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Critical Behavior of the Meissner Transition in the Lattice London Superconductor
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We carry out Monte Carlo simulations of the three dimensional (3D) lattice London superconductor
in zero applied magnetic field, making a detailed finite size scaling analysis of the Meissner transition
We find that the magnetic penetration lengthl and the correlation lengthj scale asl , j , jtj2n,
with n ­ 0.66 6 0.03, consistent with ordinary 3DXY universality,nXY ø 2y3. Our results confirm
the anomalous scaling dimension of magnetic field correlations atTc. [S0031-9007(98)05449-0]
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The discovery of the high temperature superconduct
has revived interest in the effects of fluctuations on t
critical behavior of the superconducting transition. Th
Meissner transition of a bulk type II superconductor
zero applied magnetic field is the most basic case that
be considered. While it was originally thought that th
transition was weakly first order [1], it is now generall
believed to be in the same universality class as the or
nary three dimensional (3D)XY model, except with the
temperature scale inverted [2,3]. The argument is ba
[2–6] on two observations: (i) the ordinary 3DXY model
can be mapped onto a system of sterically interacting loo
with inverted temperature scaleTloop ~ 1yT , and (ii) the
vortex loops of a fluctuating superconductor interact with
screenedCoulomb interaction, with screening length equ
to the bare magnetic penetration lengthl0. Assuming that
the finite interaction lengthl0 of the vortex loops is not
a relevant modification of steric (on site) interactions, th
universality of the fluctuating Meissner transition and th
3D XY model follows [7]. Early Monte Carlo (MC) simu-
lations by Dasgupta and Halperin [3] of a lattice Londo
superconductor model strongly supported this picture
making a qualitative comparison of the shape of spec
heat peaks in the two models.

Recently there has been renewed interest in, and con
versy concerning, the nature of this transition. Kiometz
et al. [8], considering a dual formulation of the fluctuatin
Ginzburg-Landau (GL) model, have argued that while t
correlation lengthj , jtj2n diverges with the same ex-
ponentn as the ordinary 3DXY model,nXY ø 2y3, the
renormalized magnetic penetration length should diver
as l , jtj2n0

with n0 ­ 1y2 the mean field exponent.
Herbut and Teˇsanović[9], however, using an analysis o
the GL model exact to all orders in perturbation, have a
gued that, due to the presence of ananomalous dimension,
hA ­ 1, for fluctuations of the magnetic field, one mus
have n ­ n0. Using a one-loop renormalization grou
(RG) scheme, they further suggested the possibility th
n , nXY [10]. Bergerhoffet al. [11], using a nonpertur-
bative RG flow analysis of the GL model, similarly find
n , nXY . Herbut [12], however, has argued that for th
lattice London limit of the GL model,n ­ n0 ­ nXY .
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To investigate this controversy we present here t
results of new MC simulations of the 3D isotropic lattic
London superconductor (LLS) in zero external magne
field. Carrying out the first detailed finite size scalin
analysis of this model, we find results consistent wi
a single diverging length scale, hencej , l. We find
n ø nXY consistent with the universality of the ordinary
3D XY model. We find clear evidence for the anomalou
dimension of magnetic field correlations predicted b
Herbut and Těsanović[9].

The Hamiltonian of our model [3] is

H ­
X
im

Ω
Usui1m̂ 2 ui 2 Aimd 1

1
2

Jl2
0fD 3 Ag2

im

æ
.

(1)

The sum is over all bonds of a 3D simple cubic lattic
of unit grid spacing. ui is the phase angle of the super
conducting wave function on sitei, ci ­ eiui , where the
amplitude ofci has been taken constant (the London a
proximation). Aim is the discretized vector potential on th
bond at sitei in directionm̂ ­ x̂, ŷ, ẑ, and if m, n, s is a
cyclic permutation ofx, y, z, then

fD 3 Agim ­ Ain 1 Ai1n̂,s 2 Ai1ŝ,n 2 Ais ; 2pbim

(2)

is the counterclockwise circulation of theAim around the
plaquette at sitei with normal in directionm̂. bim is the
number of flux quantaf0 of total magnetic field through
this plaquette. The coupling isJ ­ f

2
0y16p3l

2
0, with

l0 the bare magnetic penetration length, andUswd is the
Villain function [13]

e2UswdyT ­
X̀

m­2`

e2s1y2dJsw22pmd2yT .

