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Most of what you have been learning this semester and last has been 19th
century physics. Indeed, Maxwell’s theory of electromagnetism, combined
with Newton’s laws of mechanics, seemed at that time to express virtually
a complete “solution” to all known physical problems. However, already by
the 1890’s physicists were grappling with certain experimental observations
that did not seem to fit these existing theories. To explain these puzzling
phenomena, the early part of the 20th century witnessed revolutionary new
ideas that changed forever our notions about the physical nature of matter
and the theories needed to explain how matter behaves. In this lecture we
hope to give the briefest introduction to some of these ideas.

1 Photons

You have already heard in lecture 20 about the photoelectric effect, in which
light shining on the surface of a metal results in the emission of electrons
from that surface. To explain the observed energies of these emitted elec-
trons, Einstein proposed in 1905 that the light (which Maxwell beautifully
explained as an electromagnetic wave) should be viewed as made up of dis-
crete particles. These particles were called photons. The energy of a photon
corresponding to a light wave of frequency f is given by,

E = hf ,

where h = 6.626×10−34 J · s is a new fundamental constant of nature known
as Planck’s constant. The total energy of a light wave, consisting of some
particular number n of photons, should therefore be quantized in integer
multiples of the energy of the individual photon, Etotal = nhf .

The idea that the energy of light must be quantized into discrete units,
and the discovery of the constant h, were actually due to Max Planck in
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his earlier 1900 theory of blackbody radiation, which sought to explain the
observed spectrum of frequencies of light emitted from an object in equilib-
rium at some fixed temperature T (see section 37-1 in the text). But it was
Einstein who pushed forward the idea that photons are not just conceptual
ideas, but rather behave just like other physical particles. In particular,
photons carry not only energy, but they also carry momentum.

You have already learned that the Theory of Special Relativity (also due
to Einstein!) changed the formulas we must use for the energy E and mo-
mentum p of a particle, and that these changes from Newtonian mechanics
become important when the particles speed v approaches comparable to the
speed of light in the vacuum c. Special relativity tells us that E and p are
related to v by,

E =
mc2√

1−
(

v2

c2

) , p =
mv√

1−
(

v2

c2

) . (1)

Dividing one equation by the other then gives,

E

p
=
c2

v
, or, E =

pc2

v

Since a photon is a quantized particle of a light wave, we expect that photons
must travel with the speed of light c! If we set v = c in the above, we get
the relation between energy and momentum for a photon,

E = pc , or, p =
E

c
.

Using the relation, E = hf , between energy of the photon E and the fre-
quency of the light wave f , and the relation, f = c/λ, between frequency and
wavelength of a light wave, we can now get a relation between the photon’s
momentum and the wavelength of the light,

p =
E

c
=
hf

c
=
hc

cλ
, or, p =

h

λ
.

Note, since photons move with the speed of light c, the above Eqs. (1) for
E and p would diverge, unless the mass of the photon vanished, m = 0, and
so it does! Photons carry energy and momentum, yet they are massless!

That photons do indeed carry momentum as do particles was beautifully
born out in the 1923 experiments of A. H. Compton, who considered the
scattering of light waves by a stationary electron.
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Consider an incident light wave of wavelength λ that hits a stationary
electron e−, as sketched in the figure above. In Maxwell’s classical theory
of electromagnetism, the electron will feel the force of the electric field of
the wave, which will then cause the electron to oscillate back and forth with
the same frequency f = c/λ as the incident wave. The oscillating electron
then serves as a source of an outgoing spherical electromagnetic wave, also
at frequency f with the same wavelength λ as the incident wave. Thus if
one looks at the outgoing light at any angle φ with respect to the incident
direction, one should see light with wavelength λ, the same as the incident
wave.

