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Glassiness versus Order in Densely Frustrated Josephson Arrays
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We carry out extensive Monte Carlo simulations of the Coulomb gas dual to the uniformly frustrated
two-dimensionalXY model, for a sequence of frustratiofisconverging to the irrational3 — /5)/2.
We find in these systems a sharp first order equilibrium phase transition to an ordered vortex structure
at a T, which varies only slightly withf. This ordered vortex structure remains, in general, phase
incoherent until a lower vortex pinning transitidh,( f) that varies withf. We argue that the glassy
behaviors reported for this model in earlier simulations are dynamic effects. [S0031-9007(97)04929-6]

PACS numbers: 64.60.Cn, 64.70.Pf, 75.10.—b

The glass transition to a frozen disordered state remairsequence of rational approximants which converge to
one of the oldest unresolved problems of condensed mathe irrational f/* = (3 — +/5)/2. We find that the low
ter physics. While much progress has been made in theemperature state that is reached upon slow cooling is
area of “spin glasses,” in which the glassy state is a consdvighly sensitive to both of the dynamics used as well
quence of intrinsic random frustration in the Hamiltonian,as the system lengtih. The true ground states for
the problem of “structural glasses,” which possess no insuch f = p/q are much more complex than previously
trinsic random disorder, remains poorly understood [1,2]believed, even for relatively small values ¢f We find
It is therefore desirable to search for glasslike transithat, when next-nearest-neighbor vortex hops are included
tions in simple intrinsically disorder-free statistical mod-in the dynamics, all cases show clear evidence for a
els. One such candidate system is the two-dimensionaharp first order equilibrium phase transitiorf. near
(2D) uniformly frustratedXY model, which models a pe- Halsey’s T, to an ordered vortex structure consisting
riodic array of Josephson junctions in a transverse appliedf completely filled, completely empty, and partially
magnetic field [3,4]. Varying the frustration paramefer filled diagonals. BelowT., vortices in the partially
(magnetic field) of this model leads to complex commenilled diagonals can remain mobile, destroying phase
surability effects between the underlying discrete grid and¢oherence in the direction transverse to the diagonal.
the vortex lattice that forms in response to the frustratioriThese vortices pin to the grid, leading to phase coherence
[5]. Some years ago, Halsey [6] presented numerical eviin all directions, only at a lowef, ( f) that varies withf.
dence that, in the limit of an irrationgl = (3 — v/5)/2,  We therefore conclude that the “glass transition” observed
this model displays a finite temperature glass transitioly Halsey, and the supercooling observed by Kim and
T, to a superconducting frozen disordered vortex stat¢ee, is a consequence of energy barriers in their particular
[7]. Experiments on superconducting wire networks withdynamics inhibiting what is a true first order equilibrium
Halsey's irrationalf* have found evidence for a finite phase transition to a nonglassy ordered state.
T, from the scaling of current-voltage (IV) characteris- The uniformly frustrated 2DXY model, within the
tics [8]. However, simulations by Granato [9], using re- Villain approximation [11], can be mapped [12] onto the
sistively shunted junction dynamics, found an IV scalingfollowing Hamiltonian for a one component Coulomb gas
consistent witi’, = 0. Recently, Kim and Lee [10] have on a neutralizing background;
reinvestigated this problem using Langevin simulations. 1
They find that, near Halsey's . the system’s dynarmc; Hegni] = > Z(ni - f)G'(x; —x))(n; — f). ()
resembles the primary relaxation of supercooled liquids ij
rather than that of a spin glass. The sum is over all sites of a 2D periodic squére< L

