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Abstract. [ review several problems dealing with the equilibrium behavior of clas-
sical two dimensional Josephson junction arrays in applied magnetic fields. Specific
attention is given to the cases of a uniform field with average flux density per unit
cellof f =0, f=1/2, f =1/gand f = 1/2—1/q. Several models incorporating the
effects of randomness on the Josephson array are also reviewed. These include the
case of a random vortex pinning potential and its effects on vortex lattice order,
and the spin glass, gauge glass, and positionally disordered array.

1 Introduction

Two dimensional arrays of coupled Josephson junctions have been a topic of
much experimental and theoretical investigation for approximately the last
fifteen years. As they are a system in which topological singularities, frus-
tration, incommensurability, and randommness can all come into play, they
serve as an excellent model for studying many diverse problems in statisti-
cal physics. More recently, Josephson arrays have received attention in con-
nection with high temperature superconductors. Both are superconducting
systems in which thermal fluctuations play a crucial role in determining the
macroscopic behavior. The Josephson array, with its simpler phase space and
well defined geometry, can therefore serve as a test case for understanding
many issues of importance to high 7T¢. superconductors, such as vortex pinning
and the effects of randomness.

Yet despite nearly fifteen years of investigation, there remain fundamental
unresolved issues in even some of the most simply posed problems. In this
article I will review some of the theoretical work concerning the equilibrium
phase transitions in classical Josephson arrays, placing emphasis on results
from numerical simulations. I will try to point out what is understood, and
what questions remain open.

1.1 The Josephson Junction Array Model

The system of the Josephson array can be conceptualized as follows. At each
site of a grid of points there is a superconducting island. Nearest neighbor
islands are coupled to each other by the tunneling of Cooper pairs (either
though proximity effect barriers, or oxide layer barriers), thus producing a



2 S. Teitel

Josephson junction on each bond of the grid. The relevant degrees of freedom
of the system are then the phase angles #; of the superconducting wavefunc-
tion on sites ¢ of the grid. If the array is placed in an external magnetic field
given by the vector potential A, one defines on nearest neighbor bonds (ij)
the integrals A;; = (27/P¢) fl.] A -d£, where @& = 2e/hc is the flux quantum.
The Hamiltonian of the array is then just the sum of Josephson energies for
each nearest neighbor bond,

H[6:] = Vij(0: — 0 — Ayj) (1)
(ij)

where V;;(¢) is the coupling energy of bond (ij), and its argument is the
gauge invariant phase angle difference across the bond. Vj;(¢) is quadratic
about its minimum at ¢ = 0, has period 2, and dV;;/d¢ is proportional to
the supercurrent flowing through the bond. I consider here only the classical
case in which charging energy, and hence quantum effects, can be ignored.
The equilibrium behavior of the array is then obtained from the partition
function, summing e~#% (8 = 1/kpT) over all possible configurations of the
phases {6;}. If one ignores inductance effects, the A;; remain fixed parameters
determined from the applied magnetic field. Here I will consider only the case
where the grid of sites ¢ form a periodic two dimensional lattice, which unless
stated otherwise, I take to be square. I will also assume that there is no
randomness in the couplings, and hence the V;;(¢) = Vo(¢) are all equal.
Periodic boundary conditions will be imposed at the edges of the system.
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Fig. 1. Schematic geometry of a Josephson junction array

The different junctions of the array are coupled to each other through
a topological constraint on the ;. Since 6; i1s the phase angle of a complex
wavefunction, one must find that the sum of phase angle differences [6; —6;] €
(—m, ], going around any closed path on the grid must sum to 27n, with n
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integer. n is the net vorticity contained within the path. Such vortices are
the key excitations of the Josephson array. In the absence of any applied
magnetic field, A;; = 0, and the ground state has all §; equal, so that V;(¢)
is minimized on each bond. When A;; # 0, the above topological constraint
will in general prevent the ; from adjusting so as to cancel out the effect of
the A;;. The result will be a ground state in which the ¢; have some spatially
varying pattern, V;(¢) is no longer minimized on all bonds, and so there is
a flow of finite local supercurrents. Since each bond is now no longer able
to achieve its minimum energy, such a model is said to be frustrated. For
the case where the A;; describe a uniform magnetic field perpendicular to
the plane of the array, (1) is referred to as the uniformly frustrated 2D XY
model.

1.2 Coulomb Gas Duality

For a Josephson junction one typically uses Vy(¢) = —Jg cos(¢), where the
coupling constant Jy is related to the critical current of the junction /I by,
Iy = (2¢/h)Jy. However much theoretical simplification can be achieved by
using instead the Villain function (Villain 1975), defined by

R ACIC E o~ 30J0(¢—2mm)? (2)

m=—00

In this case, exact duality transformations (José et al. 1977, Fradkin et al.
1978, Vallat and Beck 1994) map (1) onto an equivalent problem of logarith-
mically interacting charges, given by the Hamiltonian,

Hlni] = 1€’ Z(m = [i)G(ri —x5)(nj — f5) , (3)

Here the dual sites ¢ and j sit at the centers of the unit cells of the original
grid; f; is the sum of the A;;/2m going counterclockwise around the unit cell
at ¢ and gives the number of flux quanta of applied field penetrating cell z;
n; = 0,%£1,42,... are integers; the unit of charge is e = +/27Jy; and G(r)
is the solution to the lattice Laplacian with periodic boundary conditions,
which can be explicitly written for a square lattice of length L as,

2w clkr
== — — : (4)
L 4 —2cosky —2cosky
E#0

G(r)

Here the sum is over all wavevectors satisfying periodic boundary conditions,
ky = Z%mu, m, =0,1,...,L —1, and the grid spacing has been taken to be
unity. For large separations, | € r < L, G(r) ~ —1Inr.

The Hamiltonian (3) can be viewed as one of interacting integer charges
n;, superimposed on a quenched background charge distribution f;, and is
referred to as the 2D Coulomb gas (CG). The partition function is obtained
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summing over all charge configurations {n;} subject to the constraint of total
charge neutrality ), (n;— f;) = 0. In this duality mapping, the integer charges
n; are related to the vortices in the phase angles 6; of the original Josephson
array (Vallat and Beck 1994). Smooth spin wave fluctuations of the 6; about
a given vortex configuration give an additional contribution to the system
energy, which is decoupled from the vortex part (3). This spin wave part is
Gaussian, and so may be directly summed in the partition function, giving
a non-singular additive contribution to the free energy which is henceforth
ignored.! This Coulomb gas formulation of the Josephson array will form the
basis for most of the following discussion. Henceforth, I will use the terms
“charge” and “vortex” interchangeably.

