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Molecular dynamic simulations are used to study the structural stability of gold nanorods upon
heating. We show that the global stability of the rod is governed by the free energetics of its surface.
In particular, an instability of surface facets nucleates a bulk instability that leads to both surface
and bulk reorganization of the rod. The surface reorganizes to form new, more stable, {111} facets,
while the underlying fcc lattice completely reorients to align with this new surface structure. Rods
with predominantly {111} facets remain stable until melting.

PACS numbers: 64.70.Nd, 61.46.+w, 82.60.Qr

The global shape of a crystal structure is in general
determined by its growth process. For macroscopic sized
crystals, this shape will rarely be the true equilibrium

shape that minimizes the total free energy; slow diffu-
sion over macroscopic length scales generally result in
a bulk structure and non-equilibrium global shape that
are stable on all experimental time scales. Metallic crys-
tals of micron size, however, have been observed to take
their equilibrium shape when annealed for long times at
high temperatures [1]. The standard theory of equilib-
rium shapes [2] minimizes the surface free energy, assum-
ing that the bulk free energy remains constant. Surfaces
are assumed to be large enough that the thermodynamic
limit applies, and the vanishing of a surface facet is de-
termined by the roughening transition of the correspond-
ing surface. It is generally assumed that the equilibrium
shape is achieved by a process of surface diffusion.

For structures on the nanometer scale, however, where
surface and bulk free energies may be comparable, such
a clear division between surface and bulk effects is no
longer obvious. Moreover, when surface facets are only
several atoms across, it is not clear that they will be-
have in the same manner as macroscopically large sur-
faces. Recent calculations by Zhao and Yakobson [3] for
silicon nanowires have explicitly decomposed the energy
into bulk, surface and edge contributions, showing the
importance of the surface and edge terms in determining
the globally stable structure. Diao et al. [4], in numer-
ical simulations of 〈100〉 oriented gold nanowires with
small cross-sectional area (< 4 nm2), showed that the
surface strain associated with {100} facets can drive a
transformation of the interior from the fcc structure that
is the stable structure for macroscopic bulk gold, to a bct
(body-centered-tetragonal) structure. It is therefore of
great interest to study under what situations nanostruc-
tures with non-equilibirium initial shapes may become
globally unstable, to identify the particular mechanism
leading to the instability, and to study the resulting ki-

netic path that the system takes to achieve a more stable
shape.

In this work we consider gold nanorods of low aspect
ratio ∼ 3, as have been studied in recent laser heating
experiments [5–8]. Using molecular dynamic (MD) sim-
ulations of a rod with a few thousand atoms, we find that
the stability of the nanorod against changes in shape and
bulk structure is still governed by the energetics of its
surface facets. A rod covered primarily by {111} facets
remains stable up until melting. However for a rod which
has a sizable fraction of its surface covered by {110} or
{100} facets, an instability of those facets sets in well
below melting and leads to a shape transformation to
a shorter and wider structure. The surface reorganizes
to form higher stability {111} facets. More surprisingly,
the fcc interior completely reorganizes as well, rotating
to align with the new facet planes.

The initial rod configuration that we consider, shown
in Fig. 1, is that proposed in Ref. [5]. The interior of
the rod is a pure fcc lattice. The surface of the rod
consists of four large {100} and four large {110} facets
oriented parallel to the rod axis. The ends of the rod
have a {001} facet and four small {111} facets connect-
ing the {110} and the {001} facets. These experiments
found that, upon heating, such rods underwent a shape
transformation to bent, twisted, shorter, wider, and “φ-
shaped” rods in which the middle of the rod bulges out-
wards. Transmission electron miscroscopy studies [8] ob-
served point and planar internal defects to accompany
such shape transformations. Recent MD simulations [9]
of such rods, using a continuous heating procedure meant
to model the laser heating of experiments, found simi-
lar shape transformations. These simulations found the
shape transformation to be accompanied by a structural
change in which planes of interior atoms shift, convert-
ing local fcc structure to hcp. The extent and stabil-
ity of these interior rearrangements was found to depend
upon both the heating rate and the number of atoms in