If, however, we regard the incident light as a beam of particles (photons)
carrying energy E = hf and momentum p = c/λ, the collision process will
look very different! If the incident photon hits the electron and knocks it
into motion, with the electron moving off at some angle θ with respect to
the incident direction, the electron has acquired energy from the photon.
Conservation of energy then tells us that the photon has lost energy. If the
photon’s energy E has decreased in the collision, then its frequency f = E/h
has similarly decreased; and if the photons frequency f has decreased, then
its wavelength λ = c/f has increased! Thus a photon colliding with the
electron and coming out scattered at some angle φ should have a larger
wavelength λ than the incident wave. By using the laws of conservation of
energy and conservation of the vector momentum p, Compton was able to
derive an explicit formula that related the wavelength λ′ of the scattered
light at angle φ to the wavelength of the incident light λ,

λ′ = λ+
h

mec
(1− cosφ) ,

where me is the mass of the electron (you may read a derivation of this
equation in section 37-4 of the text). Compton found that his data was in
excellent agreement with the above formula based on the photon nature of
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light.

2 Atoms - the classical picture

We all know today that matter is made up of basic building blocks called
atoms. Here we give a brief history of how our understanding of the atom
developed. Explaining the physics of the atom led to one of the most rev-
olutionary theories of modern physics, with quantum mechanics replacing
Newtonian mechanics when one needs to describe physical phenomena that
take place on the atomic scale.

The idea that matter is made up of small particles called atoms, that
could be divided no further, was first put forth by the Greek philosopher
Democritus around 400 BCE. But philosophy is not science! It took around
2000 years until chemists in the 1700-1800’s put the theory of atoms on a
solid scientific basis, by observing that elemental gases only reacted together
in certain specific integer proportions by weight. John Dalton is credited
with the first such atomic theory which he proposed in 1804. He stated:
(1) Matter is composed of small particles called atom; (2) All atoms of
an element are identical to each other, but are different from those of any
other element; (3) During chemical reactions, atoms are neither created
nor destroyed, but simple recombine into different arrangements; (4) Atoms
always combine in whole number multiples of each other. Dimitri Mendeleev
organized the elements into the periodic table in 1869.

The deduction by the chemists, based only on experiments with macro-
scopic volumes of gas, that matter must be made of basic units called atoms,
is truly one of the outstanding achievements of science. But it did not pro-
vide any information about the physical nature of these basic units or how
they were constructed. The first clues came from the experiments of Pierre
and Marie Curie who found that certain “radioactive” elements seemed to
decay by emitting particles. In 1899 Ernest Rutherford determined that
the particles emitted in radioactive decay consisted of positively charged
“alpha” particles, and negatively charged “beta” particles. He determined
this by having these emitted particles pass through an electric field between
two capacitor plates and observing their deflections. Rutherford determined
that the alpha particles had twice the magnitude of charge as the beta par-
ticles, and were over 7000 times as massive! (Today we know that an alpha
particles is just a doubly ionized helium atom consisting of two protons and
two neutrons only, and that a beta particle is just the electron.) Ruther-
ford’s experiments were the first step in showing that atoms are comprised
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of positive and negatively charged components.
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At roughly the same time as Rutherford did his experiments above, J.
J. Thomson did experiments with cathode ray tubes in which he determined
that an electron current would flow between a negative metallic cathode
and a positive metallic anode when placed in an evacuated sealed tube. By
placing the tube between charged capacitor plates, and in a perpendicular
magnetic field, and measuring how the current between cathode and anode
was deflected as a function of the electric and magnetic fields in the ca-
pacitor, Thomson determined that the particles carrying the current were
negatively charged and he was also able to determine their charge to mass
ratio. Thomson found that this charge to mass ratio stayed constant inde-
pendent of the type of metal that was used to make the cathode and anode.
He concluded that these particles were basic negatively charged subatomic
components that must be contained within all atoms. This marked the dis-
covery of the electron. Since atoms were known to be electrically neutral,
Thomson further proposed that atoms must contain an equal amount of
positive charge. Thomson proposed his “plum pudding” model of the atom
in which the positive charge was smeared out uniformly over a sphere of size
equal to that of that atom, while the negative charge was made of smaller
discrete particles embedded in this positive charge ball.

