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Critical Behavior of the Meissner Transition in the Lattice London Superconductor
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We carry out Monte Carlo simulations of the three dimensional (3D) lattice London superconductor
in zero applied magnetic field, making a detailed finite size scaling analysis of the Meissner transition.
We find that the magnetic penetration lengthand the correlation length scale asA ~ & ~ |¢]77,
with » = 0.66 = 0.03, consistent with ordinary 3IXY universality,vyy = 2/3. Our results confirm
the anomalous scaling dimension of magnetic field correlatioris.at [S0031-9007(98)05449-0]

PACS numbers: 74.40.+k, 64.60.Fr

The discovery of the high temperature superconductors To investigate this controversy we present here the
has revived interest in the effects of fluctuations on theesults of new MC simulations of the 3D isotropic lattice
critical behavior of the superconducting transition. ThelLondon superconductor (LLS) in zero external magnetic
Meissner transition of a bulk type Il superconductor infield. Carrying out the first detailed finite size scaling
zero applied magnetic field is the most basic case that caamalysis of this model, we find results consistent with
be considered. While it was originally thought that thisa single diverging length scale, hencg ~ A. We find
transition was weakly first order [1], it is now generally » = vxy consistent with the universality of the ordinary
believed to be in the same universality class as the ordiBD XY model. We find clear evidence for the anomalous
nary three dimensional (3DXY model, except with the dimension of magnetic field correlations predicted by
temperature scale inverted [2,3]. The argument is baselderbut and T&anovic[9].

[2—-6] on two observations: (i) the ordinary 3ty model The Hamiltonian of our model [3] is

can be mapped onto a system of sterically interacting loops |

with inverted temperature scaf@o,, = 1/7, and (i) the 3 = Z{U(eiﬂl —0; — Aiy) + EJA%[D X A]fﬂ}.
vortex loops of a fluctuating superconductor interact with a in

screenedCoulomb interaction, with screening length equal 1)

to the bare magnetic penetration length Assumingthat o g is over all bonds of a 3D simple cubic lattice

the finite interaction lengtfl, of the vortex loops is not ¢ it grid spacing. 6; is the phase angle of the super-

a relevant modification of steric (on site) interactions, theconducting wave function on site ¢; = ¢'%, where the

universality of the fluctuating Meissner transition and the, . it . de of: has been taken constant (the London ap-
3D XY model follows [7]. Early Monte Carlo (MC) simu- P vi ( P

. . . roximation). A, , is the discretized vector potential on the
lations by Dasgupta and Halperin [3] of a lattice Londonp ) Aiu b

S bond at site in directiong = %,9,%, and if u, v,o is a
supe_rconducto_r model strongly supported this p'Cture_b\‘:yclic permutation of, y, z, then
making a qualitative comparison of the shape of specific
heat peaks in the two models. [D X Alip = Aiv + Aivio = Aivow — Aig = 27hyy,
Recently there has been renewed interest in, and contro- (2)
versy concerning, the nature of this transition. Kiometzi
et al. [8], considering a dual formulation of the fluctuating

Ginzburg-Landau (GL) model, have argued that while th
correlation lengthé ~ |z|~” diverges with the same ex- this plaquette. The coupling i = q’>§/16773/\(2), with
ponenty as the Ofd'”f'”y 3xy mOdel’ vxy = 2/3, th_e Ao the bare magnetic penetration length, afd ¢) is the
renormallzeq magnetic penetration length should dlvergg/illain function [13]

as A ~ [t|7” with »' = 1/2 the mean field exponent.
Herbut and Teanovic[9], however, using an analysis of o .
the GL model exact to all orders in perturbation, have ar- e VT — N o= (/2= 2mm)/T,
gued that, due to the presence ofaromalous dimension, m=-e

14 = 1, for fluctuations of the magnetic field, one Must the first term in Eq. (1) is the kinetic energy of flowing
have » = »'. Using a one-loop renormalization group gypercurrents; the second term is the magnetic field energy.

(RG) scheme, they further suggested the possibility that \ye focus here on the calculation of the magnetic field
v < vxy [10]. Bergerhoffet al. [11], using a nonpertur- qrelation function

bative RG flow analysis of the GL model, similarly find )
v < vxy. Herbut [12], however, has argued that for the F(g) = 4m°J b (ab . (—ab 3
lattice London limit of the GL modely = »' = vyy. (9) TL3 (bulg?)bu(—qp)), 3)

Sis the counterclockwise circulation of the, around the
laquette at sité with normal in directiongi. b;, is the
umber of flux quantap, of total magnetic field through
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whereb, (g#) = >; e 4""ib,;, is the Fourier transform T T
of the total magnetic field, angi Lp. F(g) is just m v =0.66=+0.03 Y
the wave-vector-dependent magnetic permeability, with | T.=0.800 &

limy—o F(q) = 9B/0H [14]. Our goal is to show that the
singular part ofF(g) is consistent with the scaling ansatz

(4)

wherer =T — T., Q = 2sin(g/2), L is the system
length, and( is an arbitrary length rescaling factor. Note
that we choos&) rather thang as our scaling variable,

