Plane EM waves in a vacuum

\[
\nabla \cdot \vec{E} = 0 \quad \nabla \cdot \vec{B} = 0 \\
\n\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\
\n\n\nabla \times \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}
\]

Assume solutions of form \[\begin{aligned}
\vec{E} &= \vec{E}_0 \, e^{i(\vec{k} \cdot \vec{r} - \omega t)} \\
\vec{B} &= \vec{B}_0 \, e^{i(\vec{k} \cdot \vec{r} - \omega t)}
\end{aligned} \]

\[\omega = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = c k \]

1) \(i \vec{k} \cdot \vec{E}_0 = 0 \)
2) \(i \vec{k} \cdot \vec{B}_0 = 0 \)
3) \(i \vec{k} \times \vec{E}_0 = \omega \vec{B}_0 \)
4) \(i \vec{k} \times \vec{B}_0 = \mu_0 \varepsilon_0 (-i \omega) \vec{E}_0 \)

(1) and (3) \(\Rightarrow \) EM waves are transverse polarized. \(\vec{E}_0 \) and \(\vec{B}_0 \), both \(\perp \) to \(\vec{k} \).

2) \(\vec{B}_0 = \frac{k}{\omega} \vec{k} \times \vec{E}_0 = \frac{1}{c} \vec{k} \times \vec{E}_0 \Rightarrow \vec{B}_0 \perp \vec{E}_0 \)

\[|\vec{B}_0| = \frac{1}{c} |\vec{E}_0| \]

\[\equiv \text{very important factor } \frac{1}{c}! \]

Since Lorentz force is \(\vec{F} = q (\vec{E} + \vec{v} \times \vec{B}) \), the force on a charged particle due to an electromagnetic wave is predominantly from the electric field \(\vec{E} \). The force due to the magnetic field \(\vec{v} \times \vec{B}_0 = \left(\frac{v}{c} \right) \vec{E}_0 \) is reduced by a factor \(\left(\frac{v}{c} \right) \ll 1 \) unless charge is moving relativistically fast.
Energy + momentum in EM wave:

\[E(\mathbf{r},t) = E_0 \cos(k_y y - wt) \mathbf{\hat{x}} \]

\[B(\mathbf{r},t) = \frac{1}{2} \mu_0 E_0 \cos(k_y y - wt) \mathbf{\hat{y}} \]

Energy density

\[U_{EB} = \frac{E_0^2}{2} + \frac{1}{2} \mu_0 B^2 = \frac{E_0^2}{2} \cos^2(k_y y - wt) + \frac{1}{2 \mu_0 c^2} E_0^2 \cos^2(k_y y - wt) \]

\[= \frac{1}{2} E_0^2 \cos^2(k_y y - wt) \left[\frac{1}{\varepsilon_0} + \frac{\mu_0}{\varepsilon_0} \right] \]

\[\leq \frac{1}{\mu_0 \varepsilon_0} \frac{E_0^2}{\varepsilon_0} \]

\[U_{EB} = E_0^2 \cos^2(k_y y - wt) \]

Energy current

\[\mathbf{\hat{s}} = \frac{1}{\mu_0} (\mathbf{\hat{E}} \times \mathbf{\hat{B}}) \]

\[= \frac{1}{\mu_0 c} E_0^2 \cos^2(k_y y - wt) (\mathbf{\hat{x}} \times \mathbf{\hat{y}}) = c E_0^2 \cos^2(k_y y - wt) \mathbf{\hat{y}} \]

\[\mathbf{\hat{s}} = c U_{EB} \mathbf{\hat{y}} \]

Momentum density

\[\mathbf{\mathbf{\hat{p}_{EB}}} = \frac{1}{c^2} \mathbf{\hat{s}} = \frac{U_{EB}}{c} \mathbf{\hat{s}} \]

\[\Rightarrow U_{EB} = c |\mathbf{\mathbf{\hat{p}_{EB}}}| \quad \text{- energy-momentum relation of photons} \]

Since for visible light \(A \sim 5 \times 10^{-7} \text{ m} \sim 5000 \text{ Å} \)

\[T = \frac{A}{c} = \frac{5 \times 10^{-7}}{3 \times 10^8} \text{ sec} = 1.6 \times 10^{-15} \text{ sec} \]

