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1 Energy Density of Electromagnetic Fields
Electric fields accelerate charged particles. The energy the particles gain must
come from the field. So electric fields must carry energy. Same for momentum.

This is hard to understand at first because the electric field is something
that can exist in empty space, far away from its sources. How can the energy
and momentum get to such a distant point?

The answer is that it is carried by electromagnetic waves. As the waves
move through space, they carry energy and momentum with them at the speed
of light.

It is possible to calculate the energy of electric and magnetic fields from the
physics we learned so far. Inside a capacitor there is a constant electric field.
The total energy in the capacitor is 1

2CV
2. The electric field is E = V

d where d
is the distance between the plates. Hence the energy per unit volume is

UE =
1
2
CV 2

Ad

where A is the area of the plates. Also, C = ε0
A
d . Thus

UE =
1
2
ε0
V 2

d2

But the electric field is E = V
d . Thus the energy per unit volume of electric

field is

UE =
1
2
ε0E

2.

By looking at the energy of an inductor, 1
2LI

2 and the formulas for the
magnetic field and inductance we can derive similarly the magnetic energy per
unit volume

UB =
1
2
B2

µ0
.

Thus the total energy density of an eletromagnetic field is

U = UE + UB =
1
2
ε0E

2 +
1
2
B2

µ0
.
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2 The Poynting Vector
As a wave moves through space it carries an energy per unit volume given by
the above formula. The amount of energy crossing per unit area and unit time
can be thought of as the flux of a vector, called the Poynting vector S. It points
in the direction in which the wave is moving. Its magntitude can be calculated,
knowing the energy density and the speed of the wave. Thus we get (see the
text for the argument)

S =
1
µ0

E×B.

The energy transported across a surface per unit time is
ˆ

S · dA.

Because E and B are perpendicular to each other and to the direction on
propagation, this vector is pointed along the direction of propagation and has
magnitude 1

µ0
EB. Using E = cB and ε0µ0 = 1

c2 , the magnitude of the Poynting
vector can also be written inother ways.

S = ε0cE
2 =

cB2

µ0
.

In a wave the electric and magnetic fields vary periodically with time; so
often we talk of the average energy flux, which is given by the rms electric and
magnetic fields:

Sav = ε0cE
2
rms =

cB2
rms

µ0
.

2.1 Example
How much energy is transported across a7.00cm2 area per hour by an EM wave
whose E field has an rms strength of 33.0mV/m?

Assume that the area is normal to the direction of the wave). Energy trans-
ported is

(area)* (the magnitude of the Poynting vector )*(time)

SavAT = Aε0cE
2
rmsT =

A = 7 ∗ 10−4m2, T = 3600s

so that the energy transported is

7.3µJ.
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3 Inverse Square Law for Energy of Wave
We know that a static point charge creates an electric field that decreases like
r−2. But this is not true of an antenna radiating an electromagnetic wave. The
field actually decreases like r−1.

To understand why, suppose the antenna is turned on and off. It produces
a pulse of radiation that the energy spreads through space in a wave. In a time
t it reaches a distance r = ct. The area of the sphere of radius r is proportional
to r2. The total energy crossing the sphere is the same as was released by the
antenna. As the sphere expands, the energy per unit area (the magnitude of
the Poynting vector) must decrease like r−2. Since S ∝ E2the electric field must
decrease like r−1.

3.1 Example
A radio station is allowed to broadcast at an average power not to exceed 22
kW.If an electric field amplitude of 2.3×10−2 V/m is considered to be acceptable
for receiving the radio transmission, estimate how many kilometers away you
might be able to hear this station.

The total power crossing a sphere of radius r is

P = 4πr2S = 4πr2ε0cE2
rms

Recall that the peak electric field E0 is related to the rms value by

E2
rms =

1
2
E2

0 .

Thus

P = 2πr2ε0cE2
0

Thus

r =
1
E

√
P

2πε0c

which is 50km.
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