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1 Statement of Gauss’s Law
The electric flux through any closed surface is proportional to the
total charge contained inside it.

In other words ˛
E · dA =

Q

ε0
.

2 Gauss’s Law Implies Coulomb’s Law
We can derive Coulomb’s law from Gauss’s law. This is essentialy the reverse
of the argument we gave in the last lecture.

Consider a point-charge Q at some point. The flux through a sphere of
radius r with center at this charge is easy to calculate because the electric field
is normal to the sphere. This follows from the symmetry of the sphere. There
is no other direction it can point in: it has to either point outward or inward.

E = ±|E|r̂. (1)

Therefore the flux through a small area of the surface is E · dA = ±|E||dA|
since the area points radially outward.

The electric field has constant magnitude on the surface of the sphere. Thus¸
E·dA = ±|E|

¸
|dA| = ±4πr2|E|. Setting this equal to Q

ε0
gives |E| = ± 1

4πε0

Q
r2 .

Putting into the above formula 1 for E we get

E =
1

4πε0
Q

r2
r̂.

The force on a charge at the point r will be qE, so that

F = k
qQ

r2
r̂

where k = 1
4πε0

. This is Coulomb’s Law.
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3 Gauss’s Law Follows From Coulomb’s Law
Gauss’s law is actually a consequence of Coulomb’s Law and the law that the
forces due to many charges is the sum of the force due to each charge. For the
case of a single charge and a surface which is a sphere centered on it, we proved
it in the last class. To prove it for more general surfaces and charges, we have
to think of a way of breaking them up into this situation.

First of all, consider a single point charge surrounded by a sphere of radius
one. Now cut out a small piece of area dΩ of the sphere and pull it out: the
sides are parallel to the electric field so carry no flux. The face is part of a
sphere of larger radius r. The flux through this is the same as that through the
piece that was cut out: the increase in area of the face due to the larger radius
(r2dΩ) is exactly compensates for the decrease in electric field k Qr2 so that the
flux is kQdΩ.

We can pull out many such small pieces to make a patchwork that fits any
surface surrounding the charge. Each piece will have the same flux as the
corresponding part of the unit sphere surrounding the charge. Thus the total
flux through any surface surrounding the point charge is the same as for a unit
sphere

˛
E · dA = 4πkQ.

Now suppose there are two point charges inside this surface. We know that
the electric field is the sum of the electric fields due to each charge. The flux
will be the sum of the flux of electric fields produced by each charge:
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˛
E · dA =

˛
E1 · dA +

˛
E2 · dA = 4πkQ1 + 4πkQ2 = 4πk[Q1 +Q2].

If there are many charges, we repeat the argument for each one to get
˛

E·dA =
˛

E1·dA+
˛

E2·dA+· · · = 4πkQ1+4πkQ2+· · · = 4πk[Q1+Q2+· · ·] = 4πQ.

where Q is the total charge inside the surface.
The tricky part of this argument is to show that any smooth surface can be

approximated by small pieces of spheres centered at a point inside, each patch
having a different radius. To really prove this satisfactorily uses ideas from the
field of mathematics known as measure theory. But we don’t go that deep into
the proof.

The advantage of the way we cut up a surface into spheres is that radial
vector is always normal to the surface (for the part of the sphere) or tangential
to it (the sides).

4 The Electric Field of a Line of Charges
Imagine now a large number of charges, each of small magnitude, that are
arranged with constant density along a line. What is the electric field produced
by them? If we take a piece of the line of length L, the electric charge on it will
be some constant σ (the charge per unit length) times L

Q = σL.

Imagine that the charges are along the vertical axis. The electric field at
any point has to be directed along the horizontal line to the charges, by symme-
try.Now imagine a cylinder passing through your point, whose axis is along the
charges. The normal to the cylinder points along the electric field at any point.
Also the electric field has the same magnitude at all points on the cylinder.
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E

So the flux of the Electric field is

EA = 4πkQ.

The area of the cylinder is
A = 2πrL

Remembering that the charge is also proportional to L, we get

2πrLE = 4πkσL

so that the magnitude of the eletric field is

E = k
2σ
r
.
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It decays like 1
r instead of 1

r2 .as for a point charge.

5 The Electric Field of a Plane of Charges
Suppose we have a plane carrying a constant charge density of σ per unit area.
The electric field it produces must be pointed normal to the plane. (No other
direction is special.)

This time we imagine a surface that is a box whose sides are planes also, two
of them parallel to the charges each with area A. The electric field is normal to
these planes. The electric flux is EA on each side and the charge inside is σA.
Thus

2EA = 4πkσA

Thus the electric field is a constant:

E = 2πkσ

6 Spherically Symmetric Charge Distribution
Suppose the charge density ρ depends only on the distance r from some point.
The electric field has to poinr radially. The flux through a sphere of radius r is
E(r)4πr2.

If the total charge inside this sphere is Q(r) Gauss’s law gives

E(r)4πr2 =
Q(r)
ε0

.

Q(r) = 4π
ˆ r

0

ρ(r)r2dr

Thus the electric field at a distance r from the center is the same as if all
the charge inside a sphere of radius r were concentrated at the center:

E(r) = k
Q(r)
r2

The total charge inside is given by an integral

Q(r) = 4π
ˆ r

0

ρ(r)r2dr.

As an example, suppose the density is a constant upto a distance R and is
zero for larger distances. Then for r < R,

Q(r) =
4π
3
r3ρ
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You can see this by doing an integral; but it is also just the density times
the volume of a spher of radius r.

Thus the electric field for r < R is

E(r) =
1

3ε0
ρr.

It grows with distance.
But if r > R the total charge is a constant:

Q(R) =
4π
3
R3ρ.

Thus the electric field decreases with distance:

E(r) = k
Q(R)
r2

.

It is as if all the charge is concentrated at the origin. This is a special
property of spherical charge distributions.
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