F(t,0,L) = ¢ 'F(t€'”,0¢,L/0),

since the vortex line interaction that arises from the

Hamiltonian (1) is a function ofg, only through the
combinations?,, [14]. SinceQ — ¢ asq — 0, this does

FIG. 1.
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Scaling

not affect the long length scaling; our hope is that by usingollapse of LF(qmin) vs (T — T.)L'/” using fitted values of
0 we may succeed to slightly extend the scaling region td« and».
shorter length scales. Verification of the scaling Eq. (4)

will demonstrate that there is only single diverging

former is determined by the correlation lengfh while
A, we conclude thag ~ A ~ |¢]|77.

ian (1) for cubic lattices of lengths = 8 to 32, using pe-

vxy = 2/3. Note that by takingy = g, L — «, and
length scale in the model that describes both the criticaf = " in Eq. (4), our results imply that the magnetic
behavior of global thermodynamic variables, as well as thgermeability vanishes, & — T.", asoB/dH ~ t".

spatial variation of magnetic field fluctuations. Since the We now consider theg dependence af(g). In Fig. 2
we plot F(g) vs Q for L = 8-32, exactly atT,. and for
the latter is determined by the magnetic penetration lengtbne representative temperature above and b&lawWe
see, as expected, that fbr> T., F(g) approaches a con-
We carry out standard Metropolis MC on the Hamilton- stant asQ — 0, while for T < T,, F(q) vanishes ag>.
Exactly atT., however,F(q) appears to vanish linearly

riodic boundary conditions. We use the particular value ofas Q. This is a clear suggestion of the anomalous di-
Ao = 0.3 (in units of the grid spacing) [15]. Temperatures mension of magnetic field correlations predicted by Herbut
will be measured in units of. In one MC “pass” we first and Tesanovic according to which &, F(g) ~ ¢™ with
updateA;,, A;,, andA;.; at each site, going sequentially n4 =4 — D in D dimensions [9]. It is interesting to
through the entire lattice, then follow this by a sequentialnote that, while there is a considerable finite size effect
update of thed;. TheA;, are allowed to fluctuate without for T > T., finite size effects at a fixed value ¢f appear
constraint. For our largest system siZze= 32, we use negligible for allT = T..
at each temperature typicald 000 passes to equilibrate,  To further verify the anomalous scaling dimension of
followed by 1.7 X 107 passes for computing averages. magnetic field correlations, we can apply Eq. (4) at 0,
First we consider the scaling behavior of the magnetidaking as the rescaling factér= L, to get
permeability. Evaluating Eq. (4) at the smallest wave
vector in our systeMgmin = 27 /L, using Omin = ¢min,
and choosing the rescale factbre= L, we arrive at

LF(0,0,L) = F(0,0L,1). (6)

In Fig. 3 we plotLF(g) exactly atT, vs LQ, for L =
8-32 andg = 7 /2. We find a good collapse of the data
to a single curve that vanishes linearly/a@ — 0.

LF(t, Omin, L) = F(tL'" 27r,1). (5)

Exactly at7, (i.e., t = 0), LF(gmin) should thus be a
constant independent &f. In Fig. 1(a) we plot our data

for LF(gmin) Vs T, for L = 8-32. To a very good 00 ' ' ' @oe@
accuracy, the curves for differeit do indeed intersect 051 o8 XQ‘, 1
at a single point7. = 0.8. To further verify the scaling 04l T=082, & x 0,00" |
relation Eqg. (5), we fit our data fak F(gm;,) nearT, to P S g *° . "

a low order polynomial expansion i — T,)L'/*. We \E 03}f ° X o e 1
determine the values df. = 0.8000 = 0.0002 and v = T,—o0s0, ©° . " xL=8
0.66 = 0.03 from a fifth order polynomial fit, restricting 02y o v s Zé:g‘
data to the rangelf| = fmax = 0.006 and L = L, = 01k 6% u oL =94
12. Increasing either the order of the polynomigk,, or ot y»  T=0T6 oL =32
decreasingmay resulted in no change in these fitted values, 005 10 15 20
within the estimated statistical error. In Fig. 1(b) we use Q = 2sing/2

these fitted parameters to plbF (¢mis) VS rL''”, for data FIG. 2. F(q) vs Q for system sizesL = 8-32, at T =

in the rangdt| = 0.01. The resulting data collapsensry (.76 < 7., T. = 0.80, and T = 0.82 > T.. Note the virtual
good. Our value ob is thus completely consistent with absence of finite size effects far < T..
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12 . . [ — A®*', The London equation, describing the total screening
ol o ] of the Meissner stateT < T., gives for the induced
L T = 0.800 0. J supercurrent [16]
st g<m/2 0. . 2
s | o - (o) = TR0 4, (o) ®)
& 6 o xL=8 - Ju Y alg) " * avir
R e oL =12 7
4: X’,' oL=16 | where the vector potential of the total magnetic field is
o Oézgg i the sum of the applied and induced fieldd,,(¢?)) =
» = ~ ind/ .~
L | | s AR (qD) + (A%(gP)), and
0 10 20 30 40
Le Aj/alg = 0) = ny(T)/ng(T = 0) 9)
FIG. 3. Scaling collapse of.F(q) vs LQ at T,, for L = ) i ) .
8-32, g < w/2. LF(q) vanishedinearly asLQ — 0. is determined by the density of superconducting elec-

trons ny.

