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Athermal shearing of frictionless cross-shaped particles of varying
aspect ratio

Theodore A. Marschall and S. Teitel

Abstract We use numerical simulations to study the shear-
driven steady-state flow of athermal, frictionless, over-
damped, two dimensional cross-shaped particles of vary-
ing aspect ratios, and make comparison with the behavior
of rod-shaped and staple-shaped particles. We find that
the extent of non-convexity of the particle shape plays an
important role in determining both the value of the jam-
ming packing fraction as well as the rotational motion and
orientational ordering of the particles.

1
Introduction

Models of athermal (T = 0) particles, interacting through
soft-core repulsive interactions, have been used to study
a wide variety of granular systems, such as dry granular
materials, foams, emulsions, and non-Brownian suspen-
sions. Most such works have focused on the simplest case
of spherical particles. More recently, attention has been
paid to the case of aspherical particles with lower rota-
tional symmetry, such as rods or ellipsoids [1]. Relatively
few works have considered particles with a non-convex
shape [2–10]. A particle is non-convex if there exists two
points on the surface such that the cord connecting the
two points does not lie entirely inside the particle. In this
work we consider the flow of cross-shaped particles in two
dimensions (2D) driven by steady-state simple shear at
a constant strain rate γ̇. The non-convex shape of the
crosses allows for particles to interlock and create gear-
like effects in their interactions. We study the rotational
motion of such particles and their orientational ordering
in the shear flow, making comparison to previous work we
have done on non-convex U-shaped particles (“staples”)
[10] and convex elongated rods [11–13]. We will see that
the lack of convexity plays a significant role in such par-
ticle orientational effects, affecting whether the average
angular velocity and the degree of orientation ordering in-
creases or decreases, as the packing varies. We will also
find a surprising linear relation between the packing frac-
tion at jamming φJ and the degree of non-convexity of the
particle shape.
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Fig. 1. (a) Spherocylinder in two dimensions with spine of
length L and width D and asphericity α = L/D = 4; (b) Staple
formed by rigidly attaching three spherocylinders together; (c)
and (d) Crosses formed by overlapping spherocylinders: (c) has
aspect ratio β = L′/L = 0.25 while (d) has aspect ratio β = 1.

2

Model

The basic building block of our particles is a spherocylin-
der, which in 2D consists of a rectangle of length L and
width D, capped by semi-circular end caps of diameter D,
as shown in Fig. 1a. We define the asyphericity of the sphe-
rocylinder as α = L/D, such that α = 0 is a pure circle.
We refer to the line that bisects the rectangle parallel to
its length as the “spine” of the spherocylinder. The short-
est distance from the spine to any point on the surface is
always D/2. Staples are made by rigidly fixing three equal
spherocylinders together as shown in Fig. 1b. Crosses are
made by fixing together two orthogonal spherocylinders
with overlapping centers of mass, as in Figs. 1c,d. For an
isolated spherocylinder, as well as the three component
spherocylinders of a staple, and the long arm of a cross,
we use spherocylinders with fixed α = 4. For the short arm
of the cross we use spherocylinders with different values
of L′/D, where the width D is the same as for the long
arm. We define the aspect ratio of the cross as β = L′/L.
We will specify the degrees of freedom of a cross by its
center of mass position ri, and the angular orientation θi
of the spine of the long arm with respect to the shear flow
direction x̂, as indicated in Fig. 2a.

If ia labels spherocylinder component a of particle i,
and jb labels spherocylinder component b of particle j, we
define ria,jb as the shortest distance between the spines of
ia and jb. Particles i and j will overlap if ria,jb < Dij =
(Di + Dj)/2. In that case there is a harmonic repulsion
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Fig. 2. (a) Sketch of the degrees of freedom of a cross: the
center of mass position ri and the angle θi of the long arm
spine with respect to the shear flow direction x̂. The angle
θi increases as the cross rotates counter-clockwise. (b) Sketch
of two crosses with a pair of contacts; spherocylinder arm c
of cross 2 makes contact with both arms a and b of cross 1.
The elastic forces at these two contacts are determined by the
lengths r1a,2c and r1b,2c. Also shown are the moment arms
s1a,2c and s1b,2c of the torques that act on cross 1 from the two
contacts.

between the particles with an elastic force on particle i
[10,12],

Fel
ia,jb =

ke
Dij

(
1− ria,jb

Dij

)
n̂ia,jb (1)

where ke is the soft-core stiffness and n̂ia,jb is a unit nor-
mal pointing inward to spherocylinder ia at the point
of contact with jb. For non-convex particles, such as the
crosses, a given pair of particles i and j may have more
than one mutual contact, as illustrated in Fig. 2b. The
total elastic force on particle i is,

Fel
i =

∑
a,jb

Fel
ia,jb (2)

where the sum is over all contacts that i makes with other
particles j. These elastic forces also exert a torque on par-
ticle i. The torque about the center of mass ri of particle
i is,

τ eli = ẑ ·
∑
a,jb

sia,jb × Fel
ia,jb (3)

where sia,jb is the moment arm from the center of mass ri
of particle i to the point of contact between spherocylinder
component a of particle i with spherocylinder component
b of particle j; ẑ is normal to the plane of the particles.

Shearing inputs energy into the system and so there
must be a mechanism for energy dissipation if a steady-
state is to be reached. Here we will assume that this dissi-
pation occurs via a drag force with respect to a uniformly
sheared host medium, thus modeling an emulsion or non-
Brownian suspension [10,12]. Taking the local velocity of
this host medium as a uniform shear flow in the x̂ direc-
tion,

vhost(r) = γ̇yx̂, (4)

then gives a drag force density

fdisi (r) = −kd[vi(r)− vhost(r)] (5)

where
vi(r) = ṙi + θ̇iẑ× (r− ri) (6)

is the local velocity at position r on the particle i. Here
ṙi is the center of mass velocity of the particle, and θ̇iẑ

is the angular velocity about the center of mass. We mea-
sure the orientation of a particle by the angle θi that is
made between the flow direction x̂ and (i) the spine of an
isolated spherocylinder as in Fig. 1a, (ii) the cross piece
connecting the two prongs of the staple as in Fig. 1b, and
(iii) the long arm of the cross as in Figs. 1c,d.