The partition function derived from (3) is invariant under the transfor-
mation f; — f; + m;, where m; is any integer, as such a change in f; can
always be canceled out by the addition of an appropriate integer charge n;
to site 7. It is thus sufficient to consider only cases with —% < fi < %

1.3 The Kosterlitz-Thouless Instability Criterion

In terms of the Coulomb gas model (3) one can search for an insulator to
conductor transition by considering the inverse dielectric function ¢~ !. Defin-
ing the net charge on site ¢ by ¢; = n; — f;, and its Fourier transform by
qx = Y ; e~ X%g; linear response theory gives (Minnhagen 1987),

- : 27 62 <qkq—k>
1
€ (T) = th})l 5 5 . (5)

The conducting state is one in which there are freely diffusing charges and
¢~! = 0. In the insulating state, charges n; are bound either to each other
in neutral clusters, or to the background f;, and e~' > 0. Since a charge
is identified with a vortex in the Josephson array, and each time a vortex
crosses a path the total phase angle difference along that path changes by
27, the free diffusion of charges (vortices) will correspond to large phase angle
fluctuations that destroy superconducting coherence. Thus one can show that
the conducting (insulating) phase of the Coulomb gas corresponds exactly to
the normal (superconducting) phase of the Josephson array (Ohta and Jasnow
1979, Minnhagen 1987).

A criteria for predicting the instability of the insulating phase has been
given in the pioneering work of Kosterlitz and Thouless (1973) (KT). Consider
the energy U of a single free charge e, including the effect of the dielectric
screening due to other bound charges. Since the dominant effects come from
large length scales, one can make a continuum approximation, giving U =

[ d*r|E(r)|?/(4me) = (e?/2¢) In(L/a), where E = e/[r| is the electric field of

! Note however that a coupling between spin waves and vortices remains in the
original XY model (1) if the cosine interaction is used in place of the Villain
interaction (Ohta and Jasnow 1979).
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the charge e, L is the radius of the system, and a is the hard core radius of the
charge. The entropy of the free charge is just the logarithm of the number of
non-overlapping positions in which the charge may be placed, S = In(L/a)?.
Thus the total free energy for a free charge to appear is,

62

F=U-TS= <2€(T) —'2T> In(L/a) . (6)

As L — oo, F — 00, depending of the sign of the prefactor of the logarithm.
Thus when T' < e?/4¢, it costs infinite free energy to create an isolated free
charge, and the insulating phase is stable against such an excitation. When
T > e?/4¢, however, the free energy for a free charge is infinite but negative;
free charges proliferate and the insulating phase becomes unstable. If 7T 1s the
true insulator to conductor transition temperature, one then has the following
bound,

T. < €*/4¢(T.) . (7)

The above gives only an upper bound on T, as it is always possible that an
excitation more complicated than the isolated free charge considered above,
may drive the insulator to conductor transition.

The above bound on T also gives a very important result concerning the
behavior of the dielectric function. One can rewrite (7) as,

eHTL) > 4T, /e* . (8)

Since one has ¢! = 0 for T' > T. in the conducting state, (8) implies that
for finite Ti, ¢~! must make a discontinuous jump to zero at the transition.

2 Uniform Frustration

In this section I focus on behavior for the case of a Josephson array in a
uniform applied magnetic field (Teitel and Jayaprakash 1983a, 1983b). This
corresponds to the CG with a uniform quenched background charge, i.e. all
fi = f, a constant. By the condition of charge neutrality, the ground state
will consist of a finite density of integer charges (vortices) with ), n; = fL?.
For rational f = p/q these ground state charges should be arranged in a
periodic structure. However finding this ground state structure for a general
f = p/q remains an unsolved problem. The competition between the repul-
sive charge-charge interaction and the grid geometry of allowed charge sites,
leads to complicated commensurability effects and discontinuous behavior as
f 1s smoothly varied. A particularly clear experimental verification of such
commmensurability effects has been seen in kinetic inductance measurements
on a triangular Josephson array (Théron et al. 1994).

To find ground states in specific cases, one must resort to symmetry argu-
ments combined with a numerical search through likely candidate states. The
most extensive listing of ground states, considering all f = p/q for ¢ < 20, has



Fig.2. Ground state charge (vortex) configurations for various values of f = 1/q
and f = 1/2 — 1/q. () denotes a charge; for f = 5/11, a shaded box denotes a
charge missing from the 1/2-like background.

been given by Straley and Barnett (1993). In Fig.2 are shown some selected
ground states for two special cases: f =1/¢ and f = 1/2—1/q.

For f = 0, the ground state is a charge vacuum. For f = 1/2, the ground
state is a checkerboard pattern of charges, with a double discrete degener-
acy corresponding to the two possible sublattices which the integer charges
n; = +1 may occupy. For f = 1/q, the ground state is a periodic lattice
that, as g gets larger, becomes an increasingly better approximation to the
triangular lattice that would be found for vortices in a continuum. Note that
for f = 1/4 there are two different degenerate configurations (Korshunov
1986, Straley and Barnett 1993). For f = 1/2 — 1/q, the ground state looks
almost everywhere like the checkerboard pattern of f = 1/2 except for lo-
calized defect regions, which are required so as to give the correct charge
density f < 1/2. For small values of ¢q these defect regions take the form of
domain walls between the two degenerate f = 1/2-like ground states; these
are indicated by the heavy lines in Fig.2 for f = 2/5 and 3/7. For larger



Equilibrium Phase Transitions in Josephson Junction Arrays 7

q, the defects take the form of a supperlattice of missing charges in a single
f = 1/2-like ground state; these are indicated by the shaded boxes in Fig.2
for f = 5/11. Note that the ground state for f = p/q is often described by
a ¢ x q unit cell. However this is not generally true. As shown in Fig.2 for
example, f = 5/11 is periodic with a 2¢ x 2¢ unit cell.

How the ground state charge (vortex) structure melts upon increasing
temperature is another question for which the general answer remains un-
known. T will consider in greater detail below the cases f = 0, f = 1/2,
f=1/qand f=1/2—1/q for large q. For f = 1/5 and f = 2/5 it is known
that the charge lattice has a first order melting transition to a conducting
liquid (Li and Teitel 1990, 1991). The simple fractions f = 1/3 and 1/4 have
received some study (Grest 1989, Lee and Lee 1995), however the critical
behavior of these transitions remains poorly understood.

