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Résumé. 2014 On considère la transition résistive d’une grille bidimensionnelle infinie et régulière
de fils supraconducteurs. On montre que la transition n’est pas déterminée avec précision par les
théories de Landau-Ginzburg linéarisées : ceci est dû aux fluctuations de type vortex. En supposant
l’amplitude constante, on construit un modèle non linéaire dont les riches propriétés, sous la tem-
pérature de transition (en champ moyen) sont très similaires à celles prédites pour les réseaux de
jonctions Josephson. On compare les résultats à des expériences récentes.

Abstract. 2014 The resistive transition of a two dimensional infinite regular grid of superconducting
wires is considered. Previous linearized Landau-Ginzburg theories of this transition are shown to
be inadequate in determining the true phase boundary due to the effects of vortex fluctuations.
The relation of the non linear model to a constant amplitude approximation is discussed and rich
structure, identical to that previously predicted for Josephson junction arrays, is expected below the
mean field transition temperature. Connection with recent experiments is made.
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Within the last two years, extensive theoretical and experimental effort has been devoted to
the problem of two dimensional superconducting networks in a magnetic field [1-15]. Although
much of this interest is concerned with the problem of disordered systems at the percolation
threshold [4-11], considerable theoretical attention has been given to the problem of an infinite
regular wire grid [5-7a,12], and interesting properties as a function of applied field H have been
predicted. Recent experiments by Pannetier et aL [ 13] on such a regular system provide further
stimulation to renew study of this problem.

Previously, most analyses of this problem have centred on the solution of the linearized
Landau-Ginzburg equations for the superconducting wave function on the wire links [5, 7a,12].
Although such a mean field like treatment may be expected to determine the temperature at
which a decrease from the normal state resistance begins, the absence of long range order in two
dimensions means fluctuation effects must be included. We expect, as has been predicted and
observed in other 2D superconducting systems [ 16], that below the mean field transition tempera-
ture there remains a flux flow resistive tail due to field induced and thermally excited vortex
fluctuations. In this paper we derive the qualitative behaviour of the phase boundary of the
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true resistive transition where these resistive tails vanish. A general fluctuating non linear Landau-
Ginzburg model is considered and found to yield rich behaviour equivalent to that previously
predicted for Josephson junction arrays [14, 15]. Considerations relevant for experimental
observation of these effects are discussed.

Let { ~~ } be the values of the superconducting wave function at the nodes { i } of an infinite
two dimensional regular square grid of wires. As usual [17] we ignore inductive couplings between
wire loops and take A as the vector potential of a uniform applied magnetic field H perpendicular
to the grid. Since the behaviour of ~ along the link connecting nodes i and j is determined by
the values at the endpoints, one can write an effective Hamiltonian JC for the system just in terms
of nearest neighbour interactions of the { ~i }. Gauge invariance then requires that JC[~] have
the form

.l

where the sums are over all nodes i and nearest neighbour links  i j &#x3E; and A~~ _ (2 e/bc) A.dl.
Jt i

In the following magnetic field H will be measured in units of f = a2 Tf/~o~ the number of
flux quanta of external field per unit cell of the lattice (lattice spacing is a). For rational flux
we will write f = p/q where p and q are coprime.

It is natural to consider two separate approximations to the Hamiltonian (1) ; the Gaussian,
and that of constant amplitude. In the Gaussian approximation one sets all coefficients in (1)
to zero except al and bi, and expands bi/ai as a power series in 7~ 2013 T, where 7~ is the mean
field f = 0 transition temperature. The transition temperature for finite f is then determined
when the lowest eigenvalue of the resulting quadratic form becomes zero, and the corresponding
eigenvector determines the condensed state. This eigenvalue problem, with the particular choice
- b~ /a, = z cos a/~~ (where z is the coordination member of the lattice, a the lattice constant,
and Çs oc (1’co - ~’) 1’ Z the mean field correlation length) is identical to solving the linearized
Landau-Ginzburg equations on the net, which, as pointed out by Alexander [5], is equivalent to the
problem of non interacting tight binding electrons in a magnetic field first studied by Azbel [18]
and later by Hofstadter [19]. The reduction in 7~ for finite f is proportional to the increase
in the lowest band edge of this electronic problem. The resulting mean field phase boundary,
as obtained from Hofstadter’s work, is shown in figure la. Although the boundary is very sin-
gular, having cusps at all rational f, 7~(/) is still finite and continuous everywhere. Similar
results have been obtained from a molecular field analysis of a constant amplitude approximation
to (1) by Shih and Stroud [20]. We note that the mean field transition temperatures are such that
the inequality a/~S  1 is satisfied along the phase boundary of figure la. We return to this point
when considering the importance of vortex fluctuations.
The constant amplitude approximation is obtained from (1) by writing .pi = gi ei8i and fixing