2

FIG. 1: Initial configuration of the gold nanorod with N =
2624 atoms and aspect ratio 3: (a) side view, (b) end view
down the long axis, (c) cross-sectional view parallel to long
axis. In (a) and (b), yellow atoms represent {111} facets,
green atoms {100} facets, and red atoms {110} facets; white
atoms are on the edges. In (c), yellow atoms are those with a
local fcc structure, white atoms are on the surface; the cross-
sectional view in (c) shows atoms in the square arrangement
of a {100} plane of the fcc lattice.

the cluster, but no specific mechanism or energetic argu-
ment for this structural rearrangement was proposed. In
this paper we present new simulations carried out with a
much slower “quasi-equilibrium” heating that allows the
rod more time to approach configurations of local equilib-
rium. Our results make it clear that it is the energetics
of the surface that is driving the shape and structural
transformation.

We use the empirical “glue” potential [10] to model the
many body interactions of the gold atoms in our simu-
lated nanorod, and we integrate the classical equations
of motion for the atoms using the velocity Verlet algo-
rithm [11] with a time step of 4.3 fs. However instead of
increasing the kinetic energy at each MD step to model
continuous heating as in Ref. [9], we now use the Gaussian
isokinetic thermostat [12] to keep the total kinetic energy
fixed at a constant temperature T ; after each MD step,
all velocities are rescaled by a constant factor so as to
keep 〈(1/2)mv2〉 = (3/2)kBT fixed. Our procedure con-
serves total linear and angular momentum, which are set
to zero, so that our rod does not drift or rotate through-
out our simulation. At each fixed T we carry out 107 MD
steps, for a simulated time of 43 ns, before increasing the
temperature in jumps of 100 K. Our effective heating
rate is therefore ∼ 2.3× 109 K/s, more than three orders
of magnitude slower than the continuous heating rates of
2−7×1012 K/s used in Ref. [9]. We use a rod of N = 2624
atoms with initial aspect ratio of 3, as shown in Fig. 1.
The length of the rod, parallel to its long axis, is 7.38 nm
and its crossectional area has a diameter of 2.46 nm. We
do a short equilibration for 430 ps (105 MD steps) at 5 K
in order to relax the surface atoms of the rod from their
initial fcc positions, before starting to heat the rod.

As a signature of the shape change of our nanocluster
we measure the radius of gyration, rg , defined by r2

g =

(1/N)
∑

i |ri − rc|
2
, where ri is the position of atom i and

FIG. 2: (a) Radius of gyration rg vs. temperature T for the
rod of Fig. 1: quasi-equlibrium heating (blue) compared to
the continuous heating of Ref. [9] (red); continuous heating
of the rod with structure of Fig. 3 (green). (b) Bond order

parameters, Q4, Q6, Ŵ4 and Ŵ6, averaged over all atoms
internal to the rod, vs. temperature T , for quasi-equlibrium
heating of the rod of Fig. 1.

rc is the center of mass. In Fig. 2a we plot our results for
rg as the system is heated; the blue curve is for our above
“quasi-equilibrium” heating. The vertical dotted lines
separate bins of constant temperature simulation, where
the temperature is equal to the value at the left end point
of the bin; the data plotted within each bin represents the
instantaneous value of rg as a function of increasing time
at the constant temperature. At the end of each bin the
temperature is increased by a jump of 100 K. We plot our
data this way, instead of as an average value at each T , to
highlight that significant shape relaxation occurs even at
constant T . For comparison, we plot rg for the continous
heating (red curve) of Ref. [9] for the heating rate of 7×
1012 K/s; here the temperature is determined from the
instantaneous value of the average kinetic energy. We see
that the curves are qualitatively similar, with the onset
of a plateau around 800 K, however the present quasi-
equilibrium heating allows the rod to relax to smaller rg

values, before the rod melts at T ∼ 1200 K. The decrease
in the radius of gyration reflects the shape transformation
to a shorter wider rod of smaller aspect ratio.

