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Superconducting Coherence in a Vortex Line Liquid: Simulations with Finitel
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(Received 29 November 1994)

We carry out simulations of a lattice London superconductor in a magnetic fieldB, with a finite
magnetic penetration lengthl. We find that superconducting coherence parallel toB persists into the
vortex line liquid. We argue that the length scale relevant to this effect isL ­ f

2
0 y8pTm.
PACS numbers: 74.60.Ge, 64.60.–i, 74.40.+k
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In high Tc superconductors, thermal fluctuations a
believed to melt the ground state vortex line lattice
temperatures well below the mean fieldHc2 line [1,2].
The resulting vortex line liquid has received inten
theoretical and experimental study. In particular, rec
“flux transformer” experiments [3,4] on YBCO show
that superconducting coherence parallel to the app
magnetic fieldB exists over very long length scales we
into the vortex liquid.

To investigate the fluctuating vortex line system, n
merical simulations have been carried out. These eit
have involved a simplified model of vortex line intera
tions [5] or have used the approximation [6–8] that t
bare magnetic penetration lengthl °! `, so that the mag-
netic fieldB inside the superconductor is uniform. Suc
l °! ` simulations [8] show a sharp transition within th
vortex line liquid, corresponding to the onset of coheren
parallel toB. While this l °! ` model is suggested by
the large values ofk ­ lyj0 in the highTc materials, it
may fail close toTc, where the correlation length may ex
ceed the finite barel; thus the finitel model may display
different critical behavior from thel °! ` limit. To in-
vestigate this possibility, we present here new simulatio
of a system of fluctuating vortex lines, in which we in
clude the effect of magnetic screening on the vortex int
actions [9], due to a finitel. We investigate the presenc
of superconducting coherence within the vortex line li
uid, and discuss the length scale relevant for this effec

Our model is a discretized lattice superconductor in
London limit [10]. For simplicity, we consider isotropic
couplings. Following Carneiro, Cavalcanti, and Gartn
[7], a duality transformation maps this model onto one
interacting vortex lines, with Hamiltonian

H ­ 2p2J0l2
X
i,j

nsrid ? nsrjdGsri 2 rjd . (1)

Here nasrid sa ­ x, y, zd is the integer vorticity through
plaquettea at siteri of a cubic mesh of points, andGsrd
is the lattice London interaction, with Fourier transform

Gq ­ 1ys1 1 l2Q2d, Q2 ;
X

m­x,y,z
f2 2 2 cosqmg . (2)

The coupling isJ0 ­ f
2
0 j0y16p3l2, with f0 the flux

quantum, andj0 the spacing of the discrete mesh, whic
we identify with the bare coherence length that determin
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the size of a vortex core. Henceforth, we measure length
in units of j0, and temperature in units ofJ0. Periodic
boundary conditions in all directions are taken.

To test for superconducting coherence, we consider the
helicity modulusYmsqnd (where m fi n), defined as the
linear response coefficient giving the supercurrentj in-
duced by a transverse perturbation in the vector potential
of the externally applied magnetic field,dAext

m sqndm̂,

jmsqnd ­ 2YmsqnddAext
m sqnd . (3)

We earlier derived [11] an expression forYmsqnd in a
continuum London superconductor. The generalization to
the lattice superconductor is

Ymsqnd ­
fJ0l2gQ2

1 1 l2Q2

∑
1 2

4p2J0l2

VT
knssqndnss2qndl

1 1 l2Q2

∏
,

(4)

wherem, n, ands are a cyclic permutation ofx, y, andz,
andQ2 ­ 2 2 2 cosqn asqm, qs ­ 0.