For most classical measurements, on macroscopic scale,
the measurement will average over many oscillations of the wave. Therefore one is interested in averages

\[\langle U_{eb} \rangle = \frac{1}{T} \int_{0}^{T} U_{eb} \, dt \]

average over one period of oscillation

\[= \frac{1}{2} \frac{E_0 E_0^2}{c} \int_{0}^{T} \cos^2(kz - \omega t) \, dt \]

average of \(\cos^2(\phi) \) over one period is \(\frac{1}{2} \)

\[\langle U_{eb} \rangle = \frac{1}{2} E_0 E_0^2 \]

\[\langle S \rangle = c \langle U_{eb} \rangle \]

\[\langle P_{eb} \rangle = \frac{1}{c} \langle U_{eb} \rangle \]

\[\text{intensity} = \text{average power per area transmitted by wave} \]

\[I = \langle S \rangle \hat{n} \]

\[\text{normal to surface through which energy transmuted} \]

\[I = |\langle S \rangle| \]

\[\text{magnitude of energy current} \]

\[\sim \text{amplitude of field}^2 \]

\[\langle S \rangle \cdot \hat{n} = \text{average power per area transmitted through surface with normal } \hat{n} \]
Maxwell's Equations

\[\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \frac{\partial \rho}{\partial t} \]

\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]

\[\nabla \cdot \mathbf{B} = 0 \]

\[\nabla \times \mathbf{B} = \mu_0 \mathbf{J}_{\text{tot}} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \]

want to write \(\mathbf{J}_{\text{tot}} = \mathbf{J}_{\text{free}} + \mathbf{J}_{\text{b}} \)

in statics: \(\mathbf{J}_{\text{b}} = -\nabla \cdot \mathbf{P} \)

\(\mathbf{J}_{\text{b}} = \nabla \times \mathbf{M} \)

in dynamics: conservation of bound charge \(\Rightarrow \nabla \cdot \mathbf{J}_{\text{b}} = -\frac{\partial \rho_{\text{b}}}{\partial t} \)

\[\nabla \cdot (\nabla \times \mathbf{M}) = +\frac{\partial}{\partial t} (\nabla \cdot \mathbf{P}) \]

\[\Rightarrow \frac{\partial}{\partial t} (\nabla \cdot \mathbf{P}) \]

something must be missing! The bound charge arising from \(\mathbf{M} \) must not be all the bound current. There must be bound current arising from a time-varying \(\mathbf{P} \).

bound current from polarization, \(\mathbf{J}_p \) must satisfy

\[\nabla \cdot \mathbf{J}_p = -\frac{\partial \rho_{\text{b}}}{\partial t} = \frac{1}{\varepsilon_0} \frac{\partial \mathbf{P}}{\partial t} = \nabla \cdot \left(\frac{\partial \mathbf{P}}{\partial t} \right) \]

\[\Rightarrow \mathbf{J}_p = \frac{\partial \mathbf{P}}{\partial t} \]

\[\Rightarrow \mathbf{J}_b = \nabla \times \mathbf{M} + \frac{\partial \mathbf{P}}{\partial t} \]
\[\vec{\nabla} \cdot \vec{E} = \frac{1}{\varepsilon_0} (\vec{P} - \vec{\nabla} \cdot \vec{P}) \]
\[\vec{\nabla} \cdot \vec{B} = 0 \]

\[\vec{\nabla} \times \vec{B} = \mu_0 (\vec{J} + \vec{\nabla} \times \vec{M} + \frac{\partial \vec{P}}{\partial t}) + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \]
\[\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

Define \[\vec{D} = \varepsilon_0 \vec{E} + \vec{P} \]
\[\vec{H} = \frac{\mu_0}{\sigma} \vec{B} - \vec{M} \]

\[\Rightarrow \quad \vec{\nabla} \cdot \vec{D} = \rho \]
\[\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \]

Inhomogeneous \quad \text{field}

\[\vec{\nabla} \cdot \vec{B} = 0 \]
\[\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

Homogeneous \quad \text{field}

For linear materials, \[\vec{D} = \varepsilon \vec{E} \]
\[\vec{H} = \frac{\mu_0}{\mu} \vec{B} \]
\{ closes \quad above \quad equations. \}
If we had \(\mathbf{D}(r,t) = \varepsilon \mathbf{E}(r,t) \)
\[\mathbf{H}(r,t) = \frac{1}{\mu} \mathbf{B}(r,t) \]

then Maxwell's equations, in absence of free charge and free current, would be

\[
\begin{align*}
\varepsilon \nabla \cdot \mathbf{E} &= 0 \\
\nabla \times \mathbf{B} &= \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t}
\end{align*}
\]

Everything would be the same except \(\varepsilon_0 \mu_0 \rightarrow \varepsilon \mu > \varepsilon_0 \mu_0 \).

The speed of EM waves in the material would be

\[
\nu = \frac{1}{\sqrt{\varepsilon \mu}} < c \quad \text{index of refraction}
\]

would have \(|\mathbf{B}| = \frac{1}{\mu} |\mathbf{E}| \)

In general however, things are much more complicated for time varying response.

Consider model for polarization of a neutral atom, that we saw last semester.

If displace center of electron cloud from origin by distance \(R \), then there is a restoring force

\[
\mathbf{F}_{\text{rest}} = -\frac{e^2}{4\pi\varepsilon_0 R^3} \mathbf{r} = -m_0 \omega_0^2 \mathbf{r}
\]

(electric field from electron cloud increases linearly with distance from origin)