The total dissipative force on particle i is then,

Fdis
i =

∫
i

d2r fdisi (r), (7)

while the total dissipative torque is,

τdisi = ẑ ·
∫
i

d2r (r− ri)× fdisi (r), (8)

where the integrals are over the area of particle i.
Assuming a uniform mass density for the particle, then∫

i
d2r (r− ri) = 0 by the definition of the center of mass,

and since vhost(r) is linear in r, one can show that the
dissipative force on i reduces to,

Fdis
i = −kdAi[ṙi − γ̇yx̂], (9)

where Ai is the area of particle i. The dissipative torque
on i can be shown to reduce to [10,12],

τdisi = −kdAiIi[θ̇i + γ̇f(θi)], (10)

where

f(θ) =
1

2
[1− (∆Ii/Ii) cos 2θ]. (11)

Here Ii is the sum of the two eigenvalues of the moment
of inertia tensor of particle i while ∆Ii is their difference.

We will use an overdamped dynamics (i.e., limit of
small particle mass) for which,

Fel
i + Fdis

i = 0, τ eli + τdisi = 0. (12)

This leads to equations for the translational and rotation
motion of particle i [10,12],

ṙi = γ̇yix̂ +
Fel
i

kdAi
, (13)

θ̇i = −γ̇f(θi) +
τ eli

kdIiAi
. (14)

The packing fraction φ of our system of N particles is,

φ =
1

L2

N∑
i=1

Ai, (15)

where L is the length of our system box in both x̂ and ŷ
directions.

We simulate an ensemble of N = 512 crosses, monodis-
perse in both size and aspect ratio β, considering the
particular cases β = 0.25, 0.5 and 1. We take D = 1
as the unit of length, ke = 1 as the unit of energy, and
t0 = D2kd/ke = 1 as the unit of time. We numerically in-
tegrate the equations of motion (13) and (14) using a two-
stage Heun method with a step size of ∆t = 0.02. We im-
plement a uniform simple shear using periodic boundary
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conditions in the x̂ direction, and Lees-Edwards bound-
ary conditions [14] in the ŷ direction, with shear strain
γ = γ̇t for constant γ̇t0 = 10−4, 10−5, and 10−6. Simula-
tions are started from independent initial configurations
at each value of φ and γ̇, with particles placed so as to ex-
clude the crossing of spines belonging to different particles,
but otherwise with random positions and orientations. We
shear to a total strain γmax ∼ 100 − 120, with an initial
strain of γ ∼ 10 discarded from our ensemble averages so
as to reach the steady-state.

3
Observables

We are interested in the rotational motion of the particles,
which is driven by the γ̇f(θi) term in Eq. (14). We thus
measure the average angular velocity, scaled by the strain
rate,

〈θ̇i〉/γ̇ =

〈
1

Nγ̇

N∑
i=1

θ̇i

〉
, (16)

where 〈. . . 〉 indicates an average over configurations in the
steady-state.

We are also interested in the orientational ordering of
the particles. For a 2D system the magnitude Sm and
direction θm of the m-fold orientational order parameter
Sm are given by [15],

Sm = max
θm

[〈
1

N

N∑
i=1

cos(m[θi − θm])

〉]
, (17)

from which one can show [15],

Sm =

√√√√〈 1

N

N∑
i=1

cos(mθi)

〉2

+

〈
1

N

N∑
i=1

sin(mθi)

〉2

(18)
and

tan(mθm) =

〈
1

N

N∑
i=1

sin(mθi)

〉/〈
1

N

N∑
i=1

cos(mθi)

〉
.

(19)

4
Isolated Particles

Note, for an isolated particle, where τ eli = 0, rotational

motion is given simply by the deterministic equation θ̇i =
−γ̇f(θi), with f(θ) as in Eq. (11). The particle will rotate
continuously clockwise, but with a non-uniform angular
velocity that is slowest at θi = 0 or π where f(θi) is at its
minimum, and fastest at θi = π/2 or 3π/2 where f(θi) is
at its maximum. The particle will thus spend more time
oriented at θi = 0, aligned parallel to the flow direction x̂.

In this isolated particle limit one finds that the prob-
ability for the particle to be at angle θi ∈ [0, 2π) is [10],

P(θi) =

√
1− C2

2π[1− C cos(2θi)]
, (20)
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Fig. 3. (a) Relation between C = ∆I/I and cross aspect ratio
β, for crosses in which the asphericity of the long arm is α =
4, from Eq. (23). (b) Scaled average particle angular velocity
−〈θ̇〉/γ̇ and magnitude of the nematic order parameter S2 vs
∆I/I, for an isolated particle, from Eqs. (21) and (22). In both
panels the solid points indicate the three values of β = 0.25,
0.5 and 1 where we have done numerical simulations.

where C = ∆Ii/Ii [12]. This gives for the average angular
velocity [10],

−〈θ̇i〉/γ̇ =

∫ 2π

0

dθP(θ)f(θ) =
1

2

√
1− C2 < 1/2. (21)

Since P(θ) peaks at θ = 0, one has θ2 = 0 for the orienta-
tion of the nematic director, while the magnitude of the
nematic order parameter is given by,

S2 =

∫ 2π

0

dθP(θ) cos(2θ) =
1−
√

1− C2

C
(22)

For crosses for which the long arm is a spherocylinder
of asphericity α ≥ 1, and for which the aspect ratio β
satisfies 1/α ≤ β ≤ 1, we have,

C =
4α(1− β) + 3πα2(1− β2) + 4α3(1− β3)

3π − 8 + 12α(1 + β) + 3πα2(1 + β2) + 4α3(1 + β3)
.

(23)
In Fig. 3a we plot C = ∆I/I vs β for crosses in which

the asphericity of the long arm is α = 4. In Fig. 3b we
plot −〈θ̇〉/γ̇ and S2 vs ∆I/I for an isolated particle. We

see that as ∆I/I → 0, −〈θ̇〉/γ̇ → 1/2 and S2 → 0, as
expected for a circular particle.

At finite packing φ, particles will come into contact,
τ eli will no longer be zero, and the above isolated particle
behavior will be modified. The goal of this work is to see
how the non-convex shape of the crosses influences the
effect of this τ eli .