2.1 Ordinary XY Model: f =0

The case f = 0 corresponds to the ordinary two dimensional XY model, orig-
inally studied by Kosterlitz and Thouless. The ground state is the vacuum
and the low temperature excitations of the insulating phase consist of dipoles
formed of bound n; = +1, n; = —1, charge pairs. As 7" increases, the average
separation of the charges in these dipoles increases, until at a critical temper-
ature T, the charge pairs unbind giving free charges and a conducting phase.
The renormalization group (RG) recursion equations by Kosterlitz (1974)
quantify this picture and yield the result that the KT instability criterion (7)
is satisfied as an exact equality. Equivalently, the discontinuous jump to zero
of e=1(T.) has the universal value 4T, /e?. Although ¢~! is discontinuous, the
transition is second order with an infinite correlation length at 7¢.

This KT transition has been well established both experimentally, as well
as by high precision Monte Carlo simulations (Olsson 1995a). For a good the-
oretical and experimental review see Minnhagen (1987). However the Koster-
litz RG analysis is an expansion in charge fugacity that applies only at small
average charge densities, p = L™2 5", |n;|. At large p one can question if the
KT mechanism continues to hold. Several authors, using continuum mod-
els, have attempted to extend the KT analysis to higher charge densities by
including the screening effect of free charges on bound charges (Minnhagen
and Wallin 1987, 1989, Thijssen and Knops 1988b, Levin et al. 1994, Friesen
1995). They have predicted that the KT transition becomes first order as the
fugacity increases. In particular, Levin at al. predict that the KT transition
becomes first order at the relatively low charge density of p. = 0.0039/a?,
where a is the diameter of the hard core charge.

To investigate numerically the behavior of the f = 0 CG at large charge
densities, one can add a chemical potential term to the Hamiltonian (3),

Hni] = %Z n;G(r; —rj)n; — UZ”? + Z(“? —nj) . (9)



Fig. 3. Phase diagram of the dense f =0 CG

There is indeed a first order transition (heavy solid line), however it sep-
arates the insulating gas of charge dipoles from an insulating charge solid
of alternating +1 and —1 charges. As this charge solid is heated, there is
first a KT transition to a conducting solid in which charge interstitials and
vacancies can diffuse freely, followed by an Ising-like melting of the solid to
a liquid. The two KT transition lines, in the solid phase and in the dilute
gas phase, meet the first order line at the same temperature, 7* ~ 0.126,
somewhat below the tricritical point where the Ising melting line and the
first order line meet.

The origin of the charge solid phase is easy to see by considering the
Fourier transform of the first two terms of (9), # = L=25", (1Gx — u) ngn_y.
As u increases, the ground state will change from the vacuum to an ordered
charge solid when 2u first equals the smallest value of G. For the square grid
Green’s function (4) this occurs for k = 72 +7y (thus giving the checkerboard
pattern of the ground state) at ug = 7/8.

As the first order line in Fig.3 is a direct consequence of the formation
of a charge solid, it is presumably unrelated to the first order transitions
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predicted by the above theoretical works, which are all built around charge
pairs as the fundamental charge correlation.? It is thus worthwhile to give
closer attention to the transition line from the gas of dipoles to the liquid,
which is labeled as “K'T” in Fig. 3. To test that this line does indeed remain
a second order phase transition all the way up to the first order line at
u = ug, Gupta and Teitel (1996) have computed histograms of charge density,
as temperature is varied for fixed u = 0.39 just below the first order line
at ug = 7/8 ~ 0.3937. If the transition is first order, there should be a
discontinuity in charge density as the first order line is crossed. One thus
expects, in the vicinity of the transition, to see a charge density histogram
with two distinct peaks corresponding to the two differing average charge
densities of the two phases. If however the transition is second order, with
no discontinuity in charge density, only a single peak should be present. The
numerically computed histograms are shown in Fig. 4 below, for a system of
size L = 64. As is seen, there is no hint at all of a bimodal distribution for any
of the temperatures in the vicinity of the transition. While one can not rule
out the possibility of a very weak first order transition, with finite correlation
length &(T.) > L = 64, the present evidence suggests that the transition
remains second order, and presumably remains in the KT universality class.
One can also see from Fig.4 that the average charge density at this KT
transition is p ~ 0.11, well above the p. estimated by Levin et al.

The phase diagram of Fig. 3, and in particular the presence of the charge
solid phase, is very strongly influenced by the fact that the CG has been
placed on a square grid of allowed charge sites. If a different geometry for the
grid is used, the locations of the various phase boundaries shift, and charge
solids with different symmetries can form (Lee and Teitel 1992). One can
speculate whether for such another grid, or for charges in a continuum, it is
possible that the melting transition line of the charge solid moves down to
lower temperatures, so that it intersects the first order line at a temperature
below T™. One then could have a first order transition from an insulating gas
of dipoles (or more complicated neutral clusters) to a very dense conducting
liquid. Such a result has been reported by Caillol and Levesque (1986), who
simulate a hard core CG in a continuum, placing the charges on the two
dimensional surface of a sphere. Their KT line ends at a temperature and

2 Nevertheless, it is interesting to note that the values of ug = /8 and T* =
0.126 in Fig.3 do in fact lie fairly close to the values predicted by Minnhagen
and Wallin. In order to compare the ug for the first order line of the CG on
the square grid with Minnhagen and Wallin’s results for a continuum CG, it is
necessary to note (Kosterlitz and Thouless 1973) that if the interaction G(r) on
the grid is chosen so as to asymptotically match the continuum —Inr as r — oo,
then the grid CG with u = 0 acts like a continuum model with a chemical
potential po = —%('y + %ln 2) ~ 0.8085, where v ~ 0.5772 is Euler’s constant.
Thus a chemical potential ug = 7/8 on the grid acts like a chemical potential
¢ = uo — po = —0.416 in the continuum. Minnhagen and Wallin predict that the
KT line will end at 7" = 0.144, and chemical potential y = 7" In z* = —0.420.
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Fig.4. Charge density histograms at various 7', as the KT transition line is crossed
for u = 0.39 just below ug = 7/8

density comparable to the values found on the square grid, only they report
no solid phase above the first order line. However, while the discrete square
grid explicitly favors the formation of a charge solid, the surface of a sphere
explicitly discourages it. In order to fit a periodic solid to the curvature of
the spherical surface, it is necessary to introduce lattice defects, which might
remain mobile even at low temperatures (Dodgson 1995).

Most recently, Lidmar and Wallin (1996) have carried out simulations of
the hard core CG in a flat continuum with periodic boundary conditions.
They find that the KT line remains second order down to quite low temper-
ature and high density, until it finally hits a first order line at 7™ ~ 0.032.
As in the case of the discrete grid, this first order line is associated with a
transition in ground state from the vacuum to a charge solid. However un-
like the discrete grid, their evidence suggests that the charge solid is melted
at any finite temperature. Their first order line is thus a transition from an
insulating gas to a dense conducting liquid.