The next important step was taken again by Rutherford in 1909 with
colleagues Hans Geiger and Ernest Marsden, who wanted to test Thomson’s
model that the atom was a ball of solid mass. Rutherford used a radioac-
tive source to emit positively charged alpha particles and aimed them at a
very thin foil of gold. If the plum pudding model of the atom was correct,
Rutherford expected that the high energy alpha particles would all pene-
trate through the thin foil, receiving only small deflections as they passed
though the electric fields of the smeared positive charge and the discrete
electric charges. Instead of this Rutherford observed that, while most alpha
particles did pass through the foil with small deflections, a small fraction

5



4/13/09 3:56 PMPhysics for Scientists and Engineers, Fourth Edition

Page 1 of 1http://wpscms.pearsoncmg.com/wps/media/objects/5108/5231603/ebook/g4e.html

of the alpha particles underwent very strong deflections, some even coming
straight backwards. As Rutherford later said, “It was quite the most in-
credible event that has ever happened to me in my life. It was almost as
incredible as if you fired a 15-inch shell at a piece of tissue paper and it
came back and hit you.” Rutherford concluded that the only consistent ex-
planation was if the positive charge was not smeared over the entire volume
of the atom but was rather densely concentrated in a very small region at
the core of the atom. Alpha particle passing close to this dense core of pos-
itive charge would receive the strong deflections. From earlier experiments
it was known that the radius of an atom was on the order of 10−10 m. Using
his data, Rutherford’s calculations estimated that the positive charge of the
atom should be confined to a nucleus of about 10−15 − 10−14 m. Thus only
a fraction of about 10−8 of the volume of the atom was filled with the heavy
massed positive charge. The remainder of the atom was filled with the much
lighter massed electrons.
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If the positive charge of the atom was concentrated at the center of the
atom, what kept the electons from being attracted to it and collapsing to
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the center? If the electrons were at rest, that is what they would do. But
not necessarily if they are in motion. This lead to the “solar system” model
of the atom, in which the negatively charged electrons orbit the positively
charged nucleus just like the planets orbit around the sun, with the Coulomb
attraction providing the centripetal acceleration of the orbital motion.

+ e!

v

ac
+Q

For motion in an orbit of radius r we have,

ac =
v2

r
=

F

me
=

eQ

4πε0r2me
⇒ v2 =

eQ

4πε0rme
(2)

The total kinetic plus potential energy of an electron in such an orbit is
thus,

E = K + V =
1
2
mev

2 − eQ

4πε0r
= − eQ

8πε0r
(3)

The negative sign indicates that the energy of the electron in an orbit of
radius r is lower than that of an electron which has escaped the nucleus and
is at r →∞. This is the binding energy of the electron to the nucleus.

The electron in orbit at radius r is orbiting in circular motion with a
frequency,

f =
v

2πr
=

1
2πr

√
eQ

4πε0rme
∼ 1
r3/2

(4)

so the smaller the radius r, the larger the frequency of the orbital motion.

3 Atoms - the quantum picture

As soon as the solar system model of the atom was introduced, it was un-
derstood that it was in serious conflict with classical physics. A key suc-
cess of Maxwell’s theory of classical electromagnetism was that it predicted
the existence of electromagnetic waves. In Maxwell’s theory, the source of
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such electromagnetic waves is the acceleration of charges. In particular,
a charge that oscillates with a frequency f is found to radiate outgoing
spherical electromagnetic waves with the same frequency f . Therefore, an
electron orbiting the nucleus with frequency f would be radiating electro-
magnetic waves. You have learned that electromagnetic waves carry energy,
therefore such an electron orbiting the nucleus would be steadily radiating
away energy in outgoing electromagnetic waves. As the electron energy E
decreases, Eq. (3) tells us that the radius of the orbit r should decrease.
Ultimately the electron would spiral inwards and crash into the nucleus.
Moreover, this would happen extremely fast; classical mechanics, combined
with Maxwell’s electromagnetism, would predict that an electron orbiting
at a radius r ∼ 10−10 m would hit the nucleus in less than 10−6 s. This is
not good news for a making a theory of stable atoms!

