Maxwell's Ego in putenteol form
$\vec{\nabla} \cdot \bar{B}=0 \Rightarrow \bar{B}=\vec{\nabla} \times \bar{A}$ remains tue with dynamics

$$
\begin{aligned}
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}=-\frac{\partial}{\partial t}(\vec{V} \times \vec{A}) \\
& \vec{\nabla} \times\left(\vec{E}+\frac{\partial \vec{A}}{\partial t}\right)=0 \Rightarrow \vec{E}+\frac{\partial \vec{A}}{\partial t}=-\vec{\nabla} V \\
& \vec{E}=-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t}, \\
& \vec{\nabla} \cdot \vec{E}=\rho / \varepsilon_{0} \Rightarrow \vec{V}^{2} V+\frac{\partial}{\partial t}(\vec{\nabla} \cdot \vec{A})=-\rho / \varepsilon_{0} \quad(t) \\
& \vec{\nabla} \times \vec{B}=\mu_{0} \vec{f}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t} \Rightarrow \underbrace{\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\nabla_{0} \vec{A}}_{\vec{\nabla} \times(\vec{\nabla} \times \vec{A})} \vec{j}-\mu_{0} \varepsilon_{0} \vec{\nabla} \frac{\partial V}{\partial t}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{A}}{\partial t^{2}} \\
& \Rightarrow\left(\nabla^{2} \vec{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{A}}{\partial t^{2}}\right)-\vec{\nabla}\left(\vec{\nabla} \cdot \vec{A}+\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial t}\right)=-\mu_{0} \vec{f}(x)
\end{aligned}
$$

Gauge transformations: if $\vec{A}^{\prime}=\vec{A}+\vec{\nabla} \lambda$ then $\vec{\nabla} \times \vec{A}^{\prime}=\vec{V} \times \vec{A}=\vec{B}$
\vec{A}^{\prime} grues same \vec{B} as \vec{A},
But if we change $\vec{A} \rightarrow \vec{A}^{\prime}$, we also have to change $V \rightarrow V^{\prime}$ so \vec{E} stays same.

$$
\begin{aligned}
\vec{E} & =-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t}=-\vec{\nabla} V-\frac{\partial \vec{A}^{\prime}}{\partial t}+\vec{\nabla}\left(\frac{\partial \lambda}{\partial t}\right) \\
& =-\vec{\nabla}\left(V-\frac{\partial \lambda}{\partial t}\right)-\frac{\partial \vec{A}^{\prime}}{\partial t} \quad \text { If let } V=V-\frac{\partial \lambda}{\partial t} \text { then } \\
\vec{E} & =-\vec{\nabla} V^{\prime}-\frac{\partial \vec{A}^{\prime}}{\partial t} \quad \text { has some form as before }
\end{aligned}
$$

\Rightarrow the thousfomation $\vec{A}^{\prime}=\vec{A}+\vec{\nabla} \lambda \quad$ called a gauge"

$$
\left.V^{\prime}=V-\frac{\partial \lambda}{\partial t}\right\}^{\prime} \text { transfonctan }
$$

for any scalar function $\vec{A}(\vec{r}, t)$, leaves \vec{B} and \vec{E} unchayad. ie:

$$
\begin{aligned}
& \vec{B}=\vec{\nabla} \times \vec{A}=\vec{\nabla} \times \vec{A}^{\prime} \\
& \vec{E}=-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t}=-\vec{\nabla} V^{\prime}-\frac{\partial \vec{A}^{\prime}}{\partial t}
\end{aligned}
$$

We car thenfone use this freedom, gavin by the oubstrang A, to make $\vec{\nabla} \cdot \vec{A}$ equal to some desired gudinit, which will suglify the equations (*) (**) Mating such a choice for $\vec{O} \vec{A}$ is called "fixing" the gauge.

1) Coulomb- gage: sane as used in magretostaties.

Choose $\vec{\nabla}: \vec{A}=0$
(If had some \vec{A}^{\prime} such that $\vec{\nabla} \times \vec{A}^{\prime}=\vec{B}$, but $\vec{\nabla} \cdot \vec{A} \prime \neq 0$, then we could always fond a $A(\vec{r}, t)$ swat that $\vec{A}=\vec{A}^{\prime}+\vec{\nabla} A$ doe satisfy $\vec{\nabla} \cdot \vec{A}-0$ see Gutfiths sec 5.4 .1
$(*) \rightarrow \nabla^{2} V=-\rho / \varepsilon_{0}$
solution is $V(\vec{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int d^{3} r^{\prime} \frac{\rho(\vec{r}, t)}{\left|\vec{r}-\vec{r}^{\prime}\right| \mid}$
sure as in electrostatics
but unite states, wed also to prow \vec{A} in order to get \vec{E}.

$$
\begin{aligned}
(* *) \Rightarrow\left(\nabla^{2} \vec{f}-\mu_{0} \varepsilon_{0} \frac{\partial \vec{A}}{\partial t^{2}}\right) & =-\mu_{0} \vec{j}+\mu_{0} \varepsilon_{0} \vec{\nabla}\left(\frac{\partial V}{\partial t}\right) \\
& \left.=-\mu_{0} \vec{f}+\frac{\mu_{0} \varepsilon_{0}}{4 \pi \varepsilon_{0}} \vec{V}\right] d^{3} r^{\prime}\left(+\frac{\partial \rho\left(r^{\prime}, t\right)}{\partial t}\right) \frac{1}{\left[\vec{r}-\vec{r}^{\prime} \mid\right.} \\
& =-\mu_{0} \vec{j}+\frac{\mu_{0} \varepsilon_{0}}{4 \pi \varepsilon_{0}} \vec{\nabla} \int d^{3} r^{\prime} \frac{\left[-\vec{\nabla}^{\prime} \cdot \vec{j}\left(r^{\prime}, t\right)\right]}{\left.\mid \vec{r}-\vec{r}^{\prime}\right)}
\end{aligned}
$$

