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Abstract. The helicity modulus is defined as a criterion for superconduct-
ing order in a fluctuating type-1l superconductor. Numerical simulations
of a lattice London superconductor in an external magnetic field are car-
ried out, and evidence is found that superconducting order parallel to the
applied magnetic field persists above the vortex lattice melting, into the
vortex line liquid.

1. Introduction

A key feature of the high temperature superconductors, as opposed to con-
ventional superconductors, is the strong effect of thermal fluctuations on
macroscopic behavior and the phase diagram [1]. Once one includes these
thermal fluctuations, it becomes necessary to have a criterion for the exis-
tence of superconducting order, that is expressed in terms of a well specified
correlation function. Here we discuss one approach to this problem, in terms
of the helicity modulus [2], which is the linear response coefficient giving
the supercurrent induced by a perturbation in the applied magnetic field.
We will define the helicity modulus in the context of a London model of
interacting vortex lines, and show that the mixed state of a type-II super-
conductor exhibits a total Meissner effect with regard to the perturbation
that induces supercurrents parallel to the applied field. We carry out nu-
merical simulations on a lattice London model in an applied magnetic field,
and find that this parallel superconductivity persists into the vortex line
liquid state, for the parameters we have studied [3].



2. Model
2.1. HAMILTONIAN

We will assume here a London approximation in which the amplitude of the
superconducting wavefunction is constant outside of vortex cores, and only
the phase angle (r) varies. Aside from additive constants, the Ginzburg-
Landau free energy functional for phase angle configurations is then de-
termined solely by the kinetic energy of flowing supercurrents, and the
magnetic field energy. Taking for simplicity isotropic couplings, and using
the Gibbs ensemble, we have the Hamiltonian,
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where At and A" are the vector potentials of the applied and induced
magnetic fields. If A = A" 4 Ae** then V x A = 27b gives the total
internal magnetic field, with b = B/¢g the density of flux quanta, and
V x A®t = 2rh gives the applied magnetic field, with h = H/¢q. The bare
magnetic penetration length is A, and the coupling is J = ¢3/(1673A?%).
We now transform Eq.(1) to the vortex degrees of freedom. The vortex
line density n(r) is determined from the circulation of the supercurrent j(r),

Vxj=VxJ(VO-A)=2rJ(n—-Db) . (2)
Taking Fourier transforms, one can solve Eq.(2) for j,, giving,
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where the curl-free part of j is given by an arbitrary scalar potential x. Using
Eq.(3) to rewrite H of Eq.(1) in terms of n, b, and h, and completing the
square in b, yields,
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The first term gives the familiar London interaction between vortex lines.
The second term is the energy of magnetic field fluctuations éb, away from
the value b) = (n, + A%¢*h,)/(1 + A?¢*) which minimizes # for a given
configuration of n, and h,. The last term is the energy of smooth “spin
wave” distortions of #(r) about a given vortex configuration. To compute



thermodynamic quantities, one has to average over all smooth x,, all di-
vergenceless éb,, and all singular vortex line configurations n,, for a fixed
external h,. V is the volume of the system.

2.2. HELICITY MODULUS

Consider now a small perturbation about a uniform applied field hoZz,
A = 2rhgzy + SA®E. The helicity modulus tensor Y,,(q) is defined
as the linear response coefficient between the induced supercurrent and the
perturbation §A°Xt,

<jq#> = _Tw(q)‘SAgit . (5)
From Eq.(1) we find that,
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where F = —TIn {f e_H/T} is the total free energy, and the subscript “0”

indicates the ensemble in which §A®X' = 0. For a pure system, the off diago-
nal parts of T, should vanish, and since a longitudinal A®** can be removed
with a gauge transformation, we restrict ourselves to the diagonal trans-
verse case, Y, (¢?) = T, (qP) where i L . Henceforth we will take p,v, o
to be any cyclic permutation of z,y, 2. To express T, in terms of vortex
correlations, one can either substitute for j,, from Eq.(3) into Eq.(6) and
evaluate the averages over éb and y, or, noting that 27h,, = —iqAZXt(qD),
we can explicitly use the form of Eq.(4) for 7, when taking derivatives, to
get,
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A2+ 2 VT A2 4 g2