In view of the above conflicting results, it is important grid. »; is the integer charge on sitg representing the
to establish the true equilibrium behavior of this model.vorticity of the XY phase angle. The frustration parameter
We therefore reinvestigate Halsey’s problem by carryingf, acting as a background charge density, represents the
out Monte Carlo (MC) simulations of the 2D Coulomb density of flux quanta in the applied magnetic field. The
gas which is dual to the uniformly frustratée¥’ models. interaction isG'(r) = G(r) — G(0), where G(r) is the
Working with vortex variables directly allows us greater lattice Coulomb potential in 2D, with periodic boundary
control over the most relevant slow variables involved inconditions. Charge neutrality,; n; = L*f, is imposed.
equilibration, as compared to using the phase variableSee Ref. [13] for further details.
of the original XY model [6,7,9,10]. Following Halsey, The elementary move of our MC procedure is the
we consider the frustrations = 5/13, 8/21, 13/34, and  insertion of a randomly positioned vortex-antivortex pair,
21/55, which are the first few members of a FibonacciAn; = +1, An; = —1, which is then either accepted or
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rejected by a standard Metropolis algorithm. When westate [3]. Such a structure can only be made perfectly
restricti and j to nearest-neighbor sites, we find glassyperiodic, and commensurate with the periodicity of the
results qualitatively similar to Halsey’'s. When we allow diagonals, wheld is an integer multiple 084. The struc-

i and; to include next-nearest-neighbor sites as well, weaure shown in Fig. 1(b), witi. = 42, consists of such an
find equilibration at low temperatures to be dramaticallyf = 2/3-like arrangement, however, with a domain wall
improved. Our results below are for this latter dynamicsintroduced by our choice of a too small valuelaf From
Simulations were carried out while cooling from an such considerations we conclude that the true ground state,
initial random configuration. At each temperature, 20 00Cfor all but the simplest off = p/g, may involve rather
initial MC passes are discarded for equilibration, with ansubtle anda priori unknown commensurability require-
additional 1280000 MC passes for computing averagesnents; its square unit cell will be of lengthg, wherem

One MC pass refers th? elementary moves. may well be an integer several times larger than previously
In Fig. 1 we show intensity plots for thaverage believed [14].
vorticity at each site, al’ = 0.02 < T, = 0.03. The For each case, we find that the transition to the

black squares are sites with;) = 0, white squares are ordered state is sharp and seemingly first order. To
sites with(n;) = 1, and gray squares are sites with andemonstrate this, we compute the histogram of energies
average vortex occupation 6f< (n;) < 1. We find an P(E) encountered at each value of temperature in the
ordered sequence of completely filled, completely emptysimulation. In both high and low temperature regions, this
and partially filled diagonals, clearly different from the histogram is unimodal. However, in a narrow temperature
disordered structures found by Halsey. For Figs. 1(a)fange when the ordered state first appears, the distribution
1(c), and 1(d), we find translational invariance along thebecomes bimodal, corresponding to the two coexisting
diagonals, except for occasional defects. For 8/21  states at a first order transition. Using an extrapolation
[Fig. 1(b)] the partially filled diagonals have a pinned technique [15], we determind, as the temperature
vacancy on every third site. for which the two peaks of the bimodal histogram

We do not know that the states shown in Fig. 1 rep-subtend equadrea[16]. Our results are shown in Fig. 2.
resent the true ordered states in the thermodynamic limi€or Figs. 2(a), 2(b), and 2(d), the two peaks are well
For f = 5/13, for example, using. = 26 and L = 52  separated; the less clear casefof= 13/34 is perhaps
resulted in a differing sequence for the filled, empty,a reflection of the larger concentration of defects seen
and partially filled diagonals. Fof = 8/21, the vor- in Fig. 1(c), or the possibility that our size = 68 still
tices in the partially filled diagonals occupy exacBly3  gives too poor an approximation of the true ground state.
of the sites in these diagonals. We may speculate thdh the mapping from th&(Y model to the Coulomb gas,
in the true ground state these vortices will form a peri-the temperature has been rescaled [13] so Tt =
odic lattice with the same structure as the= 2/3 ground 27 7¢S. Our valueT¢¢ = 0.03 is thus reasonably close

to Halsey’s value of" ;" = 0.25.

