

to solve the problem, one puts down image charges of q, then one needs to put down image charges of the image charges! the resulting pattern is periodic with a period 2a as in the diagram below

The image configuration is shown in the figure; the positive image charge forces cancel in pairs. The net force of the negative image charges is:

of t	ne negative image charges is:		
<i>F</i> =	$= \frac{1}{4\pi\epsilon_0} q^2 \left\{ \frac{1}{\left[2(a-x)\right]^2} + \frac{1}{\left[2a+2(a-x)\right]^2} + \frac{1}{\left[2a+$	$\frac{1}{\left[4a+2(a-x)\right]^2}+\dots$	these terms are from (-) charges to the right of q they pull q to the right, so terms are positive
	$-\frac{1}{(2x)^2} - \frac{1}{(2a+2x)^2} - \frac{1}{(4a+2x)^2} - \dots \bigg\}$, t	hese terms are from (-) charges to the left of q they pull q to the left, so terms are negative
=	$= \frac{1}{1} \frac{q^2}{r^2} \left\{ \frac{1}{(1-r^2)^2} + 1$	$-\frac{1}{2}$ +] $-\left[\frac{1}{2}$ + $\frac{1}{2}$	$\frac{1}{1} + \frac{1}{(2 - 1)^2} + \dots \Big] \Big\}.$
	$4\pi\epsilon_0 4 ((a-x)^2 (2a-x)^2 (3a-x)^2)$	$(x)^2 \qquad] \qquad [x^2 (a)$	$(2a+x)^2$ $(2a+x)^2$

When $a \to \infty$ (i.e. $a \gg x$) only the $\frac{1}{x^2}$ term survives: $F = -\frac{1}{4\pi\epsilon_0} \frac{q^2}{(2x)^2} \checkmark$ (same as for only one plane—Eq. 3.12). When x = a/2,

$$F = \frac{1}{4\pi\epsilon_0} \frac{q^2}{4} \left\{ \left[\frac{1}{(a/2)^2} + \frac{1}{(3a/2)^2} + \frac{1}{(5a/2)^2} + \dots \right] - \left[\frac{1}{(a/2)^2} + \frac{1}{(3a/2)^2} + \frac{1}{(5a/2)^2} + \dots \right] \right\} = 0. \checkmark$$

don't try to do the sum for the case of general x. Just consider the special cases a -> infinity, and x=a/2