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Positional Disorder in the Fully Frustrated Josephson Junction Array:
Random Gaussian Phase Shifts in the Fully Frustrated 2D XY Model
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We consider the effect of positional disorder on a Josephson junction array with an applied
magnetic field of f � 1�2 flux quantum per unit cell. This is equivalent to the problem of random
Gaussian phase shifts in the fully frustrated 2D XY model. Using simple analytical arguments
and numerical simulations, we present evidence that the ground state vortex lattice of the pure
model becomes disordered, in the thermodynamic limit, by any finite amount of positional disorder.
[S0031-9007(99)09518-6]
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The stability of vortex lattices to random disorder is a
topic of considerable recent interest, motivated by studies
of the high temperature superconductors. In two dimen-
sions (2D), periodic arrays of Josephson junctions form a
well controlled system for investigating similar issues of
vortex fluctuations and disorder. Here we consider the ef-
fect of “positional” disorder on the vortex lattice of the
fully frustrated Josephson array, with f � 1�2 flux quan-
tum of applied magnetic field per unit cell.

Positional disorder [1–4] was first discussed with re-
spect to the Kosterlitz-Thouless (KT) transition for the
f � 0 model in zero magnetic field. Early arguments
[1] predicting a reentrant normal phase at low tempera-
tures have been revised by recent works [2,4] which argue
that there is a finite critical disorder strength sc �

p
p�8;

for s , sc an ordered state persists for 0 # T # Tc�s�.
For the pure f � 1�2 case on a square grid [5,6], the
ordered state has two broken symmetries: the U�1� sym-
metry (“KT-like” order) associated with superconducting
phase coherence and the Z�2� symmetry (“Ising-like” or-
der) associated with the “checkerboard” vortex lattice, in
which a vortex sits on every other site. Previous works
[7,8] have considered the effect of positional disorder on
this f � 1�2 model; all have concluded that both Ising-
like and KT-like order persist for at least small disorder
strengths s. In this Letter, however, we present new argu-
ments that suggest that, for f � 1�2, the critical disorder
is sc � 0.

The Hamiltonian for the Josephson array is given by
the “frustrated” 2D XY model [6]

H �ui� �
X

im

U�ui 2 ui1m̂ 2 Aim� , (1)

where i are the sites of a periodic square grid with basis
vectors m̂ � x̂, ŷ, the sum is over all nearest neighbor
(nn) bonds �i, i 1 m̂�, and ui 2 ui1m̂ 2 Aim is the gauge
invariant phase difference across the bond, with Aim �
�2p�f0�

Ri1m̂
i A ? d� the integral of the vector potential.

Positional disorder arises from random geometric distor-
tions of the bonds of the grid, resulting in Aim � A

�0�
im 1
0031-9007�99�82(26)�5313(4)$15.00
dAim; A
�0�
im is the value in the absence of disorder, and dAim

is the random deviation. We take the dAim to be indepen-
dent Gaussian random variables with

�dAim� � 0, and �dAimdAjn� � s2dijdmn . (2)

�· · ·� denotes an average over the quenched disorder. The
positionally disordered array is thus also referred to as the
XY model with random Gaussian phase shifts.

When U�f� is the Villain function [9], the Hamiltonian
(1) is equivalent to a dual “Coulomb gas” of interacting
vortices [5,10,11],

H �ni� �
1
2

X

ij

�ni 2 f 2 dfi�Gij�nj 2 f 2 dfj� .

(3)

The sum is over all pairs of dual sites i, j, ni is the in-
teger vorticity on site i, and the interaction Gij is the
Green’s function for the 2D discrete Laplacian opera-
tor, DikGkj � 22pdij, where Dij 	 di,j1x̂ 1 di,j2x̂ 1

di,j1ŷ 1 di,j2ŷ 2 4dij. For large separations, Gij �
2 ln jri 2 rjj. The fi 	 f 1 dfi are �1�2p� times the
circulation of the Aim around dual site i; f is the aver-
age applied flux, while dfi is the deviation due to the
random dAim,

dfi �
1

2p
�dAi,x 1 dAi1x̂,y 2 dAi1ŷ,x 2 dAi,y� .