s Next we consider the superconducting phase coherence
(b} F=8721, L=42 L j
S o ol TR of the Josephson array. In the original uniformly frus-
i e trated XY model of phase angleg;, the issue of phase
Sk coherence may be addressed by considering the depen-
: : dence of the total free energ¥ on the net phase angle
: twist A, that is applied across the sample as a boundary

@) f=313, L

0.20

0 T T T T T T T T
. ¥ (a) f=5/13, L=52, T, =0.0325 (b) f=8/21, L=42, T =0.0279
= il el 0.008 1 L&
_015F
£0.006 ful j@ f
g I .ﬁ‘. o0f i
0.004} | : ] P
0.002F l d k ] 0.05f . . H_.a\.
0'080 . L 0 6)9 o g L
.128 0.130 | 0132 128 0.130 0.132
Energy per site E Energy per site E
0.015 0.015 T

(c) f=13/34,L=68, T, =0.028 (d) f=21/55, L=55, T, =0.0297

0.010F 4 0.010f Ly
3 a »
§ ™ \

m (]
] & !
.005 H Y 3 00058 &
[ f
0.000 L \ 0.000 ' '
0.129 0.130 0.131 0.132  0.129 0.130 0.131 0.132
Energy per site E Energy per site E

FIG. 1. Intensity plot of ordered vortex states7at= 0.02 <
T.. White squares contain vortices, black squares contain n&lG. 2. Bimodal energy distributiorP(E) at 7.. The first
vortices, and gray squares have an average vortex occupati@mnder transition temperatuf®. = 0.03 is fixed by the condition
of 0 < (n;) < 1. that the peaks subtend equal areas.
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condition, i.e.0(r; + L) = 6(r;) + A,. If F[A,, A]

is independent of the ,, then phase coherence is lost.
Doing the duality transformation to the Coulomb gas
carefully [12,17,18], one finds that such a fixed twist
boundary condition results in an additional term to the
Coulomb gas Hamiltonian of Eq. (1),

5H[p:An A, = v(z”T” - Ay)

(b)y f=8/21, L=42

(@ f=5/13, L=52

I

2mp,y
+V + A, (2)
L (¢c) £=13/34, L=068 (d f=21/55, L=355

where
P = Zrini 3)
is the total “dipole momentf’ of the vortices, and
V(g) = —Tln|: i el/“”wz”m)z} 4)
is the Villain function nﬁl_]wwith coupling2#T. The k
partition function for the system with a fixed twist

A, is then Z[A,,A\] = Zcg(e PP PAANT) - Here  FIG. 3. Intensity plot of total free energy F[A,,A,] at
Zcg is the partition function for the ensemble definedT = 0.02 < T.. Black (white) denotes the functional minima

by Hcg of Eg. (1) alone, and the average is with (maxima).
respect to this ensemblé{cg can be considered as the
ensemble in whichA, is averaged over, and so one

has “fluctuating twist boundary conditions” in they _ 1he helicity modulus tensox,, of the 2D XY model
model [17]). The total free energy is thef[A,, A, ] = 'S defined by [19]
Feo + 8F[AL, A,], whereFeg = —T InZcg and v - 2 F ©
SF[A,A)]=—TlIn Z g:(px’py)e—aﬂ[p;A“Av]/T, 727 —aAMaA,, )
Py where the derivatives are evaluated at the valug

(5) that minimizesF. From Fi i
. , . . g. 3 we expect thaY ,, is
whereP(py, p,) is the histogram of total dipole moments jiaqonal in a basis that is aligned with the grid diagonal

p at a given temperature, found in thg simulation usinGirections. We therefore denote by, and Y| the
Heg of Eq. (1). By storing this 2D histogram, we can eigenvalues ofY,, in the directions perpendicular and
therefore deduce the dependence of the free energyion arjie| o the ordered diagonals, respectively. In Fig. 4
values of applied twish,. we plot Y, and Y; as functions ofT, for the same