In the absence of vortices,Ymsqnd ­ fJ0l2gQ2ys1 1

l2Q2d describes the total screening of the Meissner state.
With vortices, an expansion in powers ofQ2,

knssqndnssqndl ­ n0 1 n1Q2 1 n2Q4 1 · · · , (5)

leads to an expression forYmsqnd at smallqn, in terms of a
renormalized couplingfJl2gmR and penetration lengthlmR ,

Ymsqnd ­
fJl2gmRQ2

1 1 l
2
mRQ2

, (6)

with

gm ;
fJl2gmR

J0l2
­ 1 2

4p2J0l2

VT
n0 , (7)

l
2
mR

l2
­ 1 1

4p2J0

VT
n1 2 n0l2

gm

. (8)

To see the meaning ofgm and lmR, note that the
currentjmsqnd produced bydAext

m sqnd induces a magnetic
vector potential due to Ampere’s law, which in our units
is fJ0l2gQ2dAind

m sqnd ­ jmsqnd. The change in the total
magnetic field due to the external perturbation is therefore
given bydAtot

m sqnd ­ dAind
m sqnd 1 dAext

m sqnd, or

dAtot
m sqnd ­

∑
s1 2 gmd 1 gm

Q2

Q2 1 l
22
mR

∏
dAext

m sqnd . (9)
© 1995 The American Physical Society
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Thus a fraction1 2 gm of dAext
m sqnd penetrates into the

material; the remaining fractiongm is screened out, on the
length scalelmR . Equivalently,lmR is the length on which
fluctuations in the magnetic field decay to equilibrium
For a perfect Meissner effect,gm ­ 1 and lmR agrees
with the usual definition of the London penetration leng
[12]. We therefore interpret1yl

2
mR , rsm as the density

of superconducting electron pairs in directionm̂, even in
the more general case of a partial Meissner effect in
mixed state. AlthoughYmsqnd will have the same form
Eq. (6) in both the superconducting and the normal me
state (with ordinary fluctuation diamagnetism), a transitio
will be signaled some singularity ingm andlmR . We focus
now ongm.

Consider a uniform appliedH ­ Hẑ. Yxsqyd and
Yysqzd then describe the response to external fiel
dHzsqyd and dHxsqzd, which represent compression an
tilt perturbations ofH, respectively. Correspondingly one
finds [11]

1 2 gx ­ dBzydHz and 1 2 gy ­ dBxydHx , (10)

where these susceptibilities are evaluated at the app
field H. Since the highTc materials display strong fluc-
tuation diamagnetism even in the normal state, it is uncle
whether or notgx,y will display a pronounced feature at th
superconducting transition.

For behavior alonĝz, however, parallel toH, the criteria
for a superconducting transition is more clearly define
Yzsqxd describes the response to an external fielddHysqxd,
representing a combined shear and tilt perturbation of
uniform appliedHẑ. In Ref. [11] we showed that for the
vortex line lattice one hasgz ­ 1 and a perfect Meissner
screening. For a normal vortex line liquid, however,gz ­
1 2 dBxydHx ø 1. Thus the transition to the norma
state is signaled by a discontinuous jump ingz from
unity. Expressed in terms of the expansion coefficien
of Eq. (5), we have superconducting coherence along
field providedn0 ­ 0; for the normal state,n0 . 0.

For our Monte Carlo simulation, we start with a fixe
density f ­ Byf0 of straight vortex lines parallel to
ẑ, giving the ground state configuration for an intern
field Bẑ. Following Carneiro, Cavalcanti, and Garte
[7], we update the system, heating from the grou
state, by adding elementary closed vortex rings (a squ
ring of unit area) with random orientation and position
These excitations are accepted or rejected accord
to the standard Metropolis algorithm. This provide
a complete sampling of phase space for the vort
variables nsrid, subject to the constraints that vorticity
is locally conserved, and the average internal fieldB ­
sf0yVd

P
i nsrid ­ ff0ẑ is constant.

Our simulations are for the casef ­ 1y15, whose
ground state on a cubic mesh is a close approximation t
perfect triangular lattice. We choosel ­ 5, comparable
to the vortex line spacingay ; 1y

p
f ­ 3.87. We study

system sizesL' ­ 30 in the x-y plane, andLz ­ 15 and
.
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30 parallel toH. Each data point is typically the result of
5000 sweeps to equilibrate, followed by 8–16 000 sweeps
to compute averages, where each sweep refers toL2

'Lz

attempts to add an elementary vortex ring.
In Fig. 1 we show a sample of our data, plotting

knysqxdnys2qxdl vs qx, for variousT , andLz ­ 30. Fitting
by Eq. (5) throughOsQ4d yields the solid curves, and
determines the parametersn0 and n1. Equation (7) then
gives the couplingsgm, which we plot vsT in Fig. 2.
We see thatgx,y decrease towards zero atTm . 1.2, while
gz decreases atTc . 2.0. We also show our results for
Lz ­ 15.