all amplitudes gi = 1. The resulting Hamiltonian has the form

where F(0) is some, potential periodic in 2 7r. This model belongs to the class of uniformly frus-
trated X Y models studied in references [14] and [15]. The particular choice of all an, bn, Cnml = 0
except ai ~ 0 is precisely the Josephson junction array problem. In reference [15] a combination
of analytic bounds, Monte Carlo calculations, and physical arguments was used to show that
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Fig. la. - Phase boundary for the resistive transition of a 2D square wire grid in the Gaussian (mean field)
model as a function of applied magnetic field f = a 2 H/~o. The boundary is periodically extended on
the integers f.

Fig. lb. - Schematic phase boundary for the resistive transition of a 2D square wire grid in the general
non linear model (1) as a function of applied magnetic field f = a2 H/~o. The boundary consists of infinite-
ly sharp spikes at rational f = p/q with heights bounded by T~(~) ~ const./q, and is periodically extended
on the integers f.

for the Josephson array with magnetic field f = p/q ( f = a2 H/~o) the resistive transition is
bounded by

where Eo is the ground state energy. The resulting discontinuous phase boundary (due to the
llq dependence), shown schematically in figure lb, consists of a set of infinitely sharp spikes with
heights bounded by (3) and is dramatically different from the Gaussian prediction (Fig. la).
We now show that the same arguments that applied for the Josephson array continue to hold

for the general Hamiltonian (1) with amplitude fluctuations. Consider the behaviour of the critical
current of the system. The outline of the argument is then as follows :

i) To drive a supercurrent through a lattice of length N, apply twisted boundary conditions
to the phase of ~
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For total free energy density F(b), the supercurrent induced by this twist is

G G vu

The zero temperature critical current is then

ii) Transform to untwisted variables which obey periodic boundary conditions

In terms of { y~ } the Hamiltonian (1) has the form

where êij is the unit vector from i to j.
iii) For the gauge A = yHi and f = p/q, JC,, is invariant under 5 -~ ~ + 2 n/q combined

with a translation of the lattice in the y direction (x, y) -~ (x, y - na), where n is determined by
np + mq = 1 (n, m, p, q integer). Thus the current i(b, p/q) is periodic in 5 -~ 5 + 2 7r/q.

iv) Differentiating (5) yields

where u is the energy density. For physically reasonable JC, the right hand side of (9) should be
bounded as a function of 6 and f

v) Combine the bound (9) with the periodicity (iii) of i(~) and the mean value theorem to get
a bound on the critical current (6).

vi) Physical arguments then suggest the conclusion

i.e. once thermal noise currents equal the zero temperature ir, a resistive transition should have
occurred. (ic may be thought of as an effective T = 0 interface energy between degenerate ground
states corresponding to different overall phase factor.)
Combining equations (10) and (11) thus suggests that all Hamiltonians (1) with general ampli-

tude fluctuations should have qualitatively the same behaviour and phase boundary (Eq. (3)
and Fig. lb) as the Josephson array. That the Gaussian model in particular obeys the bound
on critical current (10) can be obtained directly from Hofstadter’s [19] work by noting that the
width of the lowest band obeys a similar relation [21]. The Gaussian model, however, fails to
obey the assumption (11) regarding Tc (Fig. la). Thus within the Gaussian model one is forced
to the unphysical conclusion that for f irrational (q -+ oo), Tp(/) is finite, but i~( f ) = 0 for all
temperatures. This contradiction is a result of the mean field nature of the approximation, which
always gives long range order at a finite critical temperature T~ ; fluctuation effects, as measured
by ic are ignored. For the constant amplitude approximation of the Josephson array however,
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Monte Carlo simulations [15] at several f supported the assumption (11). For the general Hamil-
tonian (1), the presence of higher order terms that tend to suppress amplitude fluctuations should
make the model approach the constant amplitude approximation and restore the physically
reasonable assumption (11). This viewpoint is supported by noting that for f = 0 (the ordinary
2D X Y model) it has been shown [22] that amplitude fluctuations are irrelevant in a renormaliza-
tion group sense.
The results of the Gaussian (mean field) model (Fig. la) should still remain meaningful as