(4)

Geometrically distorting a bond increases the flux through
the cell on one side of the bond, while reducing the
flux through the cell on the opposite side by the same
amount. The dfi are thus anticorrelated among nn sites.
Positional disorder is thus the same as random dipole pairs
of quenched charges 6dfi [1]. From Eqs. (2) and (4)
we get

�dfi� � 0, and �dfidfj� � 2
s2

4p2 Dij . (5)
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The Hamiltonian (3) can be rewritten as interacting
charges in a one-body random potential [2],

H �qi� �
1
2

X

ij

qiGijqj 2
X

i

qiVi , (6)

where qi 	 ni 2 f, and the random potential is Vi �P
j Gijdfj. For f � 1�2, qi � 61�2. From Eq. (5),

�Vi� � 0 ,

and �ViVj� �
X

k,l

Gik�dfkdfl�Glj

� 2
s2

4p2

X

k,l

GikDklGlj �
s2

2p
Gij ,

(7)

The Vi thus have logarithmic long range correlations.
We now use an Imry-Ma-type [12] argument to estimate

the stability of the doubly degenerate checkerboard ground
state to the formation of a square domain of side L. The
energy of such an excitation consists of a domain wall
term, Ed , which is present for the pure case, and a pinning
term, Ep , due to the interaction with the random Vi . Ed�L�
has the form [13]

Ed � aL 1 c lnL 1 d . (8)

The first term is the interfacial tension of the domain wall;
the second term comes from net charge that builds up at the
corners of the domain [14]. Calculating Ed�L� numerically
for a pure system, we find an excellent fit to Eq. (8), with
a � 0.28, c � 0.15, and d � 0.058.

By Eq. (7), the average pinning energy of the domain
D , �Ep� � 2

P
i[D qi�Vi� � 0, but the variance is

�E2
p� � 4

X

i,j[D

qi�ViVj�qj

�
4s2

2p

X

i,j[D

qiGijqj �
4s2

p
E0 , (9)

where E0 � �p�32�L2 is the ground state energy of the
checkerboard domain [15]. The root mean square (rms)
pinning energy is thus

�Ep�rms � bL, b �
s

2
p

2
� 0.35s . (10)

For domains whose energy is lowered by the interac-
tion with Vi , the typical excitation energy is E � Ed 2

�Ep�rms. Equations (8) and (10) imply that when b . a,
i.e., when s . sc � 0.8, E�L� has a maximum at L �
j 	 �c�2

p
2 ���s 2 sc�. Domains of size L . j will

lower their energy by increasing in size, and so disorder
the system. Thus, one naively expects that when s , sc

the system preserves its Ising-like order, but when s .

sc the system is disordered into domains of typical size j.
However, the leading size dependencies of Eqs. (8) and

(10), Ed 
 �Ep�rms 
 L, are exactly the same as found in
the 2D nn random field Ising model (RFIM). For the RFIM
it is known [12,16,17] that 2D is the lower critical dimen-
5314
sion, that the randomness causes domains walls at T � 0
always to roughen and so acquire an effective negative line
tension, and that the critical disorder is sc � 0; i.e., any
amount of disorder, no matter how weak, destroys the
Ising-like order of the pure case. By analogy, we suggest
that the positionally disordered f � 1�2 2D XY model
similarly has sc � 0. A very similar approach was previ-
ously used by Benedict and Moore [18] to argue that sc �
0 in the f � 1�2 model with uncorrelated random dfi.

To check our prediction, we carry out Monte Carlo (MC)
simulations of the Hamiltonian (3) with periodic boundary
conditions on L 3 L square grids. Our MC procedure
is as follows [15]. One MC excitation attempt consists
of the insertion of a neutral n � 61 vortex pair on nn
or next nn sites, which is accepted or rejected using the
usual Metropolis algorithm. L2 such attempts we call one
MC pass. At each temperature we typically used 4000 MC
passes to equilibrate the system, followed by 128 000 MC
passes to compute averages. Every 100 passes we attempt
a global excitation reversing the sign of all the charges,
qi ! 2qi . For each disorder realization we cooled down
two distinct “replicas,” starting with different random
charge configurations and using different random number
sequences. In only about 3% of the cases did the two
replicas fail to give reasonable agreement.