The above picture creates yet another problem. As the electron spirals
into the nucleus, with its radius r continuously decreasing, Eq. (4) tells
us that the frequency of the orbital motion f would be steadily increasing.
Since an electron with orbital frequency f should emit electromagnetic waves
with frequency f , one should observe light waves radiated from the decaying
atom that spanned a continuous spectrum of frequencies f . This, however,
was in direct contradiction to experiments.

3.1 Atomic spectra

When one heats dilute atomic gases, one excites the atoms to high energy
states. As the atoms decay back down to lower energy states they lose energy
by emitting electromagnetic waves, i.e. light. In the classical picture, one
would expect this radiated light would be found with a continuous range
of frequencies. What is found, however, is that for atoms of any particular
element, the frequencies of the radiated light do not span a continuous band,
but rather come at specific discrete values− these are called the spectral lines
of the atom. The discrete frequencies of the spectral lines from atoms of a
given element are unique and specific to that element; indeed they serve as
a sort of atomic fingerprint. By observing the spectral lines emitted from a
heated atomic gas, one can tell which elements the atoms of the gas belong
to. If one looks at light from a distant star, and analyses the frequency
spectrum, one can tell what elements the gas of that star is comprised of!

Hydrogen is the simplest of all atoms, having only one electron. It was
found that the spectral lines from hydrogen obeyed a very simple looking
empirical formula, For frequencies starting in the visible range of the light
spectrum, these spectral lines are known as the Balmer series, after J.J.
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Balmer who found this formula in 1885. It is usually stated in terms of the
wavelengths of the emitted light,

1
λ

=
f

c
= R

(
1
22
− 1
n2

)
, n = 3, 4, 5, . . . the Balmer series

Here n > 2 is an integer, and R is called the Rydberg constant and has the
value R = 1.0974 × 107 m−1. The values n = 3, 4, 5, 6 give rise to spectral
lines at 656 nm, 486 nm, 434 nm, and 410 nm. Later experiments showed
that there were similar spectral lines for hydrogen that lay in the ultraviolet
(UV) and infrared (IR) regions of the light spectrum. In the UV region,
these are the Lyman series and they obey the formula,

1
λ

=
f

c
= R

(
1
12
− 1
n2

)
, n = 2, 3, 4, . . . the Lyman series

In the IR, these are the Paschen series and the obey the formula,

1
λ

=
f

c
= R

(
1
32
− 1
n2

)
, n = 4, 5, 6, . . . the Paschen series

In general, we can thus conclude that the spectral lines of hydrogen obey
the formula,

1
λ

=
f

c
= R

(
1
n′2
− 1
n2

)
, n > n′, n, n′ positive integers

But these formulae were purely empirical with no physical model that ex-
plained where they came from!

3.2 de Broglie wavelength

An important step in understanding how to fix the classical problems with
the atom came from Louis de Broglie in 1923. He argued that if a light
wave with wavelength λ could sometimes behave like a particle (the photon)
with momentum p = h/λ, then perhaps a particle with momentum p could
sometimes behave like a wave with wavelength,

λ =
h

p
.

This is now known as the de Broglie wavelength of a particle.
For macroscopic sized particles that we encounter in everyday life, the de

Broglie wavelength is extremely small, and so we do not notice the wave-like
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aspect of such particles. For example, for ball of mass m = 0.2 kg moving
with a speed v = 15 m/s, the de Broglie wavelength is,

λ =
h

mv
=

6.6× 10−34 J · s
(0.2 kg)(15 m/s)

