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Glassiness versus Order in Densely Frustrated Josephson Arrays
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We carry out extensive Monte Carlo simulations of the Coulomb gas dual to the uniformly frustrat
two-dimensionalXY model, for a sequence of frustrationsf converging to the irrationals3 2

p
5 dy2.

We find in these systems a sharp first order equilibrium phase transition to an ordered vortex struc
at a Tc which varies only slightly withf. This ordered vortex structure remains, in general, phase
incoherent until a lower vortex pinning transitionTps fd that varies withf. We argue that the glassy
behaviors reported for this model in earlier simulations are dynamic effects. [S0031-9007(97)04929

PACS numbers: 64.60.Cn, 64.70.Pf, 75.10.–b
to

is
ll

ed
a

e
al.
ce

d
d
ar

s

r
the
e

e
,

The glass transition to a frozen disordered state rema
one of the oldest unresolved problems of condensed m
ter physics. While much progress has been made in
area of “spin glasses,” in which the glassy state is a con
quence of intrinsic random frustration in the Hamiltonian
the problem of “structural glasses,” which possess no i
trinsic random disorder, remains poorly understood [1,2
It is therefore desirable to search for glasslike trans
tions in simple intrinsically disorder-free statistical mod
els. One such candidate system is the two-dimensio
(2D) uniformly frustratedXY model, which models a pe-
riodic array of Josephson junctions in a transverse appli
magnetic field [3,4]. Varying the frustration parameterf
(magnetic field) of this model leads to complex commen
surability effects between the underlying discrete grid an
the vortex lattice that forms in response to the frustratio
[5]. Some years ago, Halsey [6] presented numerical e
dence that, in the limit of an irrationalfp ­ s3 2

p
5 dy2,

this model displays a finite temperature glass transitio
Tg to a superconducting frozen disordered vortex sta
[7]. Experiments on superconducting wire networks wit
Halsey’s irrationalfp have found evidence for a finite
Tg from the scaling of current-voltage (IV) characteris
tics [8]. However, simulations by Granato [9], using re
sistively shunted junction dynamics, found an IV scalin
consistent withTg ­ 0. Recently, Kim and Lee [10] have
reinvestigated this problem using Langevin simulation
They find that, near Halsey’sTg, the system’s dynamics
resembles the primary relaxation of supercooled liquid
rather than that of a spin glass.

In view of the above conflicting results, it is importan
to establish the true equilibrium behavior of this mode
We therefore reinvestigate Halsey’s problem by carryin
out Monte Carlo (MC) simulations of the 2D Coulomb
gas which is dual to the uniformly frustratedXY models.
Working with vortex variables directly allows us greate
control over the most relevant slow variables involved i
equilibration, as compared to using the phase variab
of the originalXY model [6,7,9,10]. Following Halsey,
we consider the frustrationsf ­ 5y13, 8y21, 13y34, and
21y55, which are the first few members of a Fibonacc
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sequence of rational approximants which converge
the irrationalfp ­ s3 2

p
5 dy2. We find that the low

temperature state that is reached upon slow cooling
highly sensitive to both of the dynamics used as we
as the system lengthL. The true ground states for
such f ­ pyq are much more complex than previously
believed, even for relatively small values ofq. We find
that, when next-nearest-neighbor vortex hops are includ
in the dynamics, all cases show clear evidence for
sharp first order equilibrium phase transitionTc near
Halsey’s Tg to an ordered vortex structure consisting
of completely filled, completely empty, and partially
filled diagonals. BelowTc, vortices in the partially
filled diagonals can remain mobile, destroying phas
coherence in the direction transverse to the diagon
These vortices pin to the grid, leading to phase coheren
in all directions, only at a lowerTps fd that varies withf.
We therefore conclude that the “glass transition” observe
by Halsey, and the supercooling observed by Kim an
Lee, is a consequence of energy barriers in their particul
dynamics inhibiting what is a true first order equilibrium
phase transition to a nonglassy ordered state.