To test for Ising-like order we define an order parameter
analogously to an Ising antiferromagnet,

M �
1
L2

X

i

qi�21�xi1yi . (11)

We first consider s � 0.3, smaller than both the naive
estimate of sc � 0.8, and the sc �

p
p�8 � 0.63 of the

f � 0 model. Figure 1 plots ��M2�� vs T , averaged over
200 disorder realizations, for sizes L � 10, 14, and 20. All
curves start to increase from zero near T � 0.13, which is
Tc�s � 0� of the pure model. However, ��M2�� at low
T decreases steadily with increasing L. The reason for
this becomes clearer if we consider the histogram of values
of �M2� that occur as we sample the different realizations
of disorder. We show such histograms in Figs. 1b–1d
for the lowest temperature T � 0.02. As L increases,
the statistical weight shifts from predominantly ordered
systems (M2 � 1�4) to predominantly disordered systems
(M2 � 0). Assuming that this trend continues, we expect
that as L ! `, ��M2�� ! 0.

To measure the “random field correlation length” j, we
consider the vortex correlation function

S�k� �
1
L2

X

i,j
eik?�ri2rj ��ninj� . (12)

For the pure case, S�k� in the ordered phase has singular
Bragg peaks at K � 6p x̂ 6 p ŷ. If the vortex lattice
is disordered, these peaks will broaden, and their finite
width provides a measure of j. Writing k � K 1 dk,
and assuming a Lorentzian shape for the disorder averaged
peak, �S�k�� ~ 1��dk2 1 j22�, we determine j by fitting
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FIG. 1. (a) ��M2�� vs T , for s � 0.3, and sizes L � 10,
14, and 20 (solid lines are guides to the eye). Histogram
of occurrences of �M2� in 200 realizations of disorder, for
s � 0.3 at low T � 0.02, for (b) L � 10, (c) L � 14, and
(d) L � 20.

to this form for dk � 0, and dk � 2p�L [19]. In Fig. 2
we show j vs s at our lowest T � 0.02, for several system
sizes L. Only for our smallest value s � 0.25 does a finite
size effect remain. In this case, however, j decreases as
L increases. This is in contrast to the increase of j with
L that one would expect if one were approaching a second
order transition. This behavior is consistent with that seen
in Figs. 1b–1d, where as L increases, a greater fraction of
the disorder realizations result in disordered states.

We next fit our results for j�s� to several possible scal-
ing expressions: (i) j 
 eC��s2sc�2

, (ii) j 
 eC��s2sc�4�3
,

(iii) j 
 eC��s2sc�, and (iv) j 
 js 2 scj
2p . The first

two, with sc 	 0, have been suggested [16] for the 2D
RFIM; here we leave sc as an arbitrary parameter to be
determined from the fit. The third has been suggested for
the positionally disordered f � 0 model [1,2], in which
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FIG. 2. Correlation length j�s� vs s at T � 0.02 for vari-
ous sizes L. Sizes L � 14, 20 are averaged over 200 realiza-
tions of the randomness; sizes L � 30, 40 are averaged over
50 realizations. Lines are fits to the scaling forms (i)–(iv).
sc . 0. The fourth is the familiar power law form. Using
data for only the largest L for each s, the results of these
fits are shown in Fig. 2. The value of sc and the x2 of the
fit for each case is (i) sc � 0.0046 6 0.035, x2 � 67;
(ii) sc � 4.1 3 1026 6 0.041, x2 � 31; (iii) sc �
0.0134 6 0.055, x2 � 67; (iv) sc � 0.0013 6 0.098,
p � 2.86 6 0.84, x2 � 7.6. The power law (iv) gives
the best fit of all the forms; however, all give sc � 0
within the estimated error. Given the rather limited range
of the data, the above fits should be treated with caution.
However, they do indicate that the data contain no sugges-
tion of a diverging j at a finite s. Coupled with our Imry-
Ma argument, we thus find a consistent picture suggesting
that sc � 0 for the f � 1�2 2D XY model.