In Fig. 3 we show intensity plots of vortex correlations
within the same plane perpendicular toB,

Ssq'd ­
X
z,r'

eiq'?r' knzsr', zdnzs0, zdl , (11)

whereq' ­ sqx , qyd, for variousT , andLz ­ 30. Below
Tm we see sharp Bragg peaks of a vortex line lattice.
Above Tm we see behavior characteristic of a liquid.Tm

is thus the melting transition. Since the discrete mesh
of our simulation acts like a periodic pinning potential
for vortices, Tm also coincides with a depinning of the
vortex lines. We believe that the drop ingx,y at Tm

is more a result of this depinning, rather than a direct
result of melting. We expect from Eq. (10) thatgx,y ­
1 2 dBxydHx is finite aboveTm, but this value is too
small for us to determine accurately.

With respect to coherence alongH, we expect a
discontinuous jump ingz from unity to1 2 dBxydHx ø 0
at Tc. The finite width of the decrease observed in our
data is a finite size effect; we see that the transition
sharpens asLz increases. We therefore estimateTc . 2.0,
well into the vortex line liquid. This is the main result of
our simulations.

Recent flux transformer experiments on YBCO [3,4]
show that there is a temperature “Tth” below which vortex
line correlations parallel toH become comparable to the
thickness of the sample.Tth is clearly above the “Tirr”
where resistivity transverse toH vanishes. Resistivity
parallel to H, however, appears [4] to vanish atTth.
A similar conclusion concerning vortex line correlations
may be inferred from the measurements of Ref. [13],

FIG. 1. knysqxdnys2qxdlyL2
' vs qx ­ 2pmyL' (m integer) for

variousT andL' ­ Lz ­ 30. Solid lines are a fit by Eq. (5).
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FIG. 2. gm vs T for L' ­ 30 and Lz ­ 15, 30. Sample error
bars are shown.gx,y decreases atTm . 1.2; gz decreases at
Tc . 2.0.

where the onset of pinning by twin grain boundaries
shown to occur distinctly above a sharp first order melti
transition. If we identifyTth with our Tc, and Tirr with
our Tm, our results are in complete accord with the
experimental findings.

We also tried to compute the lengthsl
2
mR, using Eq. (8)

and our fittedn0 and n1. However, the factorsn1 2

n0l2dygm that appears in Eq. (8) is, in the region of th
transition, the quotient of two small numbers each w
large relative error. We were therefore unable to obt
meaningful results forlmR .

Although we simulated withLz ¿ l, one can still
question whether our results represent the true ther
dynamic limit. In particular, in Refs. [3,4] it was found
that Tth decreased towardsTirr as sample thicknessLz in-

a)  T = 0.50 b)  T = 1.25

c)  T = 1.60 d)  T = 2.10

FIG. 3. Intensity plot of Ssq'd for several T and L' ­
Lz ­ 30. (a) T ­ 0.50 , Tm shows a lattice of Bragg peaks
(b) T ­ 1.25 ø Tm; (c) Tm , T ­ 1.60 , Tc in the vortex line
liquid; and (d)T ­ 2.10 . Tc.
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creased. This is also consistent with our results forgz

in Fig. 2, where there is some suggestion that, in addition
to a sharpening of the transition asLz increases,Tc also
decreases. It is therefore important to note that there i
another length in the problem [2]

LsTd ; f2
0y8pT ­ s2p2J0yTdkl . (12)

For our simulation, we have30 ­ Lz ø LsTmd . 410.
It has been argued [14] thatL determines the length

on which phase correlationsCsrd ; keifusrd2us0dgl decay in
the vortex line lattice; however, these same calculations
show that in the vortex liquid the decay length ofCsrd is
comparable to the spacing between vortex linesay ø Lz.
Thus this analysis ofCsrd does not indicate whyL should
be an important length aboveTm, where we continue to
see superconducting coherence.