2.2 Fully Frustrated Case: f = 1/2

Square Grid: On a square grid, the f = 1/2, or fully frustrated, CG con-
sists of the checkerboard ground state shown in Fig.2. This ground state
breaks two distinct symmetries: (¢) the continuous symmetry associated with
uniform rotation of all phase angles 6; of the original Josephson array model
(1) - in the CG this is reflected in the insulating nature of the ground state;
and (77) the discrete translational symmetry broken by choosing one of the
two equivalent sublattices on which to place the integer charges n;. A natural
question is whether these two symmetries are broken at one single, or two
distinct, transition temperature(s).



Fig.5. Two types of excitations of the f = 1/2 ground state

The second type of excitation, referred to as “Ising-like,” consists of re-

versing the sign of all charges within a neutral domain. For domains which
contain no net dipole moment, the energy of such an excitation is propor-
tional to the perimeter of the domain. Such domain excitations, which can
involve large numbers of charges, can not be accounted for within the small
fugacity expansion of the KT analysis. It is these domain excitations that
will melt the charge solid and restore the translational symmetry (i7). Since
the ground state 1s doubly degenerate, one would naively expect this melting
to be in the Ising universality class. Once the charge lattice has melted into
a charge liquid, with freely diffusing charges, one expects ¢~ = 0.

There are thus two likely scenarios: (i) Upon heating, the KT-like excita-
tions cause a KT transition at Txt with a universal jump in 6_1(TKT). This
is followed at a higher 71 by the melting of the charge solid with Ising critical
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exponents. Or, (i7) the two types of excitations become sufficiently coupled
that there is only a single transition 7.. In such a case the jump in ¢~ !(T%)
might be larger than the universal value, and the melting could perhaps even
be in a different universality class than Ising.

Early numerical works (Teitel and Jayaprakash 1983a, Miyashita and
Shiba 1984, Lee et al. 1986, Thijssen and Knops 1988a, Grest 1989, Nico-
laides 1991) focused, with inconclusive results, on determining whether there
was one single, or two separate, transition(s). More recent works (Lee et al.
1991, Granato and Nightingale 1993, Ramirez-Santiago and José 1994, Lee
1994, Lee and Lee 1994, Knops et al. 1994) have focused on finite size scaling
analyses of the transitions. They have reported critical exponents for melt-
ing distinctly different from Ising values, and jumps in ¢~ ! larger than the
universal KT value, thus suggesting scenario (i7). Recently, Nightingale et
al. (1995) have carried out Monte Carlo transfer matrix simulations on a re-
lated coupled XY-Ising model believed to be in the same universality class
as the f = 1/2 CG. Considering systems of size L x oo, L < 30, they simi-
larly find non-Ising melting and a larger than universal jump in ¢~ '. However
they find that the central charge (or conformal anomaly number) has not yet
converged to its asymptotic large L limit, and the XY degrees of freedom sim-
ilarly seem to show large corrections to scaling. They say that this “ ... calls
into question the validity of the basic assumption of scaling theory, viz., that
there is a single divergent length scale in this system as the critical point is
approached...”

Most recently Olsson (1995b), using system sizes up to 128 x 128, has
presented evidence supporting scenario (7). According to his arguments, the
correlation length &gk (T) of the insulator to conductor transition, which
diverges at Tk, is still very large at the slightly higher melting transition 77.
This additional length scale at 71 complicates the finite size scaling analysis
of the melting transition. Only for system sizes L > &xr(71) will one find a
simple scaling characterized by Ising critical exponents. The non-Ising values
found in previous works, according to his argument, merely reflect too small
values of L. A conclusive resolution of the nature of the transition(s) in this
model thus apparently awaits simulation of larger size systems.

Similar questions remain for other cases where the simple symmetry of
the ground state charge lattice would naively suggest a melting transition in a
well known universality class. One example is the f = 1/3 CG on a triangular
grid, which might be expected to be in the 3—state Potts universality class
(Korshunov 1986, Lee and Teitel 1992).

Triangular Grid: Another interesting model is the f = 1/2 CG on a tri-
angular grid of sites (corresponding to a honeycomb Josephson array) (Kor-
shunov 1986). For the triangular grid, the Green’s function giving the charge
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interaction is given in terms of its Fourier transform by (Lee and Teitel 1992),
- 3m
6 —2cos(k-aj) —2cos(k -az) — 2cos(k - a3)

Gy (10)

where a; and as are the two basis vectors of the triangular grid, and asz =

as —ajg.
A natural candidate for the ground state would have alternating i%
charges along one of the grid directions a, (¢ = 1,2,3) and be uniform

in the remaining directions. Such a state is characterized by a wavevector
withk-a, =x, but k-a, =0, v # u. However, looking at the form (10) for
Gy, one can easily see that all wavevectors such that k - a, = 7 have degen-
erate values of Gy, regardless of their components along the other directions
a,. The ground state is thus a configuration in which the charges oscillate in
sign in one of the three directions a,, but are completely random in the other
directions. The degeneracy® of the ground state is thus 3 x 2F. An example
of one such a ground state, which oscillates in the a; direction, is shown in
Fig.6 below.

t—+—+—t+—+ —+—+—+-—
t—+—+—+—+ —+—+—+—
t—+—+—+—+ —+—+—+—

—+—+—+—+ -+ —+—+—+
P i e e e e e
ay 3 +—+—+—+—-+ —F+—+—-+-
—+—+—+—+ -+ —+—+—+
a

+—+—+—+—+ -+ —+—+-—
1 +—+—+—+—+ —+—+—+-—
—+—+—+—-+ —+—+-—+—-+

Fig.6. f = 1/2 on a triangular lattice: one of the 3 x 2¥ possible ground states

Such a large ground state degeneracy makes this system a good candidate
for glassy behavior. However it remains to ask whether the system can have
a true finite temperature equilibrium glass transition, or whether 7, — 0 and
so any glassiness would be a result of non-equilibrium effects. Lee and Teitel
(1992) have carried out Monte Carlo simulations of this model, computing
the dielectric function ¢~! and specific heat per site C'. The results are shown
in Fig.7 below.

One sees in €~ an apparent transition at finite 7, ~ 0.035. The non di-
verging peak and steep drop of C' at T are characteristic of a structural glass

1

® Korshunov (1986) argues that the 2L degeneracy may be lifted in the original
XY model (1) with a cosine interaction, due to the coupling between spin waves
and vortices that the cosine introduces.