\vec{A} and \vec{j} solve an "intergal-differential" equation.
2) Lorentz gouge: choose $\vec{V} \cdot \vec{A}=-\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial t}$
\qquad (can clusuys fid $\lambda(r, t)$ such that thin will be true) see prob 10.6 for proof
in livents gange: $(*) \Rightarrow \nabla^{2} V-\mu_{0} \varepsilon_{0} \frac{\partial^{2} V}{\partial t^{2}}=-\rho / \varepsilon_{0}$

$$
(* *) \Rightarrow \nabla^{2} \vec{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{A}}{\partial t^{2}}=-\mu_{0} \vec{f}
$$

equations for V and \vec{A} have the save form
d'Alambertion ogerator $\square^{2} \equiv \nabla^{2}-\mu_{0} \varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}}$ wave equation

$$
\left\{\begin{array}{l}
\square^{2} V=-\rho / \varepsilon_{0} \\
\square^{2} \vec{A}=-\mu_{0} \vec{j}
\end{array}\right.
$$

hensaforth we will wae lonestz gasege for mon-static frobbuns
Loventy foree

$$
\begin{aligned}
\vec{F}=\frac{d \vec{p}}{d t} & =q(\vec{E}+\vec{v} \times \vec{B})=q(-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t}+\underbrace{\vec{v} \times(\vec{\nabla} \times \vec{A})}) \\
& \left.=-q(\vec{V} \cdot \vec{A})-(\vec{v} \cdot \vec{\nabla}) \vec{A}+\frac{\partial \vec{A}}{\partial t}+(\vec{v} \cdot \vec{\nabla}) \vec{A}-\vec{\nabla}(\vec{v} \cdot \vec{A})\right) \\
& =-q\left(\frac{\partial \vec{A}}{\partial t}+(\vec{v} \cdot \vec{\nabla}) \vec{A}+\vec{\nabla}(V-\vec{v} \cdot \vec{A})\right)
\end{aligned}
$$

$\frac{\partial \vec{A}}{\partial t}+(\vec{v} \cdot \vec{\nabla}) \vec{A}=\frac{d A}{d t} \quad$ convective derivature

$$
\begin{aligned}
\frac{d}{d t}(\vec{A}(\vec{r}(t), t)) & =\frac{\partial \vec{A}}{\partial t}+\frac{\partial \vec{A}}{\partial x} \frac{d x}{d t}+\frac{\partial \vec{A}}{\partial y} \frac{d y}{\partial t}+\frac{\partial \vec{A}}{\partial z} \frac{d z}{\partial t} \\
& =\frac{\partial \vec{A}}{\partial t}+(\vec{v} \cdot \vec{\nabla}) \vec{A}
\end{aligned}
$$

change in \vec{A} as seen by a partich moving with velocity it

$$
\begin{aligned}
& \Rightarrow \frac{d \vec{p}}{d t}=-q\left(\frac{d \vec{A}}{d t}+\vec{\nabla}(\vec{V}-\vec{v} \cdot \vec{A})\right) \\
& \frac{d}{d t}(\underbrace{\vec{p}+\text { can }^{p}+\vec{A}}_{\text {"amonical" momentum }})=-\vec{\nabla}(\underbrace{q V-q \vec{v} \cdot \vec{A}}_{\text {"potential" }}) \\
& \frac{d \vec{p}_{\text {ran }}}{d t}=-\vec{\nabla} U
\end{aligned}
$$

Note: in Coulomb gauge we had

$$
\nabla^{2} \vec{A}-\frac{b}{4} \mu_{0} \varepsilon_{0} \frac{\partial^{3} \vec{A}}{\partial t}=-\mu_{0} \vec{f}+\frac{\mu_{0}}{4 \pi} \vec{\nabla} \int \alpha^{3} r^{\prime}\left[-\vec{\nabla}!\vec{f}\left(r^{\prime}, t\right)\right]
$$ look at right hark side. see Ascends B Guffth From Helmhotty Theorem Corolloy, sow that an vector function $\vec{F}(\vec{r})$ which $\rightarrow 0$ suffecueith rapidly as $r \rightarrow \infty$, can be witter as:

$$
(B \cdot 10)
$$

Now comparing above, we see

$$
\begin{aligned}
& \text { Now comparing above, we see } \\
& \begin{aligned}
\nabla^{2} \vec{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{A}}{\partial t^{2}} & =-\mu_{0} \vec{f}+\mu_{0} \vec{f} \text { Lonsitudual put of } \vec{y} \\
E^{2} \vec{A} \quad & =-\mu_{0} \vec{f}_{T} \mid \leftarrow \text { transverse put of } \vec{f}
\end{aligned}
\end{aligned}
$$

in Coulomb gauge, the source for \vec{A} is the transverse port, or devergenceless port, of the current.