The first term in Eq. (1) is the kinetic energy of flowing
supercurrents; the second term is the magnetic field ene

We focus here on the calculation of the magnetic fie
correlation function

Fsqd ;
4p2J
TL3 kbmsqn̂dbms2qn̂dl , (3)
© 1998 The American Physical Society
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wherebmsqn̂d ;
P

i e2iqn̂?ri bim is the Fourier transform
of the total magnetic field, and̂m'n̂. Fsqd is just
the wave-vector-dependent magnetic permeability, w
limq!0 Fsqd ­ ≠By≠H [14]. Our goal is to show that the
singular part ofFsqd is consistent with the scaling ansatz

Fst, Q, Ld ­ ,21Fst,1yn , Q,, Ly,d , (4)

where t ­ T 2 Tc, Q ­ 2 sinsqy2d, L is the system
length, and, is an arbitrary length rescaling factor. Not
that we chooseQ rather thanq as our scaling variable,
since the vortex line interaction that arises from th
Hamiltonian (1) is a function ofqm only through the
combinationsQm [14]. SinceQ ! q asq ! 0, this does
not affect the long length scaling; our hope is that by usin
Q we may succeed to slightly extend the scaling region
shorter length scales. Verification of the scaling Eq. (
will demonstrate that there is only asingle diverging
length scale in the model that describes both the critic
behavior of global thermodynamic variables, as well as t
spatial variation of magnetic field fluctuations. Since th
former is determined by the correlation lengthj, while
the latter is determined by the magnetic penetration leng
l, we conclude thatj , l , jtj2n .

We carry out standard Metropolis MC on the Hamilton
ian (1) for cubic lattices of lengthsL ­ 8 to 32, using pe-
riodic boundary conditions. We use the particular value
l0 ­ 0.3 (in units of the grid spacing) [15]. Temperature
will be measured in units ofJ. In one MC “pass” we first
updateAix , Aiy , andAiz at each sitei, going sequentially
through the entire lattice, then follow this by a sequenti
update of theui . TheAim are allowed to fluctuate without
constraint. For our largest system size,L ­ 32, we use
at each temperature typically32 000 passes to equilibrate,
followed by1.7 3 107 passes for computing averages.

First we consider the scaling behavior of the magne
permeability. Evaluating Eq. (4) at the smallest wav
vector in our system,qmin ­ 2pyL, usingQmin ø qmin,
and choosing the rescale factor, ­ L, we arrive at

LFst, Qmin, Ld ­ FstL1yn , 2p , 1d . (5)

Exactly at Tc (i.e., t ­ 0), LFsqmind should thus be a
constant independent ofL. In Fig. 1(a) we plot our data
for LFsqmind vs T , for L ­ 8 32. To a very good
accuracy, the curves for differentL do indeed intersect
at a single point,Tc ø 0.8. To further verify the scaling
relation Eq. (5), we fit our data forLFsqmind nearTc to
a low order polynomial expansion insT 2 TcdL1yn. We
determine the values ofTc ­ 0.8000 6 0.0002 and n ­
0.66 6 0.03 from a fifth order polynomial fit, restricting
data to the rangesjtj # tmax ­ 0.006 and L $ Lmin ­
12. Increasing either the order of the polynomial,Lmin, or
decreasingtmax resulted in no change in these fitted value
within the estimated statistical error. In Fig. 1(b) we us
these fitted parameters to plotLFsqmind vs tL1yn, for data
in the rangejtj # 0.01. The resulting data collapse isvery
good. Our value ofn is thus completely consistent with
ith
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FIG. 1. (a)LFsqmind vs T for system sizesL ­ 8 32. The
common intersection of all curves locatesTc. (b) Scaling
collapse ofLFsqmind vs sT 2 TcdL1yn using fitted values of
Tc andn.