Fig.7. f = 1/2 on a triangular lattice: ¢~'(T) and specific heat C(T) for various
system sizes L

transition. However to see whether this behavior reflects a true thermody-
namic transition, or is rather a freezing out of equilibrium due to large energy
barriers in phase space, consider the excitation of a ground state shown in
Fig.8 below. The excitation is formed by taking a 2 x £ domain and revers-
ing the sign of all the charges. £ is chosen in the same direction as that in
which the charges oscillate, and is chosen to be even, so that forming the
domain creates no net dipole moment. The excitation energy AFE(f) vs. £ is
also plotted in Fig.8. One sees that for £ > 10, AE({) saturates to a finite
value AFE(co). Tt is easy to see why this is so. If £ is parallel to direction
a; for example, then since all configurations with any sequence of charges in
direction ay are degenerate ground states, the domain wall segments parallel
to a; do not look locally like domain walls at all! Locally, they are consistent
with the system being in one of the other degenerate ground states. It 1s only
near the domain wall “end” segments parallel to the ag direction that one
notices one is not in a ground state. As the regions near these “end” segments
are charge neutral and have no net dipole moment, any interaction between
the two ends decays rapidly with increasing ¢, and so contributions to AFE/(¢)
arise solely from the local distortion of the ground state near these ends.

Since AFE(00) is finite, there is only a finite energy barrier to create in-
finitely long domains. As the growth of such infinitely long domains causes
transitions between the 2% different ground states which are all oscillating in
the same direction, the system must in principle remain disordered among
these 2 states at any finite 7". The time to hop between these ground states
~ eAB(@)/T Yowever, will get extremely long at low 7.

Although the above domain excitations will disorder the system among
the 27 different ground states that oscillate in the same lattice direction, they
will not cause transitions between ground states which oscillate in different
directions. It thus remains an open question whether there can be a finite



Fig.8. f = 1/2 on a triangular lattice: domain excitation of ground state of length
£ and excitation energy AE({)

temperature equilibrium transition which orders the system into one of the
three possible classes of ground states (i.e. into the class of states in which
the charges all oscillate in a particular direction a,), but leaves the system
disordered among the 2 degenerate ground states in that class.

2.3 Dilute Case: f =1/q

Next consider the case of a dilute density of charges, f = 1/¢. For large ¢, the
ground state will be the closest approximation to a triangular charge lattice
that is commensurate with the underlying square grid of allowed sites. The
melting of this charge lattice, as ¢ — 0o, becomes a model for the melting of
the vortex lattice in a thin superconducting film.

Consider as a example the specific case of f = 1/51. The ground state
charge configuration is shown in Fig.9a below. This case is chosen because,
in contrast to other f = 1/¢q with large ¢, where the ground state becomes
very closely triangular, here the ground state remains very close to square,
and so the influence of the discrete grid is strongest.

A convenient quantity for studying the melting of this charge lattice is
the charge density structure function,

509 = 7z Yo i) (11)

i3

which gives the diffraction pattern that would be obtained from scattering
off the charge positions. Together with the inverse dielectric function e=*(T),
S(k) will characterize the phase transitions of the system. Heating from the
ground state, Franz and Teitel (1995) have computed S(k) and ¢! within
Monte Carlo simulations. Shown in Figs. 9b-d are the resulting intensity plots
of S(k), for kg, ky, € (—m, 7|, at three representative temperatures. ¢~ *(7)
is shown in Fig.10. At low T, Fig.9b, one sees a periodic lattice of sharp
Bragg peaks, reflecting the long range translational order of the charges which



a) ground state f=1/51 b) T = 0.0030

c) T = 0.0045

Fig.9. (a) Ground state charge configuration for f = 1/51; (b-d) Structure function
S(k) for T = 0.003, 0.0045, and 0.006

At an intermediate 7', Fig.9¢, one sees a triangular lattice of peaks of
finite width. This is characteristic of the quasi-long range translational order
expected for a 2D solid in a uniform continuum (Kosterlitz and Thouless
1973). Note that the peaks in Fig.9¢ are in distinctly different locations com-
pared to the peaks in Fig.96. The inverse dielectric function ¢~ ! has now
vanished indicating that the system is conducting; the charge lattice is free
to diffuse as a correlated structure. Thus a transition has occurred from a
pinned commensurate almost-square charge lattice, to a floating incommen-
surate triangular charge lattice. Although the translational coupling to the
underlying grid has been destroyed, there remains a strong orientational cou-
pling. The minimum energy corresponds to the case where one of the three
basis directions of the triangular charge reciprocal lattice aligns with one of



Fig. 10. Inverse dielectric function e~!(T) for f = 1/51

the two diagonal directions of the square grid. This results in two possible
distinct orientations for the floating charge lattice (one of which is clearly
seen in Fig.9¢) which break the cubic symmetry of the grid geometry.

Finally at high 7', Fig. 9d, one has approximately circular intensity rings,
indicating that the floating charge lattice has melted into a charge liquid. The
4—fold asymmetry in these rings is due to the square geometry of the under-
lying grid. Similar results have been found by Hattel and Wheatley (1995),
who work directly in the XY representation (1) with a cosine interaction.

In terms of the Josephson array, the pinned vortex lattice corresponds to
a state in which the system is truly superconducting with a vanishing linear
resistivity. In the floating lattice phase, the vortex lattice is free to diffuse as
a whole, thus giving finite linear “flux flow” resistance in the presence of any
applied d.c. current. The floating lattice phase is no longer truly supercon-
ducting. However the breaking of cubic symmetry due to the orientational
coupling of the vortex lattice to the grid will lead to an anisotropic mobility
for the vortex lattice. The result should be an angular dependent resistivity,
and in the case that the applied current is not aligned with a symmetry direc-
tion, a non zero Hall voltage. Once the floating vortex lattice has melted, the
cubic symmetry of the grid is restored, and one expects to see an isotropic
resistivity with a vanishing Hall voltage. The vanishing of the Hall voltage
therefore should serve as a clear experimental signal for the melting of the
floating vortex lattice.