Returning to the case s � 0.3, where Ising-like order
has been lost, we now consider whether the system may
still have a finite temperature “spin glass” transition to
a disordered but frozen vortex state. To test for this we
measure the self and cross overlaps [20], Qself and Qcross,

Qselfa �
1
L2

X

i

�n�a�
i �t�n�a�

i �t 1 t�� ,

Qcross �
1
L2

X

i

�n�a�
i �t�n�b�

i �t�� .

(13)

a and b index the two independent replicas. For t

sufficiently large we expect Qself1 � Qself2 � Qcross, if
the system is well equilibrated. Averaging Eq. (13) over
several values of t $ 2000 to improve our statistics, we
plot �Qself1�, �Qself2�, and �Qcross� vs T in Fig. 3a. We
see that our system is fairly well equilibrated down to the
lowest T we study. To test for a spin glass transition, we
measure the overlap susceptibility,

xQ � L2���Q2
cross�� 2 ��Qcross�2�� , (14)

which we plot vs T in Fig. 3b for various system sizes.
The peak in xQ near T � 0.06 shows no noticeable
increase as L increases, thus suggesting that there is no
finite temperature spin glass transition.

If the vortices are not frozen, but are free to diffuse,
one expects that superconducting phase coherence is also
destroyed. To explicitly test this we measure the helicity
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FIG. 3. (a) Overlaps �Qself1�, �Qself2�, and �Qcross� vs T for
s � 0.3 and L � 20; (b) overlap susceptibility xQ vs T for
s � 0.3 and L � 10, 14, and 20. Both are averaged over
200 disorder realizations.
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modulus. The Hamiltonian (3) can viewed as representing
the XY model with “fluctuating twist” boundary conditions
[11]. Using the method of Ref. [21], we determine the
dependence of the total free energy F of the corresponding
XY model, as a function of the twist �Dx , Dy� which is
applied in a “fixed twist” boundary condition. We then
determine the �Dx0, Dy0� that minimizes F; the helicity
modulus tensor is then the curvature of F at the minimizing
twist, Ymn � ≠2F�≠Dm≠Dn . In Fig. 4a we plot Y1, the
largest of the two eigenvalues of Ymn , vs T , for s � 0.3
and sizes L � 10, 14, and 20. At all T , Y1 continues
to decrease as L increases, giving no suggestion of a
finite temperature transition. In Figs. 4b–4d we plot
histograms of the minimizing twist D0 for the three sizes
L. Note in choosing our random phase shifts dAim, we
impose the constraint

P
i dAim � 0 in order to remove one

trivial source of D0 fi 0. We see that the width of the
distributions of D0 steadily increases with increasing L,
suggesting [4] that the strength of the random disorder is
renormalizing to greater values on larger length scales.

To conclude, our results suggest that Ising-like order
is destroyed for any finite amount of positional disorder.
Further, we found in one specific case that when the Ising-
like order vanished, no spin glass order or phase coherence
existed either. We speculate that this remains true as
well for any finite disorder strength. Although sc � 0,
the finite j�s� nevertheless can become extremely large
for small values of s. When j exceeds the size of the
experimental or numerical sample, the system will indeed
look ordered. We believe this explains previous numerical
work on this problem which reported the persistence of
Ising-like order at small s. In the most recent of these
works, Cataudella [8] reports at s � 0.113 a finite Tc to an

FIG. 4. (a) Y1 vs T , for s � 0.3, and sizes L � 10, 14, and
20 (solid lines are guides to the eye). Histogram of values
of D0 found in 200 disorder realizations, for s � 0.3 at low
T � 0.02, at (b) L � 10, (c) L � 14, and (d) L � 20.
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Ising-like ordered state. The correlation length exponent
that he finds is n 
 1.7, clearly different from that of
the pure model. Using our scaling form (iv) we can
estimate that at this value of s, j 
 120, much larger than
Cataudella’s largest system size of L � 36. His results
may thus be reflecting a cross over region at L , j, rather
than a true transition.
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