transition to the hexatic vortex line liquid,
in which cgs(qr) > 0.
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