Simulations for other values of f = 1/¢ yield the phase diagram shown in
Fig.11. T¢(f) denotes the transition between the pinned and floating lattices.
As f — 0, one sees that T¢(f) ~ f vanishes, in agreement with results by
Nelson and Halperin (1979), Korshunov (1986), and Hattel and Wheatley
(1994). T (f) denotes the melting temperature of the floating lattice. As
f— 0,7, ~ 0.007 approaches a finite constant. This value in agreement with
estimates by Fisher (1980) for the melting of a vortex lattice in a continuous
film. When the vortex density is too large, f & 1/30, T and Ty, merge, and



Fig. 11. Phase diagram for dilute densities f = 1/q

One can now ask about the nature of the depinning and melting tran-
sitions in these systems. The natural candidate for the melting transition
is the theory of defect mediated melting in two dimensions, as developed
by Kosterlitz and Thouless (1973), Nelson and Halperin (1979), and Young
(1979) (KTNHY), and extended by Nelson and Halperin (1979) for a 2D solid
on a periodic substrate. This KTNHY theory is essentially a modification of
the f = 0 CG to vector charges, which are the Burger’s vectors of lattice
dislocations.

A two dimensional floating lattice is characterized by quasi-long range, or
algebraic, translational order,

<eiG~(r,—rj)> ~ |1'i .

;I @ (12)

3

where r; and r; are two charge positions, and G is a reciprocal lattice vector
of the charge lattice. The translational correlation exponent ng is related
to the shear modulus p of the charge lattice by ng = T|G|?/47(u + 7),
where v describes the coupling to the periodic substrate and we have used
the fact that for logarithmically interacting charges the compression modulus
A — 0o. A main prediction of the KTNHY theory is that upon heating, na,
(G is the smallest reciprocal lattice vector) takes a discontinuous jump to
infinity at 7y, from the universal value ng,(7,,) = 1/3. NH further show
that the pinned commensurate to floating lattice transition is also described

* The numerical result that the floating lattice exits only for f < f* = 1/30
compares with the estimate of Nelson and Halperin (1979) that f* ~ 1/12



Fig. 12. Translational correlation exponent n , for the f = 1/100 CG on a trian-
gular grid: (b) is an expanded scale of (a) focusing on the depinning transition

A second key prediction of the KTNHY melting theory for a lattice in a
continuum is that above T}, there exists a distinct hexatic liquid phase with

5 The assumption behind g 1(Tc‘i') ~ 4f, that couplings experience only small
renormalizations, may not be valid here. If it were, one would expect that at low
temperatures above Tc, one would have n , ~ T. Although the curve n (7))
in Fig. 12 does look roughly linear between 7. and T, note that it does not
extrapolate through the origin.



Fig.13. Free energy histogram F(FE) at (a) melting transition and (b) depinning
transition for various lattice sizes L, for the f = 1/49 CG on a triangular grid
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The issue of whether melting in two dimensions is described by KTNHY
or is first order has remained hotly contested for more ordinary systems
with short range interacting particles (for a review, see Strandburg 1988).
Recent simulations (Bagchi et al. 1996) have suggested that only at very
large system sizes does the hexatic liquid appear. In the present case, it may
also be that the discreteness of the grid has preempted the KTNHY transition
and made it first order. Hattel and Wheatley (1994) have argued that the
depinning transition must become KTNHY-like at small enough densities f.
However simulations of the one component CG in a continuum (Caillol et
al. 1982, Choquard and Clerouin 1983), as well as other formulations of the
vortex lattice melting problem (Tesanovié and Xing 1991, Hu and MacDonald
1993, Kato and Nagaosa 1993, Sasik and Stroud 1994), all suggest that the
melting transition is weakly first order.

2.4 Near Full Frustration: f =1/2—1/q

For a density f = 1/2 — 1/q, q large, the ground state is almost everywhere
like the f = 1/2 checkerboard pattern except with a superlattice of miss-
ing charges (defects). Consider here the specific case f = 5/11. The correct
ground state for this case, shown in Fig.2, was first found by Kolahchi and
Straley (1991). The finite temperature behavior was first studied by by Franz
and Teitel (1995). In Figs. 14a-c are shown intensity plots of the structure
function S(k) at three representative temperatures. At low T, Fig. 14a, one
finds a periodic structure of sharp Bragg peaks. Note that the peaks in the
corners arise from the f = 1/2-like background; these are brighter than the
other peaks, which arise from the defect superlattice.

At an intermediate 7', Fig. 14b, one continues to see sharp Bragg peaks
in the corners, however the other peaks have been replaced by circular rings.
The defect superlattice has melted into a defect liquid, but the f = 1/2-like
background remains ordered. Finally, at high 7', Fig. 14¢, the peaks in the
corners broaden, the f = 1/2-like background has melted, and one finds an
isotropic liquid.

Looking more closely at Fig. 14b for the defect liquid, one sees that S(k) is
symmetric with respect to the Bragg planes that bisect the diagonals from the
origin to the corners. This indicates that the defects, while freely diffusing,
are still constrained to sit on only one sublattice of the original square grid of
sites; equivalently, one never has two charges on two nearest neighbor sites.
Since this sublattice has half the number of sites as the original grid, and since
the defects interact with the same logarithmic interaction as do charges, the
problem of f = 1/2 — 1/q at low temperatures becomes equivalent to that
considered in the previous section: the f = 1/2-like background remains
ordered and can be ignored; the dilute density of mobile defects behaves in
the same way as a dilute density of charges with f' = 2/n. This leads to the
expectation that, for ¢ sufficiently large, one will find an additional phase not
observed for f = 5/11. Upon heating, one will first have a transition T, from
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a) T = 0.010 b) T = 0.018

c) T = 0.055

Fig.14. (a) Structure function S(k) for the case f = 5/11 at (a) T = 0.010, (b)
T = 0.018, and (c)T = 0.055

a pinned to a floating defect superlattice, followed by a melting transition
Tin to a defect liquid, followed finally by the melting Ti,s of the f = 1/2—
like background into an isotropic liquid. The phase boundaries for 7. and
T may be inferred from Fig. 11. The boundary for Ti,,; remains in general
unknown. The depinning transition 7, will mark the vanishing of ¢~' and
hence the transition between the superconducting and the normal states in
the Josephson array.

2.5 General f

For general rational f = p/q, Teitel and Jayaprakash (1983b) (TJ) presented
arguments that the loss of superconductivity in a Josephson array would
occur at a temperature T¢(f) ~ 1/q. This argument was based on considering
the effect of applying a uniform twist gradient J to the phases 6; of the
model (1), and studying the periodicity of resulting supercurrents as ¢ is
varied. However, for large systems L — oo, the maximum twist gradient



Fig.15. Schematic of a ground state for f = 1/3 — 1/q. (e) denotes a charge;
a shaded box denotes a charge missing from the 1/3-like background. At low T,
moves of type “1” are more likely than moves of type “2”.