nXY ø 2y3. Note that by takingq ­ qmin, L ! `, and
, ­ t2n in Eq. (4), our results imply that the magnetic
permeability vanishes, asT ! T1

c , as≠By≠H , tn .
We now consider theq dependence ofFsqd. In Fig. 2

we plot Fsqd vs Q for L ­ 8 32, exactly atTc and for
one representative temperature above and belowTc. We
see, as expected, that forT . Tc, Fsqd approaches a con-
stant asQ ! 0, while for T , Tc, Fsqd vanishes asQ2.
Exactly atTc, however,Fsqd appears to vanish linearly
as Q. This is a clear suggestion of the anomalous d
mension of magnetic field correlations predicted by Herb
and Tešanović, according to which atTc, Fsqd , qhA with
hA ­ 4 2 D in D dimensions [9]. It is interesting to
note that, while there is a considerable finite size effe
for T . Tc, finite size effects at a fixed value ofQ appear
negligible for allT # Tc.

To further verify the anomalous scaling dimension o
magnetic field correlations, we can apply Eq. (4) att ­ 0,
taking as the rescaling factor, ­ L, to get

LFs0, Q, Ld ­ Fs0, QL, 1d . (6)

In Fig. 3 we plotLFsqd exactly atTc vs LQ, for L ­
8 32 andq # py2. We find a good collapse of the data
to a single curve that vanishes linearly asLQ ! 0.

FIG. 2. Fsqd vs Q for system sizesL ­ 8 32, at T ­
0.76 , Tc, Tc ­ 0.80, and T ­ 0.82 . Tc. Note the virtual
absence of finite size effects forT # Tc.
1965
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FIG. 3. Scaling collapse ofLFsqd vs LQ at Tc, for L ­
8 32, q , py2. LFsqd vanisheslinearly asLQ ! 0.

Finally, in the thermodynamic limitL ! `, we can use
Eq. (4) with, ­ jtj2n ; j to get

Fst, Q, `dyQ ­ sQjd21F6s1, Qj, `d , (7)

where F6 refers to distinct branches forT . Tc and
T , Tc. Using the values ofTc and n found in the fit
of Fig. 1(b) to determinej ­ jT 2 Tcj2n, we plot in
Fig. 4 our data forFsqdyQ vs jQ on a log-log scale. We
use only data for which finite size effects appear to
small, and which are in the scaling region. We see
excellent collapse of the data. Figure 4 clearly demo
strates that there is only a single diverging length sc
for the spatial variation of magnetic field correlations, an
that this length scale isj. For theT . Tc branch, we
see thatFsqdyQ diverges as1yjQ as jQ ! 0, indicat-
ing thatFsqd approaches a finite constant~j21. For the
T , Tc branch, we see thatFsqdyQ vanishes asjQ as
jQ ! 0, indicating thatFsqd vanishes asjQ2. However,
for both branchesFsqdyQ approaches the same constant
jQ ! `, indicating thatFsqd vanishes linearly inQ ex-
actly atTc. Figure 4 thus gives another demonstration
the anomalous dimension of magnetic field scaling atTc.

To get a better physical understanding of the effec
of this anomalous dimension of magnetic field scalin
consider applying a small external magnetic field given

FIG. 4. Log-log scaling collapse ofFsqdyQ vs jQ. The
dashed lines at smalljQ have slopes of61 to indicate the
asymptotic behavior asjQ ! 0.
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Aext. The London equation, describing the total screenin
of the Meissner state,T , Tc, gives for the induced
supercurrent [16]

k jind
m sqn̂dl ­

Jl
2
0

asqd
kAmsqn̂dl , (8)

where the vector potential of the total magnetic field i
the sum of the applied and induced fields,kAmsqn̂dl ­
Aext

m sqn̂d 1 kAind
m sqn̂dl, and

l2
0yasq ­ 0d ­ nssT dynssT ­ 0d (9)

is determined by the density of superconducting ele
tronsns.