A particularly interesting case is the cross with aspect
ratio β = 1, i.e., arms of equal length. In this case the 4-
fold rotational symmetry of the particle results in ∆Ii =
0, and so such an isolated cross rotates uniformly with
−θ̇/γ̇ = 1/2, and the probability distribution P(θi) =
1/2π is completely uniform, just like for a circular particle.
There is thus no orientational ordering for an isolated cross
with β = 1, and in this limit Sm = 0 for all m. At finite
packing φ, any orientational ordering that is observed is
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necessarily due to the particle collisions and the resulting
τ eli . In such a case, the rotational symmetry of the cross
still necessarily results in a nematic order parameter S2 =
0, and one must look to the tetratic S4 for indications of
orientational ordering.

5
Numerical Results

5.1
The Jamming Transition

Before considering the rotational and orientational behav-
ior of a finite density of crosses, we first digress to look at
the location of the jamming transition φJ . To look for
the jamming transition we measure the pressure p due to
the particle interactions (we ignore any ambient pressure
of the host medium) which is 1/2 the trace of the stress
tensor [10],

P = − 1

L2

∑
i

∑
a,jb

sia,jb ⊗ Fel
ia,jb. (24)

Here the second sum is over all contacts between sphero-
cylinder component a of particle i with spherocylinder b
of particle j, and we consider only the elastic forces since
these give the dominant contribution to the stress at low
γ̇.

For our overdamped model with a dissipative drag
force, the rheology is Newtonian [10,12,16]. At low γ̇ be-
low φJ one has p ∼ γ̇, while above φJ one has [16] a finite
yield stress with p ∼ p0 + cγ̇b. Thus below φJ , p/γ̇ should
be independent of γ̇ at sufficiently small γ̇. For a given
pair of strain rates γ̇1 < γ̇2, we thus get a lower bound
on φJ from the largest packing φ at which the values of
p/γ̇1 ≈ p/γ̇2. We denote this lower bound as φ1. As the
values of γ̇1 and γ̇2 decrease, φ1 will increase towards φJ .
In Fig. 4a we plot p/γ̇ vs φ for our smallest strain rates
γ̇ = 10−6 and 10−5, for crosses with aspect ratio β = 0.25,
0.5 and 1. The resulting lower bounds φ1 on φJ are indi-
cated by the dashed vertical lines in the figure.

Another method often used to locate φJ is to measure
the average number of contacts per particle Z, and assert
that jamming occurs when this reaches the isostatic value
[17], for which the number of force constraints equals the
number of degrees of freedom. For frictionless particles this
is Ziso = 2df , where df is the number of degrees of freedom
per particle. For 2D particles without rotational symme-
try, df = 3 and so Ziso = 6. However, for non-spherical
particles it has been noted [9,12,18–25] that jamming is
often hypostatic, with ZJ < Ziso. We thus expect that the
value of φ at which Z = Ziso gives an upper bound on
φJ . In Fig. 4b we plot Z vs φ for our crosses; the dashed
vertical lines indicate the values of φ where Z = Ziso. We
denote this upper bound by φ2. We will take as our rough
estimate for the jamming transition the average of this
lower and upper bound, φJ ≈ (φ1 + φ2)/2. In general we
find the difference φ2 − φ1 to be quite small.

Note, for computing Z we count twice each contact
where two spherocylinder segments touch side-to-side. This
is because each side-to-side contact constrains two degrees
of freedom: the translational motion transverse to the con-
tacting surface, as well as rotational motion [9,25,26]. This
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Fig. 4. For crosses with aspect ratios β = 0.25, 0.5 and 1,
(a) ratio of pressure to strain rate p/γ̇ vs φ, and (b) average
number of contacts per particle Z vs φ. In both panels, solid
symbols denote data at γ̇ = 10−6, while open symbols denote
data at γ̇ = 10−5. Dashed vertical lines in (a) denote the lower
bound estimate of φJ , while in (b) they denote the upper bound
estimate of φJ as given by the packing at which Z = Ziso = 6.
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Fig. 5. Estimated jamming transition φJ for particles of dif-
ferent shape vs the ratio of particle area to the area of the par-
ticle’s convex envelope A/Aenv. We show results for staples,
crosses with aspect ratios β = 1, 0.5 and 0.25, and sphero-
cylinders with asphericity α = 4. The upper limit of the error
bar on each point represents the upper bound φ2 for φJ , de-
termined by the condition Z = Ziso = 6. The lower limit of the
error bars represents the lower bound φ1 for φJ , determined as
the largest φ for which p/γ̇ is the same for both γ̇ = 10−6 and
10−5. The dashed line is a linear fit to the data. In the inset
shown in the upper left corner, the shaded gray region is the
particle area A, while the area bounded by the blue lines is the
area of the convex envelope Aenv.

double counting of side-to-side contacts is a significant ef-
fect for elongated spherocylinders where there are many
side-to-side contacts; however we find it to be a relatively
small correction for the crosses.

We now ask how φJ varies with the particle shape. To
measure the degree of non-convexity of a particle we de-
fine the ratio, A/Aenv, where A is the area of the particle
and Aenv is the area of the particle’s convex envelop (see
inset to Fig. 5). In Fig. 5 we plot our estimate for φJ vs
A/Aenv for the crosses with β = 0.25, 0.5, and 1. The up-
per limit of the error bars on the data points denotes the
value of φ2, while the lower limit gives φ1. For comparison
we also include our earlier results for a system of N = 1024
monodisperse staples [10] (as in Fig. 1b), and forN = 1024
spherocylinders of asphericity α = 4 [12] (as in Fig. 1a).
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For the spherocylinders we use a bidisperse distribution
of particle sizes to prevent spatial ordering, taking equal
numbers of big and small particles with length scales in
the ratio Db/Ds = 1.4, with Ds = 1. We find a linear
dependence of φJ on A/Aenv, with an extrapolated mini-
mum value φJ ≈ 0.28 as A/Aenv → 0. We may speculate
that this minimum value might be achieved by crosses in
the limit that the arms become infinitesimally thin.