¢ Fig. 15 is a schematic only. Straley and Barnett (1993) note that, for f = 1/3 —
1/q, one expects the defect superlattice to be the correct ground state only at
larger values of g than depicted in Fig. 15.
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One can easily imagine similar scenarios near other simple rational frac-
tions. If f = p/q is near some simpler fo = po/qo, then the ground state of
f will look almost everywhere like that of fy, with a superlattice of defect
regions. When f — fy is sufficiently small, these defects should unpin at a
Te(f) < Te(fo), thus leading to a very discontinuous phase boundary T¢(f).
However the detailed dependence of T, on f remains in question. In particu-
lar, for the dilute density f = 1/q it has been shown that T, ~ 1/q. It would
be interesting to see if the depinning transition for a dilute density f = p/q,
p < q, is proportional to the charge density p/q, or if there are additional
commensurability effects that cause T¢(p/q) ~ 1/¢ as in the TJ conjecture.

A related question is the behavior at irrational values of f. Approximating
an irrational f by a very high order rational p/q, ¢ > 1, TJ argued that
T.(f) = 0. The specific case of f = (3 —+/5)/2 has been studied numerically
by Halsey (1985,1988) who argued in favor of a finite T.. Halsey’s evidence
consists of the observation that (i) the Josephson array appears to have a
finite zero temperature critical current, and (i7) that an Edwards-Anderson-
like order parameter appears to be finite at low temperature. However it has
been shown (Lobb et al. 1983, Straley 1988, Rzchowski et al. 1990, Vallat
and Beck 1992) that a finite 7" = 0 critical current persists even for the case
of a single vortex, i.e. f = 1/L?. This is just a single body effect of the vortex
moving in an effective two dimensional periodic pinning potential created by
the grid of the array. At any finite 7" however, thermal activation over the
energy barriers of this single body pinning potential will lead to finite linear
resistivity, in agreement with the observation that for f = 1/q, Tc ~ 1/¢ — 0
as ¢ = L? — oo. Thus (in contrast to TJ’s assumption) a finite T = 0
critical current does not imply a finite 7.. A finite Edwards-Anderson order
parameter at low 7" would be a more convincing demonstration of a finite
T.. However Halsey leaves open the question of whether his results reflect
a true equilibrium transition, or rather a freezing out of equilibrium due to
a finite cooling rate in the presence of large energy barriers between many
metastable nearly degenerate states. Thus behavior at irrational f remains
an open question.

3 Arrays with Randomness

The introduction of randomness into the Josephson array, while posing many
new challenges for theory, is also a topic of great practical importance. As
vortex diffusion is a source of “flux flow” resistivity in superconductors, the
introduction of random vortex pinning impurities has been viewed as a way
of increasing critical currents and enhancing superconductivity. On the other
hand, introducing randomness into statistical models often has the effect of
reducing the transition temperature, or even of driving 7, — 0. In this section
I will review several simple models in which the effects of randomness have
been included in the Josephson array.
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3.1 Random Point Pinning

A topic that has received renewed interest in connection with behavior in
high T superconductors, has been the effect of random point pinning sites
on the structure of a vortex lattice. This question can be easily addressed
within the CG model for a Josephson array, by adding a random potential
to the Hamiltonian (3),

Hni) = 1Y (ni — [)G(ri —v;)(n; — [) + val : (14)

ij
Here V; is a random pinning potential on each site of the grid, with averages,

V; =0, ViV; = wdy; (15)

where the overbar denotes an average over different realizations of the random
potential V;. Note that V; can be viewed as arising from random magnetic
fluxes df;, Vi = Zj G(r; — r;)df;. The §;; correlations of (15) then imply
long range correlations between these random fluxes, 6 fiéf; = >, G™'(r; —
T )G (1 —1j), were G71(r) is the inverse of the Green’s function, propor-
tional to the two dimensional lattice Laplacian, G=1(r) = % Zu [0r 4 — Or,0,
where y = 2, £y. In contrast, localized randomness in a bond parameter of
(1), for example A;; or a bond coupling J;;, would in general lead to a longer
range correlation in the pinning potential V; (Cohn et al. 1991). Equation
(14) is thus an idealized model of random pinning, rather than a true model
of the effects of randomness in a physical Josephson array. For a more real-
istic model treating the effects of bond dilution on a Josephson array, see Li
and Teitel (1991).

The effects a of random point pinning potential as in (14) have been
treated in a classic paper by Larkin and Ovchinnikov (1979). They argue that
any amount of random pinning will lead to exponentially decaying transla-
tional correlations on long enough length scales (see also Chudnovsky 1991).
The length scale L, on which the random pins disorder the vortex lattice
is estimated as follows. In a domain of size L, there will be M = (L/ay)?
vortices, where a, 1s the average distance between vortices. If the vortices
in the domain are still ordered, then the total pinning energy felt by these
M vortices will be the sum of M uncorrelated values of V;. The root mean
square average of this pinning energy is,

1\ 42
2
Upin = VMw? = (—) w o, (16)
ay

where d is the spatial dimension. The competing elastic energy to distort
the vortices in the domain by one lattice constant a, over the length L is
approximately,

va = (5) 2, (1)
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where p is the shear modulus of the vortex lattice. The domain will remain
ordered provided Upin < Ue. The criteria Upin = Ue thus determines the
length L, beyond which elastic distortions destroy the long range order of
the vortex lattice,

dn 2/(4=d) 2
ﬁ:<&) _ M pd= (18)

ay 2w 2w

Using the KTNHY criteria for the vortex lattice melting transition, ng, = 1/3
(which by Fig. 12 appears to be well obeyed, even if the transition is weakly
first order), one gets pa? = 47Ty, yielding L, /ay = 27T, /w.

More recently, Giamarchi and Le Doussal (1994), and Korshunov (1993),
have challenged the Larkin-Ovchinnikov result. Their variational renormal-
ization group analysis finds that at low temperatures disorder does not lead
to exponential decay, but rather to algebraically decaying correlations, as
in the case of the pure (non-random) vortex lattice in two dimensions. The
translational correlation exponent ng, of this algebraic decay, instead of van-
ishing linearly in 7" as in the pure case, now saturates at low T to a finite
constant, independent of the strength of the disorder w.

Both the Larkin-Ovchinnikov and variational RG analyses treat only elas-
tic distortions, ignoring the possibility of disorder induced free dislocations.
Such dislocations are expected to appear, and lead to exponentially decaying
translational correlations, on some length scale L4. One can then ask how
the length L4 compares to the length Ly, and in the case that L, < Lg, how
do the correlations decay in the intermediate region L, < L < Lgq.