The helicity modulus contains within it information about the screening
of magnetic fields. To see this, we can combine the definition of Eq.(5) with
Ampere’s law, (j,) = —JA%*(q X (q x JAM)), to get for the total average
magnetic field inside the superconductor produced by the pertubation,
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If we now assume that there are no vortices in the system, as in the mean
field treatment of the Meissner state, then the helicity modulus has the
simple form Y, (q?) = Jq*/(A™? 4 ¢*), which combined with Eq.(8) gives,

(6Aqu) = ¢*SAS /(A2 4+ ¢%). Taking ¢ — 0, we see that the total internal

field (§A,,) ~ ¢* — 0 vanishes, i.e. the external perturbation is completely
screened out, and this screening takes place on the length scale A. If we now
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include vortex fluctuations, either in a fluctuating Meissner state, or in the
mixed state, the vortex correlation that appears in Eq.(7) is non zero, and
for small ¢ may be expanded as,

(no(g9)ns(—qP))o = 1o + m1¢” +n2g" + . . 9)

One can then rewrite T, for small ¢ in the form
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Using Eq.(10) in Eq.(8) then gives,
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We thus see the physical meaning of the parameters v, and «,: 1 -7, is the
fraction of the external perturbation that penetrates the system, and a, A
is the length scale on which the remainder is screened out. We therefore
have for the magnetic susceptibility and renormalized penetration length,

_ dB,(qP)
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When 7, = 1, or equivalently by Eq.(11) when ng = 0, we have a complete
Meissner screening of the pertubation. Such a Meissner effect will be our
criterion for superconducting order. For the Meissner state, the criterion
ng = 0 has a simple physical interpretation: there are no infinite vortex
loops. If the superconducting to normal transition is second order, we would
expect that A g diverges as T, is approached from below, with ng ~ 1//\ZR
the density of superconducting electrons. In the normal state above T;, v,
and A,r are small and finite, reflecting the correlations associated with
ordinary fluctuation diamagnetism.

For the mixed state, with external field hgZ, there are three types of
perturbations to consider. These are illustrated schematically in Fig. 1, and
will be referred to as the tilt, compression, and shear perturbations. For a
vortex line lattice in a continuum, the vortex correlations of Eq.(9) can be
evaluated using the elastic medium approximation. In particular one finds
2],
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Figure 1. Three types of perturbing magnetic fields for the mixed state.

where by is the average internal magnetic field induced by hg, and cgg
and c44 are the shear and tilt moduli respectively. The tilt perturbation
is determined by Eq.(14) taking the limit g, — 0. One finds a finite ng =
b3V T /caq, which from Eq.(11) yields a v, < 1. One can show [2] that the
result is consistent with the prediction of Eq.(13), v, =1—-dB, /dH, < 1.
Similarly, the compression perturbation yields [2] v, =1 — dB,/dH, < 0.
These results correspond to the finite magnetic susceptibilities expected for
the mixed state. The shear perturbation, however, is determined by taking
the limit ¢, — 0in Eq.(14). One finds that, provided cgs # 0, the correlation
vanishes and hence ng = 0, or 7, = 1, describing a total Meissner screening
of shear perturbations [4]. The criterion v, = 1 will thus be our criterion
for superconducting order in the mixed state. We note that the induced
currents for this case flow parallel to the applied magnetic field hgZz.

3. Simulations

To carry out Monte Carlo simulations of a fluctuating vortex line system, we
follow the pioneering work of Carneiro and co-workers [5]. The Hamiltonian
(1) is discretized to a cubic grid of points, with grid spacing a in all direc-
tions. Using the Villain function for the discretized kinetic energy term, and
making standard duality transformations, one finds that virtually all of the
continuum expressions of the previous section, and in particular Eqs.(4)
and (7-13) remain unchanged, provided one substitutes for the magnitude



Figure 2. Fits to Eq.(16) to extract parameters v, and A.r

of the wavevector its discrete lattice version,
¢* = Q% =6 — 2cos(qza) — 2cos(gya) — 2 cos(q,a) . (15)

Henceforth, all lengths are measured in units of @, and temperatures in
units of J.

To simulate, we use the Helmoltz ensemble with a fixed density of vortex
lines by = 1/15. Excitations are created by adding elementary closed vortex
loops of unit area, placed at random positions with random orientations.
These are accepted or rejected according to the usual Metropolis algorithm.
An elementary vortex loop that coincides on one side with a field induced
vortex line corresponds to a transverse fluctuation of that line. We use a
value of A = 5, slightly bigger than the average spacing between vortex
lines, a, = /15, and system sizes L, = 30, L, = 15,30. We use 5000
MC passes through the lattice to equilibrate, and 16000 passes to compute
averages, at each temperature.