The uniformly frustrated 2DXY model, within the
Villain approximation [11], can be mapped [12] onto the
following Hamiltonian for a one component Coulomb ga
on a neutralizing background;

HCGfnig ­
1
2

X
i,j

sni 2 fdG0sri 2 rjd snj 2 fd . (1)

The sum is over all sites of a 2D periodic squareL 3 L
grid. ni is the integer charge on sitei, representing the
vorticity of theXY phase angle. The frustration paramete
f, acting as a background charge density, represents
density of flux quanta in the applied magnetic field. Th
interaction isG0srd ­ Gsrd 2 Gs0d, where Gsrd is the
lattice Coulomb potential in 2D, with periodic boundary
conditions. Charge neutrality,

P
i ni ­ L2f, is imposed.

See Ref. [13] for further details.
The elementary move of our MC procedure is th

insertion of a randomly positioned vortex-antivortex pair
Dni ­ 11, Dnj ­ 21, which is then either accepted or
© 1997 The American Physical Society 105
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rejected by a standard Metropolis algorithm. When w
restrict i and j to nearest-neighbor sites, we find glass
results qualitatively similar to Halsey’s. When we allow
i andj to include next-nearest-neighbor sites as well, w
find equilibration at low temperatures to be dramatical
improved. Our results below are for this latter dynamic
Simulations were carried out while cooling from an
initial random configuration. At each temperature, 20 00
initial MC passes are discarded for equilibration, with a
additional 1 280 000 MC passes for computing average
One MC pass refers toL2 elementary moves.

In Fig. 1 we show intensity plots for theaverage
vorticity at each site, atT ­ 0.02 , Tc . 0.03. The
black squares are sites withknil . 0, white squares are
sites with knil . 1, and gray squares are sites with a
average vortex occupation of0 , knil , 1. We find an
ordered sequence of completely filled, completely empt
and partially filled diagonals, clearly different from the
disordered structures found by Halsey. For Figs. 1(a
1(c), and 1(d), we find translational invariance along th
diagonals, except for occasional defects. Forf ­ 8y21
[Fig. 1(b)] the partially filled diagonals have a pinned
vacancy on every third site.

We do not know that the states shown in Fig. 1 rep
resent the true ordered states in the thermodynamic lim
For f ­ 5y13, for example, usingL ­ 26 and L ­ 52
resulted in a differing sequence for the filled, empty
and partially filled diagonals. Forf ­ 8y21, the vor-
tices in the partially filled diagonals occupy exactly2y3
of the sites in these diagonals. We may speculate th
in the true ground state these vortices will form a per
odic lattice with the same structure as thef ­ 2y3 ground

FIG. 1. Intensity plot of ordered vortex states atT ­ 0.02 ,
Tc. White squares contain vortices, black squares contain
vortices, and gray squares have an average vortex occupa
of 0 , knil , 1.
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state [3]. Such a structure can only be made perfect
periodic, and commensurate with the periodicity of the
diagonals, whenL is an integer multiple of84. The struc-
ture shown in Fig. 1(b), withL ­ 42, consists of such an
f ­ 2y3-like arrangement, however, with a domain wall
introduced by our choice of a too small value ofL. From
such considerations we conclude that the true ground sta
for all but the simplest off ­ pyq, may involve rather
subtle anda priori unknown commensurability require-
ments; its square unit cell will be of lengthmq, wherem
may well be an integer several times larger than previous
believed [14].