Note, this linear dependence should not be viewed as
an exact relation; the data in Fig. 5 are not exactly on a
straight line, and for A/Aenv = 1, which characterizes all
convex particles, we know that there is a range of different
possible values for φJ depending on the particle shape (for
example, φJ = 0.8433 for bidisperse circles, as compared
to φJ ≈ 0.906 for bidisperse α = 4 spherocylinders [12]).
We thus expect that, when including more diverse particle
shapes, we will find a spread of values with a roughly linear
in A/Aenv trend, rather than an exact linear relation.

Note also that the φJ presented in Fig. 5 are specif-
ically for the case of shear-driven jamming, which is the
subject of the present work. The values of φJ obtained
for isotropic compression-driven jamming can be notice-
ably different. The reason for this difference, for aspherical
particles, can be attributed to the orientational ordering
of particles that occurs under shear flow (see following
section) but not under isotropic compression [10,12,13].

We can compare our results for φJ with recent exper-
iments on the isotropic and uniaxial compression of 2D
β = 1 crosses [7]. In those experiments, the arms of the
crosses are spherocylinders of α = 5 (compared to our
particles with α = 4); these particles have A/Aenv =
0.519. If we use our results in Fig. 5, that would pre-
dict a φJ ≈ 0.61. The experiments, however, report the
value φJ = 0.475. There are several effects that might be
responsible for the experimentally lower value of φJ : (i)
Our particles are frictionless while the experimental par-
ticles have inter-particle friction; such inter-particle fric-
tion generally lowers the jamming φJ [27,28]. (ii) As we
speculated two paragraphs previously, the value of φJ is
likely not a simple function of A/Aenv but may depend
on other aspects of the particle’s shape, perhaps the as-
phericity α of the arms of the cross. (iii) Our values of
φJ are for steady state simple shearing, while the experi-
ment jams via isotropic and uniaxial compression. While
uniaxial compression does contain a component of shear,
isotropic compression does not shear the system and so
likely does not induce any orientational ordering [10,12,
13]. It may be that the different processes result in dif-
ferent values of φJ . Despite the lack of agreement, it is
noteworthy that both our simulations and the experiment
find a φJ that is significantly lower than the random close
packing φJ = 0.8433 for perfect 2D circles.

The jamming transition is also often characterized by
the value of the macroscopic friction at the jamming point.
Although our particles have no microscopic inter-particle
friction, the system as a whole does possess a macroscopic
friction, defined as the ratio of the deviatoric shear stress
σd to the pressure p,

µ = σd/p. (25)
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Fig. 6. Macroscopic friction µ = σd/p vs packing φ for staples,
crosses with aspect ratios β = 1, 0.5 and 0.25, and spherocylin-
ders with asphericity α = 4; vertical dashed lines locate the
respective jamming transitions of these particles. Solid sym-
bols and solid lines are for γ̇ = 10−5 while open symbols and
dashed lines are for γ̇ = 10−6, except for the staples where
open symbols are for γ̇ = 5× 10−6.
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Fig. 7. Macroscopic friction µ = σd/p vs A/Aenv for staples,
crosses with aspect ratios β = 1, 0.5 and 0.25, and sphero-
cylinders with asphericity α = 4. A/Aenv is the ratio of the
particle’s area to the area of the particle’s convex envelope;
the smaller is A/Aenv, the greater is the non-convexity of the
particle’s shape.

Here σd is defined in terms of the difference of eigenvalues
of the ensemble averaged stress tensor of Eq. (24),

σd =

√
〈pxy〉2 +

1

4
[〈pxx〉 − 〈pyy〉]2. (26)

In Fig. 6 we plot this macroscopic friction µ vs packing φ
for staples, our crosses of β = 1, 0.5, and 0.25, as well as for
spherocylinders of α = 4. From this figure we determine
the friction at jamming, µJ .

In Fig. 7 we plot µJ vs the ratio A/Aenv for the differ-
ent shape particles. Recall, A/Aenv is the ratio of par-
ticle area to the area of the particle’s convex envelop;
as A/Aenv decreases, the particle gets increasingly non-
convex. The spherocylinders, which can be viewed as crosses
with β = 0, and the crosses with β = 0.25, 0.5 and 1, have
values of µJ that fall on a smooth curve; as A/Aenv de-
creases, µJ increases. We conjecture that, as the arms of
the cross become more equal in length, the particles can
more effectively interlock with each other, and so support
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(a) (b) 
Fig. 8. Sample configurations of N = 512 crosses with (a)
aspect ratio β = 0.25 at packing φ = 0.8, and (b) β = 1 at
φ = 0.7; both are at strain rate γ̇ = 10−5. Different colors
are used to distinguish different particles, but have no other
meaning. Animations of these two sheared configurations are
shown as Online Resource 1 and Online Resource 2; we also
show an animation of shearing for β = 0.5 crosses at φ = 0.75
and γ̇ = 10−5 as Online Resource 3.

a greater shear stress when jammed. For the staple we find
that µJ is still larger than for the convex spherocylinder,
but smaller than the β = 1 cross. For staples we have
found [10] that pairs of staples often nest one within the
other to form an effectively convex square composite par-
ticle; it may be that such composite particles more easily
slide over one another than do the crosses, thus lowering
µJ .

5.2
Rotational and Orientational Behavior

We now report our results for the average rotational mo-
tion and the orientational ordering of our particles. In
Fig. 8 we show typical configurations sampled during steady-
state shear. In Fig. 8a we show crosses with β = 0.25,
as in Fig. 1c, at a packing φ = 0.8 slightly above jam-
ming (φJ ≈ 0.78), at strain rate γ̇ = 10−5. For this β
the short arm is such that only the semi-circular end caps
protrude beyond the body of the long arm. In Fig. 8b we
show crosses with β = 1, and so equal arm lengths as in
Fig. 1d, at a packing φ = 0.7 above jamming (φJ ≈ 0.67),
at γ̇ = 10−5. By eye one sees the suggestion of nematic or-
dering in Fig. 8a with finite positive angle with respect to
the flow direction x̂. For the crosses with β = 1 in Fig. 8b,
the nematic ordering is necessarily zero due to the 4-fold
rotational symmetry of the particle, and it is difficult to
see whether there is any tetratic ordering or not. We now
quantify these observations.