To investigate the local structure within the cluster,
we use the method of bond orientational order parame-
ters [13]. These parameters measure the orientation of
bonds connecting a given atom to its nearest neighbors,
and provide a convenient means of determining the local
crystalline structure of an atom. In particular, we mea-
sure the 6-fold and 4-fold orientation parameters, Q6,
Ŵ6, Q4, and Ŵ4. We refer the reader to the litera-
ture for their definitions [9, 13], and in Table I we give
their values for several periodic three dimensional crys-
tal structures. We also, in Table I, give the values of
these parameters as computed for atoms on particular
low index planar surfaces of an fcc bulk crystal; for these
two dimensional parameters we average only over bonds
connecting an atom with its neighbors in the specified
plane. In Fig. 2b we plot these order parameters for our
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TABLE I: Bond order parameters for face-centered-cubic
(fcc), hexagonal close-packed (hcp), simple cubic (sc), body-
centered-cubic (bcc), and low index fcc planes.

Geometry Q4 Q6 Ŵ4 Ŵ6

fcc 0.190 94 0.574 52 −0.159 32 −0.013 16

hcp 0.097 22 0.484 76 0.134 10 −0.012 44

sc 0.763 76 0.353 55 0.159 32 0.013 16

bcc 0.082 02 0.500 83 0.159 32 0.013 16

{110} 1 1 0.134 10 −0.093 06

{100} 0.829 16 0.586 30 0.124 97 −0.007 21

{111} 0.375 00 0.740 83 0.134 10 −0.046 26

rod, averaging over only atoms internal to the rod (i.e.
we exclude surface atoms since these have fewer nearest
neighbor bonds). As for rg , we plot our data as the in-
stantaneous value as a function of increasing simulation
time, for bins of constant temperature (indicated by the
dotted vertical lines). Comparing with Table I, we see
that the rod maintains its fcc structure until about 400
K. Then, from around 400 K to about 800 K, there is a
rise to positive values in Ŵ4, and a decrease in Q6 and
Ŵ6, suggestive of a more hcp-like structure. Above 800
K, the values return to their fcc-like values.

We now focus on the structure of the rod in the high
temperature plateau region where rg stabilizes to a con-
stant. In Fig. 3 we show the configuration of the rod at
T = 900 K, in the constant plateau region before melt-
ing. The views of the rod shown in Figs. 3a,b,c are the
same orientations as shown for the initial configuration
in Figs. 1a,b,c. In order to better illustrate the order
of the rod, we first pick an instantaneous configuration
sampled from the middle of the T = 900 K simulation,
and use the conjugate gradient method [14] to quench
local thermal fluctuations. At such high temperatures,
the surface can be partially disordered compared to the
interior, due to the diffusion of atoms on and near facet
edges and vertices [15, 16]. We therefore use the cone al-

gorithm [16] to identify and peel away atoms on the sur-
face and in the first sub layer below it, and in Figs. 3a,b
show the configuration of the second sub layer of the rod.
We see a very regular shape covered almost completely
with stable {111} facets. Based on the values in Table I,
we use the following criteria to identify atoms in this
layer as belonging to particular low index planes: {111}
if 0.7 < Q6 < 0.9 and −0.08 < Ŵ6 < −0.02; {100} if
Q6 < 0.7 and Ŵ6 > −0.02; and {110} if Q6 > 0.9 and
Ŵ6 < −0.08. Atoms in Figs. 3a,b have been colored ac-
cordingly.

The cross-sectional view in Fig. 3c shows an almost
pure fcc interior, as was the case for the initial config-
uration, however we now see a close packed hexagonal
structure characteristic of a {111} plane of the fcc lattice,
rather than the {100} plane seen in the cross-sectional

FIG. 3: Configuration of the nanorod after quasi-equilibrium
heating to 900 K. (a) side view, and (b) end view down the
long axis, after peeling away the surface and the first sub-
surface layer; yellow atoms are {111} facets, green atoms are
{100} facets, and white are edge atoms. (c) cross-sectional
view parallel to the long axis; yellow atoms have a local fcc
structure, green atoms have a local hcp structure, and white
atoms are neither. The cross-sectional view in (c) shows
atoms in the close-packed hexagonal arrangement of a {111}
plane of the fcc lattice.

view of Fig. 1c. We thus see one of our main results:
in order to align with the new {111} surface facets, the
bulk fcc structure has completely reorganized itself to a
new orientation. For interior atoms, we use the follow-
ing criteria to identify the local crystal structure: fcc
if Q4 > 0.17 and Ŵ4 < −0.10; hcp if Q4 < 0.13 and
Ŵ4 > 0.07. Atoms in Fig. 3c have been colored accord-
ingly.