For each case, we find that the transition to th
ordered state is sharp and seemingly first order. T
demonstrate this, we compute the histogram of energi
P sEd encountered at each value of temperature in th
simulation. In both high and low temperature regions, thi
histogram is unimodal. However, in a narrow temperatur
range when the ordered state first appears, the distributi
becomes bimodal, corresponding to the two coexistin
states at a first order transition. Using an extrapolatio
technique [15], we determineTc as the temperature
for which the two peaks of the bimodal histogram
subtend equalarea [16]. Our results are shown in Fig. 2.
For Figs. 2(a), 2(b), and 2(d), the two peaks are we
separated; the less clear case off ­ 13y34 is perhaps
a reflection of the larger concentration of defects see
in Fig. 1(c), or the possibility that our sizeL ­ 68 still
gives too poor an approximation of the true ground stat
In the mapping from theXY model to the Coulomb gas,
the temperature has been rescaled [13] so thatT XY ­
2pTCG . Our valueT CG

c . 0.03 is thus reasonably close
to Halsey’s value ofT XY

g . 0.25.
Next we consider the superconducting phase coheren

of the Josephson array. In the original uniformly frus
trated XY model of phase anglesui , the issue of phase
coherence may be addressed by considering the dep
dence of the total free energyF on the net phase angle
twist Dm that is applied across the sample as a bounda

FIG. 2. Bimodal energy distributionP sEd at Tc. The first
order transition temperatureTc . 0.03 is fixed by the condition
that the peaks subtend equal areas.
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condition, i.e.,usri 1 Lm̂d ­ usrid 1 Dm. If F fDx , Dyg
is independent of theDm, then phase coherence is los
Doing the duality transformation to the Coulomb ga
carefully [12,17,18], one finds that such a fixed twis
boundary condition results in an additional term to th
Coulomb gas Hamiltonian of Eq. (1),

dH fp; Dx , Dyg ­ V

µ
2ppx

L
2 Dy

∂
1 V

µ
2ppy

L
1 Dx

∂
, (2)

where

p ­
X

i

rini (3)

is the total “dipole moment” of the vortices, and

V sfd ­ 2T ln

" X̀
m­2`

e21y4pT sf22pmd2

#
(4)

is the Villain function [11] with coupling2pT . The
partition function for the system with a fixed twis
Dm is then ZfDx , Dyg ­ ZCGke2dH f p;Dx ,DygyT l. Here
ZCG is the partition function for the ensemble define
by HCG of Eq. (1) alone, and the average is wit
respect to this ensemble (HCG can be considered as the
ensemble in whichDm is averaged over, and so on
has “fluctuating twist boundary conditions” in theXY
model [17]). The total free energy is thenF fDx , Dyg ­
FCG 1 dF fDx , Dyg, whereFCG ­ 2T ln ZCG and

dF fDx , Dyg ­ 2T ln
X

px ,py

P spx , pyde2dH fp;Dx ,DygyT ,

(5)
whereP spx , pyd is the histogram of total dipole moments
p at a given temperature, found in the simulation usin
HCG of Eq. (1). By storing this 2D histogram, we can
therefore deduce the dependence of the free energy onall
values of applied twistDm.

In Fig. 3 we show intensity plots ofdF fDx, Dyg for
Dm [ s2p , pd at T ­ 0.02 , Tc, corresponding to the
real space plots of Fig. 1. Forf ­ 8y21 [Fig. 3(b)] we
see a rotationally symmetric parabolic minimum, indica
ing that the system is phase coherent in all directions (th
there are actually two such minima is a result of the the
mal motion of the domain wall inserted by our choic
of L ­ 42). For the other cases, however, we see th
while dF has a parabolic minimum along the directio
parallel to the ordered diagonals, it is constant for the d
rection perpendicular to these diagonals. This indica
that the vortices in the partially filled diagonals are free
move along these diagonals and so destroy phase co
ence transverse to this direction. Noting that an appli
electric current exerts a force on the vortices which
transverse to the direction of the current, we would expe
the Josephson array to have a finite linear resistivity for
cases, except when the current is applied exactly para
to the partially filled diagonals. Thus the structural trans
tion atTc is not, in general, the superconducting transitio
of the array.
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FIG. 3. Intensity plot of total free energydF fDx , Dyg at
T ­ 0.02 , Tc. Black (white) denotes the functional minima
(maxima).