In Fig. 3 we show intensity plots o8 F[A., A,Jfor 41465 of f and L as in Figs. 1 and 3. As expected

Ay € (mm,m) atT = 0.02 < T, corresponding to the fom Fig.'3 we see that, for all cased) increases
real space plots of Fig. 1. Fgr = 8/21 [Fig. 3(b)] we

see a rotationally symmetric parabolic minimum, indicat-

ing that the system is phase coherent in all directions (that 10p ral T 1.0 w N
there are actually two such minima is a result of the ther-gosf =g, @ /%1 g (b) £=8521 4
mal motion of the domain wall inserted by our choice "280.6- ;5‘0.6 T,

of L = 42). For the other cases, however, we see that, ,;;0,4»’ i, 1 zoaf ]
while 8 F has a parabolic minimum along the direction g} T 1 200l T 3

. .- - 1 = L
parallel to the ordered diagonals, it is constant for the di- O.OM 00 s
rection perpendicular to these diagonals. This indicates © ' 2 3z% > ¢ o 1 2 3,4 5 6

T x 102

gl (d f=21/55
i L=55 1

L0z

that the vortices in the partially filled diagonals are free to
move along these diagonals and so destroy phase coheif *®} !
ence transverse to this direction. Noting that an appliedz %6¢ - it
electric current exerts a force on the vortices which is %0.4} ' 1 £ 0-4-} T :
transverse to the direction of the current, we would expectZo2t, T, % {2 O.ZEH Y, ]
the Josephson array to have a finite linear resistivity for all 0.0 W 0.0 T e

cases, except when the current is applied exactly parallel T x 102 T x 102
to the partially filled diagonals. Thus the structural transi-g|g_ 4. Helicity modulus eigenvaluég, and Y, vsT. Y is

tion atT. is not, in general, the superconducting transitionnonzero belowr, = 0.03; however,Y | is nonzero only below
of the array. T,(f) =T..

1 (©) =1334] _  of Tl
3 =68 | 5%%
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from zero asT decreases beloW,.. However, except observation of an equilibrium first order transition [22]
for the casef = 8/21, Y, remains zero belowl., strengthens the analogy to structural glasses and gives
becoming nonzero only at a lower temperatdfg( /)  a natural explanation for the supercooled relaxation ob-
when the vortices in the partially filled diagonals pin to served by Kim and Lee [10], whose simulations were car-
the grid. Similar behavior, of mobile vortex “defects” in ried out for the parameters = 13/34, L = 34. Further
an otherwise ordered vortex structure, has been observedbrk is required to investigate whether such a supercooled
previously [20] in simulations of thg = 5/11 model. state can have a well-defined finite temperature glass tran-
If the vortices in the partially filled diagonals remain sition belowT,, or whether, as suggested by Granato [9],
mutually correlated, the regiofi,(f) < T < T, can be this glass transition is & = 0.
described as a “floating smectic” phase, as first postulated We thank Professor Y. Shapir for interesting discus-
by Ostlund [21]. If, however, the correlations are shortsions. This work has been supported by U.S. Department
ranged, as in a liquid, one might imagine that vortexof Energy Grant No. DE-FG02-89ER14017.
hopping between the different partially filled diagonals
may also be possible. In this case, our result tiat> 0
for T,(f) < T < T. might be a reflection of the very . .
high energy barrier for such interdiagonal hops, rather[1] For a review, seeComplex Behavior of Glassy Systems,
than a true phase coherence effect. edited by M. Rubiand C. Pérez-Vincente (Springer, New
We conclude that the sequence of rationalthat York, 1997).
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was used. Such glassy behavior is therefore more a re-

. ' . o XY formulation. Their main conclusions agree with our
flection of the frustration being nontrivially dense rather own: however, different ground states were found. We

than specifically irrational. N believe that this is due to their use of a cosine interaction
Our results indicate that the glass transition observed by  as compared to the Villain interaction on which our model
Halsey [6] is an artifact of his choice of dynamics. Our is based.
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