The induced supercurrent is also related tokAind
m sqn̂dl

by Ampère’s Law, which for the gaugeQ ? A ­ 0 can be
written as

k jind
m sqn̂dl ­ 2Jl2

0Q2kAind
m sqn̂dl . (10)

Noting thatFsqd is the magnetic permeability, we have

Fsqd ­
kAmsqn̂dl
Aext

m sqn̂d
­

1
1 2 kAind

m sqn̂dlykAmsqn̂dl
. (11)

Combining this with Eqs. (8) and (10) gives

Fsqd ­
asqdQ2

1 1 asqdQ2
. (12)

Comparing with the results of Fig. 4, we see that for finit
j at T , Tc, we have limq!0 asqd , j. Equation (9)
thus implies that the superconducting electron dens
vanishes asns , j21 , jtjn .

The renormalized magnetic penetration lengthl is de-
termined by the pole ofFsqd. If one could ignore theq
dependence ofasqd, one would then conclude thatl2 ­
asq ­ 0d. From this followsl ,

p
j and ns , l22.

These are indeed the expectations from mean field th
ory [16], as well as the “uncharged” superconductor rep
resented by the ordinary 3DXY model [17] (given by the
limit l0 ! `). They also hold in the present model, a
low temperatures.

However, asT ! T 2
c , Eq. (12) and Fig. 4 imply that

limq!0 asqd , 1yq. This is a consequence of the anoma
lous scaling dimension of the magnetic field. It is this sin
gular dependence ofasqd on q that shifts the pole ofFsqd
so thatl , j rather than

p
j, in the “charged” supercon-

ductor critical region. In this critical region the London
relationns , l22 no longer holds [18].

Note also thatFsqd determines the decay of the magneti
field away from a test vortex line, hence it determine
the renormalized interaction between vortex lines. Theq
dependence ofasqd implies that in the critical region, the
interaction between two straight and parallel test vorte
lines separated by distancer will change from the lnr of
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FIG. 5. YXY sqd vs Q for the ordinary 3DXY model. Data is
for L ­ 8 32 at T ­ 2.96 , Tc, Tc ­ 3.0, and T ­ 3.04 .
Tc. Note the virtual absence of finite size effects forT $ Tc.

mean field (MF) theory atr ,
p

j , lMF , to the faster
decay of1yr for

p
j , r , j , l.

Finally, we note that the anomalous scaling ofFsqd also
has some interesting consequences for the ordinary 3DXY
model. One can show that, within the mapping of the 3
XY model to a gas of sterically interacting loops, the he
licity modulus of theXY model maps into a loop-loop
correlation function. Identifying such loops as the vorte
lines of the LLS, which asq ! 0 (or l0 ! 0) become
identical with magnetic flux, one concludes [19] that th
wave-vector-dependenthelicity modulus [14,20]YXY sqd
of the ordinary 3DXY model should be the dual ofFsqd.
We have carried out independent MC simulations of th
ordinary 3DXY model, in the Villain approximation, cal-
culatingYXY sqd for an ensemble with “fluctuating twist”
boundary conditions (fbc) [20]. We plot our results fo
YXY sqd vs Q in Fig. 5, for L ­ 8 32 and T ­ 2.96 ,

Tc, Tc ­ 3.0, andT ­ 3.04 . Tc. Note the striking simi-
larity to Fig. 2, only with the temperature scale inverted
Finite size effects are negligible forT $ Tc. As Q ! 0,
YXY approaches a constant forT , Tc, YXY , Q2 for
T . Tc, andYXY , Q exactly atTc. Thus the anoma-
lous scaling ofFsqd at Tc shows up as an anomalous sca
ing of YXY sqd at Tc [21].

To conclude, we have presented MC data that verifi
the scaling ansatz of Eq. (4). This ansatz implies that the
is only a single diverging length scale in the problem, an
that the magnetic penetration length scales asl , j ,
jtj2n . We find the value ofn ­ 0.66 6 0.03 consistent
with nXY ø 2y3 of the ordinary 3DXY model, and confirm
the predicted anomalous scaling dimension of magne
field correlations atTc.
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