= 2.2× 10−24 m

This is much small than even the radius of the atomic nucleus!
On the other hand, for particles on the atomic scale, the de Broglie

wavelength can be comparable to the scales of interest. For example, the
typical size of an atom is about 10−10 m. Consider an electron which orbits
the at this radius r = 10−10 m. For an atom with nuclear charge Q = Ze,
the electron’s velocity is given by Eq. (2), which then gives for the de Broglie
wavelength,

λ =
h

mev
=

h

me

√
4πε0rme

Ze2
=

√
4πrε0h2

Ze2me

λ =

√
4π
Z

√
(10−10 m)(8.85× 10−12 C2/Nm2)(6.626× 10−34 Js)2

(1.602× 10−19 C)2(9.11× 10−31 kg)

λ =

√
4π
Z

√
(10−10 m)(1.66× 10−10 m) =

4.57× 10−10 m√
Z

We thus see that in this case the de Broglie wavelength is the same size as
the electron’s orbit! The wave-like aspects of the electron should therefore
be important at this atomic size scale.

In general, whenever the de Broglie wavelength of a particle is very
much smaller than other lengths that enter the physical problem, one will
not see any of the wave-like nature of the particle. Only when the de Broglie
wavelength of a particle is comparable in size to other lengths in the physical
problem will the wave-like nature of the particle make itself known!

3.3 The Bohr model of the atom

The idea of the de Broglie wavelength now gives us a means to explain
some of the puzzling behaviors of atoms that is in contradiction to classical
physics. This leads to what is known as the Bohr model of the atom. Niels
Bohr actually developed this model in 1912-13, before de Broglie proposed
his idea about the wave-like nature of particles. However de Broglie’s later
re-explanation of Bohr’s model is more physically appealing, so we will follow
that approach.
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We have seen that above that, according to de Broglie, particles have a
wave-like aspect to them with wavelength related to particle momentum by,

λ =
h

p
=

h

mv
.

We have seen that for an electron orbit around the atomic nucleus, the de
Broglie wavelength of the electron is of comparable size to the radius of the
orbit. It is thus necessary to consider the wave-like nature of the electron in
treating its behavior within the atom. De Broglie argued that in order for
an electron orbit at radius r to be stable, there must be an integer number of
de Broglie wavelengths going around the circumference of the orbit. In not,
than as the wave traveled around the circumference of the orbit, it would
return to its starting position out of phase with itself and destructively
interfere with itself. Only if there were an integer number of wavelengths
around the circumference could one come back in phase and set up a stable
standing wave.
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De Broglie’s condition is,

2πr = nλ = n
h

p
= n

h

mev
, n a positive integer

From Eq, (2) we know the relation between the speed v and the radius r
of an orbiting electron. Considering the specific case of hydrogen where the
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nuclear charge Q = e is the same magnitude as that of the electron, and
substituting in for v above, gives,

2πr = n
h

me

√
4πε0rme

e2
⇒ 4π2r2 = n2h

24πε0r
mee2

⇒ r = n2

(
h2ε0
πmee2

)
= n2a0

where,

a0 ≡
h2ε0
πmee2

=
(6.626× 10−34 Js)2(8.85× 10−12 C2/Nm2)
(3.14)(9.11× 10−31 kg)(1.602× 10−19 C)2

= 0.529×10−10 m

is called the Bohr radius.
The wave picture of the electron thus says that the electron is not stable

in an orbit of general radius r, but only stable for orbits of certain specific
discrete radii,

rn = n2a0 , n = 1, 2, 3, . . .

Similarly, the energy of the electron in orbit around the nucleus cannot
be any general value, but only those discrete values that correspond to the
above radii. For hydrogen with nuclear charge Q = e, Eq. (2) gives,

En = − e2

8πε0rn
.

using the values of rn determined above then gives,

En = −
(

e2

8πε0

)(
πmee

2

h2ε0

1
n2

)
= −

(
e4me

8ε20h2

)
1
n2

⇒ En = −E0

n2

where

E0 =
(1.602× 10−19 C)4(9.11× 10−31 kg)