In Fig. 9 we plot the average particle rotational ve-
locity, scaled by the strain rate, −〈θ̇i〉/γ̇ vs φ for crosses
with aspect ratio β = 0.25, 0.5, and 1. For comparison we
include our earlier results for staples [10] and spherocylin-
ders with α = 4 [11,13]. In each case, here and in subse-
quent Figs. 10 and 12, we show results at both a smaller
strain rate γ̇1 and a larger rate γ̇2 to illustrate that our
strain rates are sufficiently small to be in the quasi-static
limit, except possibly at the very densest packings. The
values of γ̇1 and γ̇2 are listed in Table 1. In Fig. 9, arrows
denote the approximate location of the jamming transi-
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Fig. 9. Scaled average angular velocity −〈θ̇i〉/γ̇ vs packing φ
for crosses with aspect ratio β = 0.25, 0.5 and 1, compared
to spherocylinders of asphericity α = 4 and staples. For each
case results are shown at a smaller strain rate γ̇1 (open symbols
and dashed lines) and a larger strain rate γ̇2 (solid symbols and
solid lines); see Table 1 for values. The data points at φ = 0
are from Eq. (21) for isolated particles. The horizontal dashed
line indicates the value −〈θ̇i〉/γ̇ = 1/2 for an isolated particle
with 4-fold rotational symmetry. Arrows give the approximate
location of the jamming transition for each type of particle.

tion φJ for each particle shape. It is interesting that there
is no clear signature of the location of φJ from −〈θ̇i〉/γ̇
and that in all cases −〈θ̇i〉/γ̇ remains finite even in the
dense configurations above jamming.

Table 1. Strain rate values used for data in Figs. 9, 10 and 12

shape γ̇1 γ̇2
crosses 10−6 10−5

spherocylinders and staples 10−5 10−4

For the convex spherocylinders we see that −〈θ̇i〉/γ̇
rapidly decreases as φ increases, reaches a minimum, and
then increases again as one approaches φJ . We have ob-
served similar behavior for spherocylinders of other as-
phericities α [11,13]. The least non-convex of our non-
convex particles, the cross with β = 0.25, behaves quali-
tatively similar with an initial strong decrease, but then
continues to monotonically decrease as φ goes above φJ .
The other non-convex particles, however, have an initial
increase as φ increases. The staple reaches a plateau and
then continues to increase, while the crosses with β = 0.5
and 1 increase to a maximum and then decrease to values
comparable to that of an isolated particle as φ goes above
φJ . This increase can be thought of as a gear-like effect
in which the interlocking of particles gives rise to torques
that cause the particle to rotate faster than would an iso-
lated particle. In particular, the β = 1 cross rotates faster
than the value of 1/2 that represents the rotation of the
affinely sheared host medium.

Next we consider the magnitude of the orientation or-
dering. In Fig. 10 we plot the nematic order parameter S2

vs φ for all particle shapes, except for the β = 1 crosses
where S2 = 0 and so we show the tetratic S4. In general we
see that S2 is roughly anti-correlated with −〈θ̇i〉/γ̇; when
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Fig. 10. Magnitude of the orientational order parameter vs
packing φ for crosses with aspect ratio β = 0.25, 0.5 and 1,
compared to spherocylinders of asphericity α = 4 and staples.
We show the nematic order parameter S2 for all particles ex-
cept the crosses with β = 1, for which we show the tetratic or-
der parameter S4. For each case results are shown at a smaller
strain rate γ̇1 (open symbols and dashed lines) and a larger
strain rate γ̇2 (solid symbols and solid lines). The data points
at φ = 0 are from Eq. (22) for isolated particles. Arrows give
the approximate location of the jamming transition for each
type of particle.

the latter is decreasing, S2 is increasing, and vice versa.
Also, the shapes for which −〈θ̇i〉/γ̇ is smallest tend to have
the largest S2. Thus the slower the particles are rotating,
the greater is the orientational ordering. The only excep-
tion to this is the β = 1 cross, where for the most part S4

increases when −〈θ̇i〉/γ̇ increases, and vice versa. Orien-
tational ordering is smallest for the β = 1 cross, which in
isolation (i.e., at φ = 0) shows no orientational ordering
in the shear flow.

To highlight the relation between −〈θ̇i〉/γ̇ and S2, in

Fig. 11 we show a parametric plot of −〈θ̇i〉/γ̇ vs S2, us-
ing the same data as in Figs. 9 and 10. For the β = 1
crosses, where S2 = 0 by symmetry, we use instead the
tetratic S4. For all particles except the β = 1 crosses, we
see clearly the anti-correlation between −〈θ̇i〉/γ̇ and S2;

−〈θ̇i〉/γ̇ trends downwards as S2 increases. It is notewor-
thy that the curves for the different shapes seem to fall
roughly around a common curve. Only the β = 1 crosses
behave differently, showing a positive correlation between
−〈θ̇i〉/γ̇ and S4.

Finally, in Fig. 12 we consider the direction of the ori-
entational ordering, plotting the angle of the nematic di-
rector θ2 vs φ for all particle shapes, except for the β = 1
cross where we show the tetratic θ4. As has been well
noted previously for spherocylinders and rod-shaped par-
ticles [5,29–36], at finite density the particles orient at a
finite positive angle θ2 > 0 with respect to the flow direc-
tion x̂, and this angle generally increases as the packing φ
increases. An interesting observation pertains to the β = 1
cross. All particles for which ∆Ii 6= 0 orient with θ2 = 0
in the isolated particle limit, and this seems to be consis-
tent with the φ → 0 behavior at finite packing shown in
Fig. 12. However for the β = 1 cross, which has ∆Ii = 0,
the isolated particle has a completely uniform orientation
distribution P(θi) = 1/2π, so Sm = 0 for all m, and so θm
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Fig. 11. Parametric plot of −〈θ̇i〉/γ̇ vs the magnitude of the
nematic order parameter S2, for crosses with aspect ratio β =
0.25, and 0.5, compared to spherocylinders of asphericity α = 4
and staples. For crosses with β = 1, where S2 = 0 by symmetry,
we show a similar plot but using the tetratic S4. The data is
the same as in Figs. 9 and 10. For each case results are shown
at a smaller strain rate γ̇1 (open symbols and dashed lines)
and a larger strain rate γ̇2 (solid symbols and solid lines).
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Fig. 12. Direction of the orientational order parameter vs
packing φ for crosses with aspect ratio β = 0.25, 0.5 and 1,
compared to spherocylinders of asphericity α = 4 and staples.
We show the nematic director orientation θ2 for all particles
except the crosses with β = 1, for which we show the tetratic
orientation θ4. For each case results are shown at a smaller
strain rate γ̇1 (open symbols and dashed lines) and a larger
strain rate γ̇2 (solid symbols and solid lines). Arrows give the
approximate location of the jamming transition for each type
of particle.