The helicity modulus tensorYmn of the 2DXY model
is defined by [19]

Ymn ;
≠2F

≠Dm≠Dn

, (6)

where the derivatives are evaluated at the valueDm0
that minimizesF . From Fig. 3 we expect thatYmn is
diagonal in a basis that is aligned with the grid diagon
directions. We therefore denote byY' and Yk the
eigenvalues ofYmn in the directions perpendicular and
parallel to the ordered diagonals, respectively. In Fig.
we plot Y' and Yk as functions ofT , for the same
values of f and L as in Figs. 1 and 3. As expected
from Fig. 3 we see that, for all cases,Yk increases

FIG. 4. Helicity modulus eigenvaluesYk andY' vs T . Yk is
nonzero belowTc . 0.03; however,Y' is nonzero only below
Tps fd # Tc.
107
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from zero asT decreases belowTc. However, except
for the casef ­ 8y21, Y' remains zero belowTc,
becoming nonzero only at a lower temperatureTps fd
when the vortices in the partially filled diagonals pin to
the grid. Similar behavior, of mobile vortex “defects” in
an otherwise ordered vortex structure, has been observ
previously [20] in simulations of thef ­ 5y11 model.
If the vortices in the partially filled diagonals remain
mutually correlated, the regionTps fd , T , Tc can be
described as a “floating smectic” phase, as first postulat
by Ostlund [21]. If, however, the correlations are sho
ranged, as in a liquid, one might imagine that vorte
hopping between the different partially filled diagonal
may also be possible. In this case, our result thatYk . 0
for Tps fd , T , Tc might be a reflection of the very
high energy barrier for such interdiagonal hops, rath
than a true phase coherence effect.

We conclude that the sequence of rationalf that
approaches the irrationalfp ­ s3 2

p
5 dy2 undergoes

a first order equilibrium phase transition to an ordere
vortex structure at aTc . 0.03. The exact sequence of
the filled, empty, and partially filled diagonals in this
ordered structure remains, in general, unknown for th
true ground state in the thermodynamic limit; howeve
in the cases when we variedL ­ mq for fixed f ­ pyq,
we found thatTc remained approximately0.03. The
transition to the true superconducting state, with pha
coherence in all directions, occurs, in general, at a low
Tps fd, which can show considerable variation with the
frustrationf. While this is in qualitative agreement with
arguments by Teitel and Jayaprakash [3], which sugges
that the superconducting transition temperature would
a very discontinuous function off, we as yet can discern
no systematic dependence onf ­ pyq nor can we be
certain that the values ofTps fd obtained here will not
vary if one increases the system sizeL.

Our equilibrium transition atTc to an ordered vor-
tex structure was obtained only when we included nex
nearest-neighbor hops in our vortex dynamics. Whe
moves were restricted to nearest-neighbor hops only, o
simulations fell out of equilibrium into a frozen disordered
state belowT . 0.033. Figure 1 suggests why this is so.
Next-nearest-neighbor hops allow vortices to travel d
rectly up and down the partially filled diagonals. To mak
such a move using only nearest-neighbor hops, one m
first hop to a neighboring diagonal, putting three vortice
mutually adjacent. We find for the energy barrier of suc
movesDE . 0.23 0.35, depending onf, and so these
moves tend to freeze out by the temperatureTc ø DE.
Indeed, when restricting to nearest-neighbor hops on
we found glassy behavior even for the simple frustratio
f ­ 3y8 at largeL, unless very slow and careful cooling
was used. Such glassy behavior is therefore more a
flection of the frustration being nontrivially dense rathe
than specifically irrational.

Our results indicate that the glass transition observed
Halsey [6] is an artifact of his choice of dynamics. Ou
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observation of an equilibrium first order transition [22
strengthens the analogy to structural glasses and gi
a natural explanation for the supercooled relaxation o
served by Kim and Lee [10], whose simulations were ca
ried out for the parametersf ­ 13y34, L ­ 34. Further
work is required to investigate whether such a supercoo
state can have a well-defined finite temperature glass tr
sition belowTc, or whether, as suggested by Granato [9
this glass transition is atT ­ 0.
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