The induced supercurrent is also related4g“(¢ 7))
by Ampere’s Law, which for the gaud@ - A = 0 can be
written as

Finally, in the thermodynamic limit. — oo, we can use
Eq. (4) with€ = |¢|7% = £ to get

F(t,0,2)/0 = R % 7 : .
momfemiog il eds. 0 (g = ~INQNARN ). (10)
where F+ refers to distinct branches fdf > T. and ) ) ) »
T < T.. Using the values of, and » found in the fit Noting thatF(g) is the magnetic permeability, we have
of Fig. 1(b) to determinet = |T — T.|”, we plot in A
Fig. 4 our data fo(¢)/Q vs £Q on a log-log scale. We F(g) = (Au(g?)) _ _ 1 . @y
use only data for which finite size effects appear to be Ast(qp) 1 = (ARd(gD))/(Au(gP))
small, and which are in the scaling region. We see an
excellent collapse of the data. Figure 4 clearly demonCombining this with Egs. (8) and (10) gives
strates that there is only a single diverging length scale
for the spatial variation of magnetic field correlations, and Flq) = a(q)Q* (12)
that this length scale i§. For theT > T, branch, we 1 + a(q)Q?’
see thatF(q)/Q diverges asl/£Q as £Q — 0, indicat-
ing that F(g) approaches a finite constang ~!. For the = Comparing with the results of Fig. 4, we see that for finite
T < T, branch, we see thdt(q)/Q vanishes agQ as ¢ atT < T., we have lim—a(g) ~ £. Equation (9)
£Q — 0, indicating thatF'(¢) vanishes ag Q. However, thus implies that the superconducting electron density
for both branche#'(¢)/Q approaches the same constant avanishes ag, ~ &' ~ |¢]”.
£Q — o, indicating thatF(¢) vanishes linearly irQ ex- The renormalized magnetic penetration lengtfs de-
actly at7,. Figure 4 thus gives another demonstration oftermined by the pole of'(g). If one could ignore they
the anomalous dimension of magnetic field scalinfat  dependence of(g), one would then conclude that =
To get a better physical understanding of the effectsy(¢ = 0). From this follows A ~ /€ and n, ~ A2,
of this anomalous dimension of magnetic field scaling,These are indeed the expectations from mean field the-
consider applying a small external magnetic field given byory [16], as well as the “uncharged” superconductor rep-
resented by the ordinary 3BY model [17] (given by the
limit Ay — ). They also hold in the present model, at

o 0808+ 0820 low temperatures.
b e, TP 00.806 +0.816 1 However, asT — T, , Eq. (12) and Fig. 4 imply that
ﬁ ““T\?‘*eq x0.804 ©0.814 ] limy—o a(q) ~ 1/¢. Thisis a consequence of the anoma-
o 05 "4%%‘ 0.808 ~0.812 4 lous scaling dimension of the magnetic field. It is this sin-
s | ooy, . | gular dependence ef(q) on g that shifts the pole of (g)
= ol ‘ M;gg“:o}w ] so thatA ~ ¢ rather than\/E,_in the “charged” supercon-
e D0TSS - 0796 ductpr critical region. In this critical region the London
0l 5 L 00784 +0.794 1 relationn, ~ A~2 no longer holds [18].
T ‘ x0.780  ©0.792 Note also thaf'(g) determines the decay of the magnetic
0.055————+=—""75 0 50 field away from a test vortex line, hence it determines
£Q the renormalized interaction between vortex lines. Fhe

FIG. 4. Log-log scaling collapse of(g)/Q vs £0. The erendgnce ak(g) implies tha}t in the critical region, the
dashed lines at smaffQ have slopes of+1 to indicate the interaction between two straight and parallel test vortex

asymptotic behavior a§Q — 0. lines separated by distaneewill change from the In- of
1966
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FIG. 5. YXY(g) vs Q for the ordinary 3DXY model. Data is
forL=8-32atT =296 <T7T,, T, =3.0, andT = 3.04 >
T.. Note the virtual absence of finite size effects Toe T..

mean field (MF) theory at < /& ~ Amr, to the faster
decay ofl/r for JE < r < & ~ A

Finally, we note that the anomalous scaling-@f) also
has some interesting consequences for the ordinar¥ BD
model. One can show that, within the mapping of the 3D
XY model to a gas of sterically interacting loops, the he-
licity modulus of theXY model maps into a loop-loop
correlation function. Identifying such loops as the vortex
lines of the LLS, which ag; — 0 (or Ap — 0) become
identical with magnetic flux, one concludes [19] that the
wave-vector-dependeimelicity modulus [14,20]Y*Y (¢)
of the ordinary 3DXY model should be the dual @f(q).
We have carried out independent MC simulations of the
ordinary 3DXY model, in the Villain approximation, cal-
culating Y*¥(g) for an ensemble with “fluctuating twist”
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