8(8.85× 10−12 C2/Nm2)2(6.626× 10−34 Js)2
= 2.18× 10−18 J

In dealing with problems in atomic physics, it is usually the custom to
express energy in units of electron volts rather than Joules. One electron
volt (1eV) is the energy acquired by an electron in passing through one volt
of potential. Thus,

1 eV = e(1 V) = (1.602× 10−19 C)(1 V) = 1.602× 10−19 J
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In units of eV, Planck’s constant is,

h = (6.626× 10−34 J · s) (1 eV)
(1.602× 10−19 J)

= 4.136× 10−15 eV · s

and,

E0 = 2.18× 10−18 J
(1 eV)

(1.602× 10−19 J)
= 13.6 eV

With this we can write for the allowed energy levels of the hydrogen
atom,

En = −13.6
n2

eV , n = 1, 2, 3, . . .

If the electron in the hydrogen atom can only be in an orbit with one
of the discrete energies En, then when an excited atom decays to a lower
energy state, its change in energy is also a discrete amount. Specifically, if
the atom in the state with energy En decays to the state with energy En′ ,
the loss in energy is ∆E = En − En′ . If this loss in energy occurs as a
photon emitted by the atom, that photon will have energy ∆E and hence a
frequency f given by,

hf = ∆E = En − En′ = −E0

(
1
n2
− 1
n′2

)
The wavelength λ of the emitted photon is then given by,

1
λ

=
f

c
=

∆E
hc

=
E0

hc

(
1
n′2
− 1
n2

)
(5)

where

E0

hc
=

13.6 eV
(4.136× 10−15 eV · s)(3× 108 m/s)

= 1.096× 107 m−1

But this is just the Rydberg! So R = E0/(hc) and Eq. (5) gives the ex-
act empirically observed formula for the spectal lines of hydrogen (i.e. the
Balmer, Lyman and Paschen series).

So de Broglie’s wave idea explains the discrete spectral lines of hydrogen
and produces the exactly correct formula that predicts the wavelengths of
these spectral lines!

It also, in a sense, provides an answer to the stability of the atom, and
why the electron does not spiral into the nucleus. If the only allowed radii
for electron orbits are rn = n2a0, and these have energies En = −E0/n

2,
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then the state with n = 1 orbits with the smallest radius a0 and has the
lowest energy, E0 = −13.6 eV. This lowest energy state is called the ground
state. States with n > 1 are called the excited states. The electron cannot
spiral into the nucleus because the wave-like nature of the electron does not
allow it to be in an orbit with radius less than a0.

This does not really explain the physical reason why an accelerating elec-
tron in orbit around the nucleus does not radiate electromagnetic waves as
Maxwell’s theory says it should. All we can say, at this stage of under-
standing, is that, once we have to treat the electron as a wave and not as
a point particle, all bets based on classical physics about what should hap-
pen are off! As a hint of what is going on, you may think of the following:
when the electron is in orbit with an integral number of wavelengths around
the orbit circumference, we can thing that the electron is a standing wave.
A standing wave is not traveling anywhere, so perhaps the electron is not
accelerating after all. The correct, self consistent, understanding of what
is really happening requires the development of an entirely new theory of
particles and how they move under the influence of forces. This new theory,
which replaces Newtonian mechanics, should agree with Newton when we
are dealing with phenomena that happen on the macroscopic size scales of
everyday life, but be drastically different when it comes to describing phe-
nomena at the atomic size scales. This new theory, developed by Heisenberg
and Schrodinger around 1925, is known as Quantum Mechanics!

Note, de Broglie’s condition 2πr = nλ = nh/p can be rewritten as
rp = nh/(2π). For circular orbital motion, rp is just the angular momentum
L. De Broglie’s condition can therefore be stated as,

L = n~, where ~ ≡ h

2π

i.e. angular momentum is quantized in integer multiples of the basic unit
~ = h/(2π). It was starting from the ad hoc assumption of quantization of
angular momentum that Bohr developed his model of the atom even before
de Broglie had presented his ideas about the wave-like nature of particles.
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