To see how the rod evolves from its initial configura-
tion (Fig. 1) to its reorganized shape (Fig. 3), we consider
the average cross-sectional shape in a plane transverse to
the long axis of the rod. We compute this average shape
as follows. For each instantaneous configuration we first
eliminate all atoms on the end caps of the rods, and all
interior atoms of the rod, and then project the remain-
ing surface atoms into the xy plane, perpendicular to the
long axis of the rod. Placing the origin at the resulting
center of mass, we divide the plane into 100 equal polar
angles, and then compute the average position of all sur-
face atoms in each angular division. This result is then
averaged over 1000 different instantaneous configurations
sampled uniformly throughout the simulated time of 43
ns at each temperature T . We plot the resulting average
cross-sectional shapes, for several different T , in Fig. 4.

At low T we see the octagonal cross-section of the ini-
tially constructed rod of Fig. 1, with the flat edges rep-
resenting the initial {100} and {110} facets. The shape
stays roughly the same until about 400 K. Somewhere be-
tween 300 − 400 K, the shape becomes rounder and the
initial flat edges disappear. As T increases further, the
cross-sectional area grows, representing the shape trans-
formation to a shorter and wider rod of lower aspect ratio,
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FIG. 4: Average cross-sectional shape, viewed down the long
axis of the rod, for different temperatures.

and we see new flat facets develop and grow in new di-
rections. At 900 K we see the fully faceted shape shown
in Fig. 3.

In a macroscopic sample, the disappearance of flat
facets, with the resulting rounding of the average shape,
is a signature of the roughening transition of those sur-
faces [2]. It is known from experiments that the gold
{110} surface roughens at 680 K [17], while the {100}
surface disorders at ∼ 1170 K [18], below the bulk melt-
ing temperature of 1337 K. In contrast, the macroscopic
{111} surface is believed to remain stable up to, and even
above, the bulk melting [19]. The instability that initi-
ates the shape change which we find in our nanorod at
400 K, may therefore just correspond to the roughening
transition of the {110} facets, which has been shifted to
lower temperature due to large finite size effects in our
relatively small rod. After this instability, the surface re-
organizes to form mostly lower free energy {111} facets,
which remain stable until melting. Note that the fully
faceted cross-sectional shape at 900 K contains four large
sides and two short sides; the former are the {111} facets,
while the latter are {100} facets. By 1100 K, these {100}
facets have been replaced by a smoothly curved surface.
We infer that this is due to the disordering transition of
the {100} surface, reduced somewhat in temperature due
to finite size effects.

In order to see how the interior fcc structure of the rod
reorganizes itself to a new orientation, we show in Fig. 5
cross-sectional views of the rod at various temperatures.
We color the atoms according to their local crystal struc-
ture, using the criteria given above: fcc is yellow, hcp is
green, neither is white. Initially, the interior is pure fcc,
oriented so that the cross-sectional view shows a {100}
plane of atoms. As temperature increases, we see that the
shape and structural transformation is accompanied by
the appearance of hcp planes inside the rod interior, due
to the sliding of {111} planes. As temperature further
increases, the surface becomes less ordered, and more
{111} planes with different orientation slide. Around 800
K, the surface has reordered and the interior fcc lattice
has reoriented so that the cross-sectional view now shows
a predominantly {111} plane of atoms. At 1100 K, the

FIG. 5: Cross-sectional view for various temperatures. Atoms
are colored according to local crystal structure: fcc is yellow,
hcp is green, neither is white.

interior has completely reordered to pure fcc, but with
the new orientation.

Such behavior as described above may well exist in
other simple elemental metals. We note that many such
metals similarly have a roughening transition TR for the
{110} surface that is significantly below the bulk melting
Tm. Silver, for example, has TR = 600 K and Tm = 1235
K, with a similar ratio of TR/Tm as gold [21]. Lead has
TR = 415 K and Tm = 601 K, for a somewhat larger
TR/Tm than gold [22].

