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(The final integral, from the divergence theorem, is over the volume of the sphere, where by assumption the

Laplacian of V is zero.) So Vave is independent of R—the same for all spheres, regardless of their radius—and

hence (taking the limit as R→ 0), Vave(R) = V (0). qed

Problem 3.38 At a point (x, y) on the plane the field of q is
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so its z component is − q
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. Meanwhile, the field of σ (just below the surface) is − σ
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,

(Eq. 2.17). (Of course, this is for a uniform surface charge, but as long as we are infinitesimally far away σ is

effectively uniform.) The total field inside the conductor is zero, so
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Problem 3.39
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This integral can also be integrated directly. Let x = u2; dx = 2u du.
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Problem 3.35
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When a → ∞ (i.e. a % x) only the
1
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term survives: F = −
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! (same as for only one plane—

Eq. 3.12). When x = a/2,

F =
1

4πε0

q2

4

{[
1

(a/2)2
+

1

(3a/2)2
+

1

(5a/2)2
+ . . .

]

−
[

1

(a/2)2
+

1

(3a/2)2
+

1

(5a/2)2
+ . . .

]}

= 0. !

Problem 3.36

Following Prob. 2.47, we place image line charges −λ at y = b and +λ at y = −b (here y is the horizontal
axis, z vertical).
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The image configuration is shown in the figure; the positive image charge forces cancel in pairs. The net

force of the negative image charges is:
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Problem 3.40
Following Prob. 2.52, we place image line charges −λ at y = b and +λ at y = −b (here y is the horizontal

axis, z vertical).
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Steve
these terms are from (-) charges to the right of q
they pull q to the right, so terms are positive

Steve


Steve
these terms are from (-) charges to the left of q
they pull q to the left, so terms are negative
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Steve
tick marks on line represent spacings of distance a

Steve
to solve the problem, one puts down image charges of q, then one needs to put down image charges of the image charges!
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Steve
the resulting pattern is periodic with a period 2a as in the diagram below 
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Steve
don't try to do the sum for the case of general x.  Just consider the special cases a -> infinity, and x=a/2
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