Another possibility is suggested by Nelson’s analogy
[1] between vortex lines and the imaginary time world
lines of 2D bosons. Nelson argued that there should
be a Kosterlitz-Thouless (KT) superfluid transition of the
analog bosons. ForLz sufficiently large, this KT transition
would occur at aTc , Tm, and so would be preempted by
the formation of the vortex line lattice. But forLz small
enough,Tc . Tm, and one has a new state intermediate
between the vortex line lattice and the normal vortex line
liquid [15]. We now restate our earlier calculation [11] of
this Tc in order to show that the length which distinguishes
between these two possibilities isLsTmd.

As shown by Pollock and Ceperley [16], the 2D boson
superfluid density can be expressed in terms of the “wind
ing number”W which is the net spatial distance traveled by
the ensemble of bosons as they travel down the time axi
of their world lines. One hasrboson

s ­ mTbosonkW2ly2h̄2.
According to the KT theory, the 2D superfluid transition
occurs at a universal value ofrboson

s , which translates into
the conditionkW2

c l ­ 4yp. In terms of vortex lines,W
just measures the net vorticity transverse toH [11]. We
thus have [17]

kW2
y l ­ lim

qx°!0

1

L2
'

knysqxdnys2qxdl . (13)

This is precisely the same correlation as entersYz ,
and, comparing with Eq. (7), we can writegz ­ 1 2

fLsT dyLzg kW2
y l. Thusrboson

s ~ kW2l ­ 0 impliesgz ­ 1;
the normal boson fluid corresponds to a vortex line liquid
with coherence alongH. rboson

s . 0 implies gz , 1; the
boson superfluid corresponds to the normal vortex line
liquid [18].

We have shown [11] that for a normal vortex line liq-
uid, knysqxdnys2qxdl ­ f2L2

'LzTyc44sqxd, wherec44s0d ­
sB2y4pddHxydBx is the tilt modulus, andf ­ Byf0.
Thus we conclude thatkW2l ­ kW2

x 1 W2
y l ­ 2kW2

y l ­
s8pLzTyf

2
0ddBxydHx. This yields

Tc ­
f

2
0

2p2Lz

dHx

dBx
or

Tc

Tm
­

4
p

LsTmd
Lz

dHx

dBx
. (14)
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For large B ¿ Hc1, dHxydBx . 1. Thus for Lz ,

s4ypdLsTmd, one hasTc . Tm and hence a vortex line
liquid with superconducting coherence alongH, inter-
mediate between the vortex line lattice, and the norm
vortex line liquid. Only forLz . s4ypdLsTmd will this
intermediate state disappear [19]. For YBCO, withTm .
90 K , one hasLsTmd . 1400 mm, much thicker than the
sampless,50 mmd in Refs. [3,4,13].

We note that forB ¿ Hc1, LsTmd is a factor ByHc1

larger than the “entanglement” length originally propose
by Nelson [1] as the criterion for the 2D boson superflu
transition. This is because the notion of superfluidit
as measured byW, does not precisely correspond to th
geometric notion of line entanglement. If just as man
lines wander to the right as wander to the left, one h
W ­ 0, although the lines may still be quite twisted an
geometrically entangled.

Finally, we note that for our model Eqs. (12) and (14
would predictTc ­ s8pJ0klyLzdTm . 25, much higher
than the observedTc . 2.0. We believe that this results
from a breakdown of the boson analogy near our observ
Tc, due to the proliferation of thermally excited close
vortex rings, and intersections between vortex lines, su
as cause the transition in aB ­ 0 model. This is clearly
the case for thel °! ` model [8], wherel °! ` at fixed
J0 also meansL °! `. Equation (14) would then imply
Tc °! `. The finite Tc found in l °! ` simulations
[8] therefore indicates such a breakdown of the bos
analogy. Our present results concerning vortex ri
distributions and line intersections are similar to what w
found forl °! ` [8].

To conclude, we find from simulations withl ø

Lz ø LsTmd (as is the case for recent experiments) th
superconducting coherence parallel toH persists into the
vortex line liquid state. We argue that this effect shou
vanish onceLsTmd # Lz.
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