in this isolated particle limit is undefined. It is interesting,
therefore, that we find in Fig. 12 that θ4 is finite and more-
over appears to be approaching a finite, non-zero, value as
φ→ 0.

5.3
Short Distance Correlations

To try to understand the above results concerning rota-
tions and ordering, it is interesting to consider the corre-
lations between neighboring particles in mutual contact,
to see what is the geometry of local particle clusters. Con-
sider a given particle i, and construct a local coordinate
system (x̃, ỹ) with origin at the center of mass ri, and the
x̃ axis along the direction of the long arm, as illustrated
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Fig. 13. (a) Local coordinates x̃ and ỹ align with the long and
short arms of a cross, and so vary from particle to particle. The
axis x̃ on particle i is at an angle θi with respect to the shear
flow direction x̂. (b) Global coordinates x′ and y′ align parallel
and transverse to the direction of the global orientational order
parameter S2, indicated by the large blue arrow. The axis x′

is at an angle θ2 with respect to the shear flow direction x̂.
Coordinates x and y are parallel and transverse to the direction
of the shear flow.

in Fig. 13a. If rj − ri is the displacement from the cen-
ter of mass of particle i to that of contacting particle j,
we define the coordinates (x̃, ỹ) = (rj − ri)/[(Di +Dj)/2]
in this local coordinate system. Note, for our monodis-
perse crosses, in which all particles have the same D, the
denominator in this expression is just unity; but for our
bidisperse spherocylinders the denominator rescales dis-
tances between different size particles to a common length.
We then define g̃(x̃, ỹ) as the probability density to find
a contacting neighbor at (x̃, ỹ). Similarly we define the

orientational correlation G̃m(x̃, ỹ) = 〈cos(m[θj − θi])〉, for
particle j at position (x̃, ỹ) with respect to i.

Averaging over particles within a given configuration,
and over configurations in our shearing ensemble, in Fig. 14
we show intensity plots of g̃(x̃, ỹ) and G̃2(x̃, ỹ) at pack-
ings φ ≈ φJ for spherocylinders of asphericity α = 4, and
crosses of aspect ratio β = 0.25 and 0.5; for crosses of as-
pect ratio β = 1 we show g̃(x̃, ỹ) and G̃4(x̃, ỹ). For g̃(x̃, ỹ)
we use a logarithmic intensity scale to better highlight
features. For G̃2(x̃, ỹ), dark blue denotes parallel oriented
particles while dark red denotes perpendicular particles;
white denotes particles with relative orientation of π/4.

For G̃4(x̃, ỹ), dark blue denotes parallel or perpendicular
particles, dark red denotes particles with relative orien-
tation of π/4, and white denotes a relative orientation of
π/8. In both sets of correlations, we see an envelope sur-

rounding the particle within which g̃ and G̃m vanish. No
other particle j can have its center of mass position rj
within this envelope around particle i, without significant
and unreasonable overlap between the particles. We will
refer to this as the “excluded area,” even though this def-
inition is somewhat different from the standard definition
of that term [37]. Not surprisingly, as β increases, this area
increases and becomes a roughly more circular shape.

For the spherocylinders, g̃(x̃, ỹ) and G̃2(x̃, ỹ) show that
the closest neighboring particles generally tend to be par-
allel, and that particles contacting along their mutual long
flat sides at ỹ ≈ 1 tend have their point of contact smoothly
distributed along the length of the flat side, with a slight
peak in probability in the middle [12]. In contrast, for the
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Fig. 14. Intensity plots of spatial correlations g̃(x̃, ỹ) (left col-
umn, on logarithmic intensity scale) and orientational correla-
tions G̃m(x̃, ỹ) (right column) for spherocylinders of asphericity
α = 4 (top row), and crosses with aspect ratio β = 0.25, 0.5,
and 1 (2nd, 3rd, and 4th rows) at packings φ ≈ φJ near their
respective jamming transitions. We show the nematic order-
ing G̃2(x̃, ỹ) for all but the β = 1 cross, for which we show
the tetratic G̃4(x̃, ỹ). The (x̃, ỹ) coordinate system is defined
locally for each particle, with the x̃ axis taken along the direc-
tion of the long arm. Icons in the upper right corner of the left
column panels illustrate the particle shape of that row.

crosses with β = 0.25, the closest neighboring particles
again tend to lie parallel, but the probability for particles
making contact along the flat sides of their long arm at
ỹ ≈ 1 have g̃(x̃, ỹ) = 0 for −3 < x̃ < 3, since the long arm
of one cross must butt up against the short arm of the
other cross. Particles contacting at ỹ ≈ 1.5 have parallel
long arms but the contacts tend to be between the long
arm of one and the short arm of the other.

These observations may offer an explanation for our
earlier result in Fig. 9 that −〈θ̇i〉/γ̇ in the dense region
near, and going above, φJ behaves differently for sphero-
cylinders than for crosses β = 0.25; while the former case
shows an angular velocity that increases as φ increases,
the latter case shows an angular velocity that monotoni-
cally decreases towards zero. For the spherocylinders, the
convex shape allows the particles to slide over each other
as they shear, allowing greater freedom of motion. For the
β = 0.25 crosses, g̃(x̃, ỹ) indicates a local structure of par-
allel but interlocking neighboring particles, with the short
arms blocking such sliding motions, but being too small
to exert sizable torques.