Finally, in order to verify that instability of the par-
ticular surface facets, rather than just the minimization
of total surface area, is indeed the mechanism for the
shape transformation, we study the stability of a gold
nanorod with an aspect ratio of ∼ 3, but with an initial
structure similar to that of Fig. 3, with a surface predom-
inantly covered by {111} facets. We use a continuous
heating MD simulation with a heating rate of 7 × 1012

K/s to model laser heating experiments, for a rod with
3411 atoms. Our results for rg vs T are shown in Fig. 2a
(green curve). Unlike the intial rod of Fig. 1, we now find
that the rod remains stable, with no significant shape
or structural rearrangement, up until the rod melting
temperature. Experiments [23] have shown that nano-
sized Pb clusters with large {111} surfaces can superheat
above melting, consistent with our results. We conclude
that the stability of gold, and presumably other metal-
lic, nanorods is crucially dependent upon the structure
of the rod surface. Once a shape instability is nucleated,
however, the entire bulk of the rod participates in the
restructuring.

After our work was completed, we learned of similar
work by Diao et al. [24] who carried out finite temper-
ature molecular dynamic simulations of gold nanorods,
oriented similarly as our initial configuration of Fig. 1,
but with a square cross-section and surface covered
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FIG. 6: Average cross-sectional shape viewed down the long
axis of the rod, at different temperatures, for (a) a rod initially
covered only by {110} facets, and (b) a rod initially covered
by only {100} facets.

entirely by {100} facets. Using two different empiri-
cal potentials, the “modified embedded atom method”
[MEAM] and the “embedded atom method” [EAM] (in
contrast to our use of the glue potential), they simu-
lated rods of much larger aspect ratio than considered
here. For the MEAM they studied a rod of similar cross-
sectional area to ours, but for EAM they used a rod with
cross-sectional area roughly one quarter of ours. Despite
the different rod shape, aspect ratio, and model poten-
tial, they found that, around 300 K, the rod transformed
to a shape similar to our Fig. 3, consisting of a rhom-
boidal cross-section, a surface covered by {111} facets,
and with the fcc interior having rotated to align with
the new facets. For the EAM potential, this transfor-
mation occurred by a similar mechanism of sliding {111}
planes as we have found here. They, however, attribute
this transformation to the effects of surface stress on the
{100} facets.

To clarify whether it is the {110} or the {100} facets
on our initial rod of Fig. 1 that are responsible for the
transformation we see, we have carried out new simula-
tions for initial rods of roughly the same cross-sectional
area and aspect ratio as in Fig. 1, but now with a square
cross-section oriented so that in one case (a) the length
of the rod has only {110} surface facets (this rod has
2546 atoms), and in a second case (b) the length of
the rod has only {100} surface facets (this rod has 3126
atoms). Heating for a simulated time of 4.3 ns per tem-
perature with temperature jumps of 100 K, and using
the glue potential, we find in both cases a transformation
at T ∼ 300 − 400 K to a similar structure as in Fig. 3,
with rotated fcc interior and surface covered primarily
by {111} facets. In Fig. 6 we show the average cross-
sectional areas at different temperatures, computed by
the same method as used earlier in Fig. 4, for both these
cases (a) and (b). For case (a) of the {110} covered rod
we see the same rounding out of the {110} facets, as the
rod begins its transformation to its final shape, as we saw
in Fig. 4. For case (b) of the {100} covered rod, however,
we see no rounding of the facets; rather the corner edges
in the 〈110〉 directions round, and the initial {100} facets

reorient to {111} while remaining perfectly flat. Inspec-
tion of the internal structure of the {100} covered rod
shows that an hcp plane appears as early at T = 200 K.
By comparing to the results of case (a), we conclude that
in our original rod of Fig. 1, it is the {110} facets that
nucleate the shape transformation, possibly due to the
roughening transition of these facets. The results we find
for the {100} covered rod, however, indicate that more
than one mechanism may be important for the trans-
formation of gold nanorods. In all cases, though, the
nanorod finds a mechanism to restructure its surface to
have stable {111} facets dominating, while the interior
atoms of the rod participate in this transformation by a
reorientation of their initial fcc structure.
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