being the approximate temperature where resistance rises to saturate to its high T limit. However,
the phase boundary of the true resistive transition, where a non zero linear d.c. resistance first
appears, should be as in figure lb. The implications for the resulting network resistance have
been fully discussed in reference [15]. The arguments presented above are completely generalizable
to three dimensions in the case where the field is aligned parallel to one of the grid axes. This
conclusion is supported by recent 3D Monte Carlo study by Shih et al. [23].

Physically, the origin of the phase diagram lb, is linked to the vortex lattice of circulating
currents induced by a non zero H [14,15]. The commensurability of this vortex lattice with the
underlying periodicity of the wire net, as measured by q where plq = Ha2/~o, determines the
relative strength of the effective pinning of the vortices. As T increases, the vortices unpin and
their motion gives rise to flux flow resistance. This points to an important bound required to see
the effects discussed above. When a temperature T* is reached such that ~/!~(T*) ~ 1 (where
Çs is the mean field correlation length) then the effective core of a vortex exceeds the size of a
unit cell [6] and the vortex should be regarded as unpinned. T* thus serves as an additional upper
bound on the true resistive transition at finite H, which in some cases might preempt the commen-
surability effects discussed above. It is thus necessary to look below T *, and hence below the mean
field transition temperatures, to see these effects. A second important requirement for observation
of commensurability effects is that irregularities in the lattice be small. Impurity pinning due to
irregularities should widen the infinitely sharp spikes of figure 1b into bands of finite width and
wash out some of the fine structure of the phase diagram. We have no way at present to estimate
the strength of pinning due to lattice irregularities.

Finally we make two observations regarding the recent experiments on a uniform 2D honey-
comb grid of wires which have been performed by Pannetier et al. [13]. Firstly, we note that for a
graph of R(H) at one fixed T &#x3E; Tco they observe sharp minima at integer f and minima at
f = 1/3, 2/3 ( f = a2 R/~o)’ The appearance of minima at non integer f ’is consistent with the
behaviour predicted above. However, the absence of a minimum at.f =1/2 is in contrast to what has
been observed experimentally in square Josephson arrays [24]. Pannetier et al. explain this absence
by performing a Gaussian analysis of the honeycomb lattice and noting that the cusp in T~(/) at
f = 1/3 is more pronounced than at f = 1/2 (in contrast to the case of a square lattice, Fig. la).
Their data appears to be in the mean field range and hence their analysis consistent. However,
on the basis of a constant amplitude approximation, a stronger statement can be made. For
f = 1/2 and constant amplitude, the problem is that of the fully frustrated 2D XY model consi-
dered in reference [14]. The ground state maps onto a neutral configuration of + 1/2, - 1/2
Coulomb charges on the dual lattice. For a square lattice the ground state consists of an ordered
lattice of alternating + 1/2, - 1/2 charges, is doubly degenerate, and was found to melt at a
relatively high 7~ with Ising exponents [14]. For a honeycomb wire grid however, the charges sit
on the dual triangular lattice. The analogy with an Ising antiferromagnet (+ 1/2 = T, - 1/2 = 1)
found for the square lattice, applied now to the triangular case [25] suggests a low melting tempe-
rature for the ground state vortex lattice. Thus for the honeycomb wire grid, no minimum at
f = 1/2 should be expected, even in the resistive tails, below the mean field transition. Secondly,
we note that they estimate a/~S (T = 0) ~ 10 while for the lowest value of the mean field transition
temperature (at f = 1/2) a/~S ~ 0.6. It should therefore be possible to conduct measurements
in the range a/~S &#x3E; 1, and thus if their system is sufficiently pure, it may be suitable to investigate
the effects predicted above.
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Note added :

It has been pointed out to us by a referee that the sheet resistance in the Pannetier et al. expe-
riment [13] is sufficiently low that according to the results of Beasley et al. (Phys. Rev. Lett.42 (1979)
1165) one expects TKT ~ Tco and so for H = 0 only mean field results should be expected. It
is not clear to us however that this remains the relevant criteria for observation of non mean field
behaviour at finite H.
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