In order to investigate this question, Franz and Teitel (1996) have carried
out Monte Carlo simulations of the Hamiltonian (14) for the f = 1/100 CG
on a triangular grid of length I = 100. In Fig. 16 below are shown the results
for ng, vs. T, for several values of pinning strength w, as determined by
the same procedure as used in Fig. 12. In agreement with the variational RG
calculations, for temperatures smaller than the pure case T}, one has a good
fit to an algebraic decay. Upon cooling, g, (7)) tracks the pure case value,
until saturating to a constant at low temperature. However, in opposition to
the variational RG results, this low temperature value continues to increase
with increasing w. For the largest value of w shown in Fig. 16, ng, stays
constant at the critical value of 1/3 for all T' < Tp,.

In Fig.17 are shown results for ng, vs. w, for fixed T' = 0.004, midway
between the pure case melting and depinning transitions. Comparing increas-
ing with decreasing w for L = 100, one sees a strong hysteresis as ng, crosses
the critical KTNHY value of 1/3. ng, = 1/3 signals the appearance of dis-
order induced free dislocations. For comparison, the same results are shown
for the smaller system length L = 50. While again one finds a good fit to
algebraic decay in the dislocation free region ng, < 1/3, the exponent 5q,
is now found to be significantly smaller than the value found for L = 100.
If correlations truly decayed algebraically, one would expect the results from



Fig.17. Translational correlation exponent n , vs. disorder strength w for
#=1/100 and L = 100, 50
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Finally, Franz and Teitel find that for all temperatures TP < T' < TPure

¢~ = 0. Thus the random pinning potential, in addition to disordering the
vortex lattice, fails to pin vortices to the substrate.

3.2 Random Gauge Models

Finally, I will mention some other random models that have received attention
recently. These are all models in which the variables A;; of the Hamiltonian
(1) are taken as random variables, hence the term random gauge model.

XY Spin Glass: If one takes the A;; to be independent random vari-
ables with equally likely values 0 and =, this corresponds to the ordinary
XY model with equally likely ferromagnetic and antiferromagnetic bond cou-
plings. This is the two dimensional XY spin glass for which it has been estab-
lished that 7. = 0. Nevertheless, an interesting complexity remains. Just as
in the f = 1/2 case there existed the possibility of separate transitions with
respect to the continuous and discrete symmetries, here it appears that the
two correlation lengths, that describe the phase and vortex (chiral) order-
ings as T' — 0, diverge with distinctly different exponents (Kawamura and
Tanemura 1987, Ray and Moore 1992, Bokil and Young 1996).

Gauge Glass: If one takes the A;; to be independent random variables uni-
formly distributed on the interval (—m, 7], this corresponds to independently
correlated random magnetic fluxes through each unit cell of the array, and is
referred to as the gauge glass. Here again it appears that 7. = 0 (Fisher et
al. 1991, Cieplak et al. 1992, Gingras 1992).

Gaussian Phase Shifts: If one takes the A;; to be independent Gaussian
distributed random variables, with average zero and standard deviation o,
this is known as the random Gaussian phase shift model, or also the posi-
tionally disordered Josephson array. The latter name refers to one way such a
model can be physically realized. If the position of either a node or a bond of
the Josephson array (see Fig.1) is randomly displaced, then in the presence
of a uniform applied magnetic field, there will be a randomly shifted value for
Aj; on the effected bonds. This type of disorder corresponds to the case of
random quenched dipole fluxes, d f; = +¢ and d f; = —¢, on nearest neighbor
sites ¢ and j. To see this, note that changing A;; will increase the magnetic
flux through the unit cell on one side of the bond (ij), while decreasing the
flux by the same amount through the unit cell on the opposite side of the
bond. For a given positionally disordered array, one can increase the strength
of the randomness by increasing the uniform applied magnetic field by an
amount equal to an integer number of flux quanta per unit cell. This has
no effect on the average fluxes f; (which can always be shifted back to the
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interval (—%, %] leaving all physical quantities invariant), but increases the
strength € of the quenched random fluxes, 4 f;.

For very large o, this model reduces to the gauge glass, and 7. = 0.
For ¢ < o, however, a finite temperature transition has been predicted.
This model was first analyzed by Rubinstein et al. (1983), and applied to
the Josephson array problem by Granato and Kosterlitz (1986). For the case
where the average f; is integer (or equivalently zero), they find that as 7" is de-
creased for o < o, there is first a KT transition to an ordered state, followed
at lower temperature by a reentrant transition back to the disordered state.
Numerical simulations by Forrester et al. (1988, 1990) and by Chakrabarti
and Dasgupta (1988), as well as experiments (Forrester et al. 1988, Benz et
al. 1988), failed to find any evidence for a reentrant phase. More recently,
Ozeki and Nishimori (1993) have presented results which claim to rigorously
rule out such a reentrant phase, but leave open the question of whether there
remains a finite ordering transition 7, or if 7, — 0. Most recently, Natter-
mann et al. (1995), Scheidl (1996), and Tang (1996), all report arguments
that a finite KT type transition should exist. This transition in the ¢ — T
plane should lie near the KT transition line as found by Rubinstein et al.
The reentrant transition of Rubinstein et al. disappears, but is replaced by
a cross-over region below which behavior becomes glassy. Numerical simula-
tions that confirm these new results remain to be done.

The case where random Gaussian phase shifts are superimposed upon a
fractional average f; (Choi et al. 1987), remains a largely unexplored problem.

4 Conclusions

To conclude, T have attempted to review some of the rich equilibrium crit-
ical phenomena exhibited by classical two dimensional arrays of Josephson
junctions. Many interesting old and new questions remain to be resolved. In
particular, it would be interesting to have a better understanding of how frus-
tration induced by quenched randomness, as in Sect. 3, differs from frustration
induced by geometrical effects, such as in the case of uniform irrational f, or
the f = 1/2 CG on a triangular grid. The former are more akin to spin glass
problems, while the latter appear more akin to the structural glass problem.

I have omitted mention of many other interesting areas of ongoing research
on Josephson junction arrays. In the area of equilibrium behavior of classi-
cal arrays these include such topics as fractal, incommensurate, anisotropic,
and three dimensional geometries. In the area of dynamics these include, un-
derstanding the critical behavior of I-V characteristics, giant Shapiro steps,
mode locking, chaos, the contrasting behavior of underdamped as opposed
to overdamped junctions, and plastic flow of vortex lattices. Quantum effects
become important when charging energy must be considered. A good review
of recent work on many of these topics may be found in Giovannella and

Tinkham (1995).



30 S. Teitel

Clearly the study of Josephson junction arrays will continue to yield much
new interesting physics well into the future.
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