In contrast, the crosses with larger β show a more com-
plex pattern of neighbor orientations, oscillating between
aligned and anti-aligned as one rotates around the parti-
cle. As β, and hence Aenv/A, increases, it becomes harder
to make dense packings in which particles are aligned, a
conclusion consistent with the results of Fig. 10.
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Fig. 15. Pair correlation function g(x′, y′) for spherocylinders
with asphericity α = 4 (top row) and crosses of aspect ratio
β = 0.25, 0.5 and 1 (2nd, 3rd, and 4th rows). Left hand column
is g(x′, 0), right hand column is g(0, y′). For each shape we
show results at three values of the packing φ: below φJ , roughly
at φJ , and above φJ . The axis x′ lies in the direction of the
nematic director (tetratic director for β = 1). Symbols are
shown on every fifth data point. Icons in the upper right corner
of the left column panels illustrate the particle shape of that
row.

5.4
Long Distance Correlations

Finally we consider the long distance correlations in the
system. For circular particles in 2D, researchers generally
choose a bidisperse or polydisperse distribution of parti-
cle sizes to ensure that the system does not crystalize, and
the absence of long range translational order has been con-
firmed in static jammed packings [17]. Sheared monodis-
perse frictionless spheres in 3D similarly show no transla-
tional order [38]. For our size monodisperse 2D crosses,
which show orientational ordering under shear, it is of
interest to see if the orientational ordering induces any
translational order. To investigate this we consider the
pair correlation function, defined as usual,

g(r) =
L2

N

〈
1

N

∑
i 6=j

δ(r− rj + ri)

〉
. (27)

Because the system is sheared, correlations need not be
isotropic. So rather than showing a radial g(r) averaged
over separation directions, we instead consider g(r) in two
orthogonal directions. We define the x′ axis to be parallel
to the nematic order parameter S2, at angle θ2 with re-
spect to the flow direction (or at angle θ4 along the tetratic

order parameter S4 for β = 1 crosses), and y′ as the or-
thogonal direction, as illustrated in Fig. 13b. In Fig. 15 we
then plot g(x′, 0) (left column) and g(0, y′) (right column)
for spherocylinders with α = 4 (top row) and crosses of
β = 0.25, 0.5 and 1 (2nd, 3rd and 4th rows). For each case
we show results at three different packings φ, one below
φJ , one roughly at φJ and one above φJ . In all cases we
see a rapid decay to the large distance limit g(∞) = 1. For
the range of φ shown, the systems of spherocylinders and
crosses of β = 0.25, 0.5 and 1 have lengths L ≈ 90, 60, 68,
and 80 respectively, where lengths are measured in units
of the spherocylinder width D (for spherocylinders we use
a system of twice the size as the crosses, hence the larger
L; for the crosses, L increases as the φ in the figures de-
creases). We thus see that the decay to g → 1 occurs well
before we reach the length scale of the system size. Thus,
as with circular particles, there is no long range transla-
tional order, and the length scale of the decay does not
seem to vary appreciably with φ.

For a system of hard spherical particles of diameter
D, the nearest any two particles may approach each other
is D, and so the pair correlation g(r) has a sharp jump
from zero at |r| = D; as φ→ φJ from below, the height of
this peak at |r| = D diverges [17]. For aspherical particles,
this nearest possible distance depends on the relative ori-
entation of the two particles, and so behavior can be more
complex. This is most readily seen for the spherocylinders
of α = 4, shown in the top row of Fig. 15. Consider the
local particle based coordinates (x̃, ỹ), defined in Fig. 13a.
From Fig. 14 we see that the spherocylinder can have no
other particle closer than x̃ = 3, if one looks for contacts
in the direction parallel to the spherocylinder spine. But
if one looks in the transverse direction, one finds that an-
other particle can be as close as ỹ = 1; this corresponds to
two aligned spherocylinders, one lying on top of the other.
Since the global (x′, y′) coordinates are parallel and trans-
verse to the direction of the nematic order parameter S2,
and since the spherocylinders are on average aligned with
S2, it is therefore not surprising that g(0, y′) for the sphe-
rocylinder takes a sharp increase from zero at y′ = 1. One
might then expect that g(x′, 0) should vanish for x′ < 3,
however we see this is not so. This is because all particles
are not aligned exactly parallel to S2; if a particle hap-
pened to be aligned perpendicular to S2 (so that the local
coordinate ỹ is aligned with the global coordinate x′), it
could then be in contact with another particle that is only
a distance ỹ = x′ = 1 away. The probability for this per-
pendicular alignment is small, which is why g(x′, 0) takes
a rather gradual increase above zero as x′ increases above
unity, unlike the sharp jump seen for g(0, y′) at y′ = 1.
In contrast, for the crosses, we see in Fig. 14 that as β
increases, the excluded area becomes more circular and so
the difference between x̃ and ỹ becomes less signifiant, and
hence the difference between x′ and y′ becomes less no-
ticeable, and so for β = 1 we see that g(x′, 0) and g(0, y′)
both vanish for x′, y′ . 3.

Next we consider the correlations of the orientational
order. Defining this correlation function as,

Gm(r) = 〈cos(m[θj − θi])〉 − S2
m, (28)

for particle j at position r = rj−ri with respect to particle
i, in Fig. 16 we plot the nematic correlation G2(x′, 0) (left
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Fig. 16. Nematic correlation function G2(x′, y′) for sphero-
cylinders with asphericity α = 4 (top row) and crosses of aspect
ratio β = 0.25 and 0.5 (2nd and 3rd rows); tetratic correlation
G4(x′, y′) for β = 1 (4th row). Left hand column is G2,4(x′, 0),
right hand column is G2,4(0, y′). For each shape we show re-
sults at three values of the packing φ: below φJ , roughly at φJ ,
and above φJ . The axis x′ lies in the direction of the nematic
director (tetratic director for β = 1). Symbols are shown on
every fifth data point. Icons in the upper right corner of the
left column panels illustrate the particle shape of that row.

column) and G2(0, y′) (right column) for spherocylinders
with α = 4 (top row) and crosses of β = 0.25 and 0.5 (2nd,
3rd rows); for crosses with β = 1 we plot the tetratic G4

(4th row). For each case we show results at three differ-
ent packings φ, one below φJ , one roughly at φJ and one
above φJ . In all cases we see a rapid decay to the large
distance limit Gm(∞) = 0, and little dependence of the
decay length on φ. The only exception is for the trans-
verse correlation G2(0, y′) for the spherocylinders, where
we see a noticeable increase in the decay length as φ in-
creases to jamming, but this length nevertheless remains
finite. We thus conclude that there are no long range ori-
entational correlations in the system, and we infer that
it is the shearing that acts like a finite ordering field for
the orientational order, rather than the orientational or-
der being the result of a many particle collective behavior.
We found similar results previously for staples [10].