Measuring the helicity moduli T, (¢?) for the three types of perturba-
tions, we determine the parameters v, and A g as follows. From Eq.(10)
we have,

JA2Q2 _
T = 1+ )R - (15

Thus fitting JA2Q?/T, vs. Q? to a straight line determines 7, from the
Q? = 0 intercept, and A, from the slope. We show an example of such fits
for T, in Fig.2, for L, = 30, and various values of T. The straight lines
represent fits to the 8 smallest allowed values of @2, given by ¢, = 27m/L,,
m = 1,...,8. In Fig.3 we show the resulting values for v, and A g for
all three cases, for both system sizes L, = 15 and 30. We find that these
values are for the most part insensitive to the number of ¢ data points used




Figure 3. a) v, and b) (Aur/X)? as obtained from fits as in Fig. 2, for the shear, tilt,
and compression perturbations. Solid symbols are for I, = 30, and open symbols for
L, =15.

in the fit to Eq.(16) (we varied mmpax from 5 to 8), as well to the inclusion
of a Q% term in the fitting function.

Considering first the tilt and compression cases, we see in Fig.3a that
vy and 7, both decrease from unity to small values at 7T}, ~ 1.2. Our discus-
sion following Eq.(14) led us to expect a small and positive 7,, and a small
and negative 7., even in the vortex lattice state. This would be true for a
vortex lattice in a continuum. However the discretizing grid that has been
introduced in our simulations breaks translational invariance, and thus be-
haves like an effective periodic pinning potential for the vortex lines. This
serves to create an energy gap to the long wavelength elastic fluctuations of
the lattice and so, at low temperatures, the vortex lines are strongly pinned
and unable to adjust so as to allow additional magnetic flux to penetrate.
This yields values 7., = 1 characteristic of a total Meissner effect. As T
increases, the pinning weakens and 7, , decreases. When the vortex lines
unpin we recover behavior characteristic of the continuum. As a vortex
line lattice in 3D has long range translational order, we expect, for a large
enough system size, that a vortex line lattice will always be commensurably
pinned to a periodic potential, for all temperatures up to its melting T},.
Above T}, long range order is lost, and lines can unpin. By independent cal-
culation of the in-plane vortex-vortex density correlation function, we have
confirmed that the Ty, indicated in Fig.3, does indeed coincide with the
vortex line lattice melting. Looking at Fig. 3b, we see that for the tilt case,
Ayr ~ 7y decreases smoothly through the depinning/melting transition,
while for the compression case, A,r increases sharply just below Tj,.

Turning now to the shear case, we see our main result. Fig.3 shows
that v, = 1, corresponding to a total Meissner effect, for temperatures
up to T, ~ 1.8, well above melting. As L, increases, the width of this



transition sharpens, and T, decreases slightly. A,gr increases to a relatively
small peak at T.. The region T, < T < T, thus corresponds to a vortex
line liquid which remains superconducting parallel to the applied magnetic
field. Similar results have previously been reported by one of us [6] for a
related model in which A — oco.

4. Discussion

One possible explanation for such a superconducting vortex line liquid has
been given by Nelson [7], in terms of an analogy between vortex lines and
imaginary time world lines of two dimensional bosons. In this analogy,
T. correspond to the normal to superfluid transition of the 2D bosons.
According to Nelson however, one expects that Ty, and T, will merge as
L, increases. Feigel’'man and co-workers [8] have argued that for large A,
the resulting long range interactions between the analog 2D bosons could
lead to T, > Ty, even for the limit L, — oo. An alternative theory has
recently been proposed by Tesanovi¢ [9], in which a T, > T}, is due to the
unbinding of thermally excited closed vortex line loops, as is the case for
the zero magnetic field transition. In our simulations, we have seen that T,
did have a very slight decrease as L, was doubled. However this decrease
remained small compared to the separation between T, and T.. It thus
remains to be determined how 7. will behave as L, is further increased
[10]. If T, and T}, do indeed merge in the L, — oo limit, it still remains an
important question to determine the length scale on which this happens.
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