6
Conclusions

We have considered the shear-driven flow of athermal, fric-
tionless, non-convex cross-shaped particles of varying as-
pect ratios in uniform steady-state, focusing on the rota-
tional motion of the particles and orientational ordering.

We have compared our results with our prior results from
convex spherocylinders and non-convex staple-shaped par-
ticles. Comparing particles of different shape, we find the
novel result that the jamming transition φJ seems to scale
linearly with the ratio of the particle’s area to the area of
the particle’s convex envelope, A/Aenv.

Considering rotational motion, we find that the parti-
cle angular velocity and the orientational ordering depend
sensitively on the shape of the particle. For convex sphe-
rocylinders we find that the scaled average angular veloc-
ity −〈θ̇i〉/γ̇ always initially decreases as the particle den-
sity is increased from the isolated particle limit; collisions
tend to slow rotation. However upon further increasing the
packing φ, −〈θ̇i〉/γ̇ reaches a finite minimum and then
increases as the jamming transition is approached. This
is true for spherocylinders of any asphericity α [11,13].
In contrast, for strongly non-convex crosses we find that
−〈θ̇i〉/γ̇ increases as the particle density is increased from
the isolated particle limit; collisions tend to increase rota-
tion. Upon further increasing φ, −〈θ̇i〉/γ̇ reaches a finite
maximum and then decreases as the jamming transition
is approached. For staples we find that −〈θ̇i〉/γ̇ increases,
then plateaus, then increases again as φ increases.

The magnitude of the nematic order parameter S2 is
in general similarly non-monotonic in the packing φ, and
appears to be anti-correlated with the angular velocity.
When −〈θ̇i〉/γ̇ is large, S2 is small, and vice versa. An
interesting exception is the case of the β = 1 cross which
has 4-fold rotational symmetry and so, when in isolation,
rotates with a uniform −〈θ̇i〉/γ̇ = 1/2, just as would a cir-
cular particle; the isolated particle shows no orientational
ordering. In this case we find that the interaction between
particles at finite density leads to a small but finite tetratic
ordering S4, and that −〈θ̇i〉/γ̇ and the tetratic order S4

are positively correlated; as φ increases, both quantities
increase, reach a maximum, then decreases. In the inter-
mediate φ region, −〈θ̇i〉/γ̇ > 1/2 is larger than the angular
velocity of the affinely sheared host medium.

It is interesting to compare the behavior of sphero-
cylinders with that of crosses with aspect ratio β = 0.25.
For such crosses, the short arm appears as two semicircu-
lar bumps on the opposite sides of the otherwise flat sides
of the long arm, as shown in Fig. 1(c). One can therefore
view such a cross as a spherocylinder with an asperity
on each flat side that inhibits sliding motion along these
sides, thus making an analogy between a β = 0.25 cross
and a spherocylinder with inter-particle frictional interac-
tions. Indeed, the decoration of convex particle surfaces
with such asperities [39], or the rigid attachment of con-
vex particles into a non-convex shape [40–42], have been
previously used as models for frictional particles. In our
case, since the asperity formed by the short arm can with-
stand a large transverse force, and so provide an effective
large tangential force against sliding along the long arm,
we should view our β = 0.25 cross as a spherocylinder
with a very large coefficient µp of inter-particle friction.

To contrast the behavior of our frictionless sphero-
cylinders with the β = 0.25 crosses, to see how well the
β = 0.25 cross may indeed be behaving like a frictional
spherocylinder, we compare with recent simulations of sheared
2D frictional ellipses [35] in which a standard Cundall-
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Strack [43] form for the tangential Coulombic friction is
used. Considering Fig. 6(a) of Ref. [35] one sees that for
a fixed ellipse aspect ratio, the jamming packing fraction
φJ decreases as the inter-particle friction coefficient µp in-
creases, a result well known for spherical particles [27,28].
Taking the case of their most elongated ellipses and com-
paring the frictionless µp = 0 case against their most fric-
tional µp = 10 case, one finds a reduction in φJ by roughly
a factor of 0.87. This compares reasonably well with the re-
duction in φJ by a factor of 0.85 that we see in Fig. 5, com-
paring frictionless spherocylinders with β = 0.25 crosses.

From Fig. 6(e) of Ref. [35] we see that the macroscopic
friction at jamming µJ increases as the inter-particle fric-
tion coefficient µp increases, reaches a maximum near µp ≈
1, then decreases to a limiting value that is still well above
the frictionless case. Comparing their frictionless µp = 0
case against their most frictional µp = 10 case, for their
most elongated ellipses, gives an increase of µJ by a factor
of roughly 7. This compares with the increase in µJ by a
factor of roughly 2 that we see in Fig. 7, comparing our
frictionless spherocylinders with β = 0.25 crosses. Thus,
while the magnitudes are not in such good agreement,
still the trend is the same; the presence of an asperity on
the flat side of a spherocylinder increases the macroscopic
friction µJ .

Finally, another feature observed when shearing strongly
frictional particles is that the jamming transition appears
to be discontinuous, with a finite jump in the yield stress
at jamming [28]. However our results in Fig. 4 give no sug-
gestion of any such discontinuity. Thus we conclude that,
while the β = 0.25 cross shares some characteristics of
a frictional spherocylinder, in other respects this analogy
remains lacking. We had arrived at a similar conclusion
in our earlier work on the jamming of frictionless staples
[10].

The results discussed in this work clearly illustrate
that particle shape, and in particular the degree of non-
convexity, can lead to qualitative differences in the rota-
tional motion and orientational ordering of non-spherical
particles in a uniform shear driven flow, and to properties
at the jamming transition.
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