Having found \vec{E} ad \vec{B} we can now compute the power radiated by the accelerating charge. we had

$$
\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q R}{[\vec{R} \cdot(c \hat{R}-\vec{v})]^{3}}\left\{(c \hat{R}-\vec{v})\left(c^{2}-v^{3}\right)+\vec{R} \times[(c \hat{R}-\vec{v}) \times \vec{a}]\right\}
$$

$$
\vec{B}=\frac{\hat{R}}{C} \times \vec{E}
$$

A is untava from churgsipostion at the retarded these to the observers position
Carsier fist the suggest case where we ane in the mistartaneous vest pane E as the charge, where $\stackrel{\ddot{v}}{\vec{v}}=0$. Then we have

$$
\begin{aligned}
\dot{\vec{E}} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{q \hat{R}}{c^{3} \vec{R}^{3}}\left\{c^{3} \hat{R}+c \stackrel{0}{\vec{R}} \times(\dot{\hat{R}} \times \stackrel{0}{\vec{a}})\right\} \\
& =\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{0^{2}}\left\{\hat{R}+\frac{1}{c^{2}} \stackrel{\rightharpoonup}{R} \times(\hat{R} \times \dot{\vec{a}})\right\}
\end{aligned}
$$

circles above quantities indicates frame k°

Len jut gives the static coulees field
ne radiation pout, $1 R^{2}$
this goes the radiated fields ~ $1 / R$
Let's consider oily the radution pant, $\sim 1 / k^{2}$

$$
\begin{aligned}
& \dot{\vec{E}}^{\text {rad }}=\frac{q}{4 \pi \varepsilon_{0} c^{2}} \frac{1}{\hat{R}} \hat{R} \times(\hat{\hat{R}} \times \dot{\vec{a}})=\frac{\mu_{0}}{4 \pi} \frac{\tilde{\dot{R}}}{\hat{R}} \hat{\hat{R}} \times\left(\hat{\hat{R}} \times \frac{\dot{a}}{}\right) \quad \text { usia } \mu_{0} \varepsilon_{0}=1 / c^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{\mu_{0}}{4 \pi c} \frac{q}{R}\left(\hat{R} \times \frac{\dot{a}}{\hat{a}}\right) \\
& \stackrel{0}{S}=\frac{1}{\mu_{0}} \stackrel{\rightharpoonup}{E}^{\text {rad }} \times \dot{\vec{B}}^{\text {rad }} \\
& =\frac{-1}{\mu_{0}}\left(\frac{\mu_{0} q}{4 \pi}\right)\left(\frac{\mu_{0} q}{4 \pi c}\right) \frac{1}{R^{2}}\left\{\left[\hat{R} \times\left(\hat{\hat{R}} \times \frac{0}{a}\right)\right] \times\left[\hat{R} \times \frac{0}{\vec{a}}\right]\right\}
\end{aligned}
$$

$$
=-\hat{R}\left(\dot{a}^{2}-\left(\hat{R} \cdot \frac{\theta}{a}\right)^{2}\right)
$$

let O be the ingle between \hat{a}_{0} and $\hat{\beta}$. Then

$$
\left(\frac{0}{R} \cdot \frac{\vec{a}}{a}\right)^{2}=a^{2} \cos ^{2} \theta
$$

So

$$
=-\hat{R} \dot{a}^{2}\left(1-\cos ^{2} \theta\right)=-\hat{R}^{o} \dot{a}^{2} \sin ^{2} \theta
$$

$$
\begin{aligned}
& \dot{\vec{S}}=\frac{\mu_{0}}{(4 \pi)^{2} c} \frac{q^{2}}{\dot{R}^{2}} \dot{\theta}^{2} \sin ^{2} \theta \hat{R} \\
& \frac{d \dot{P}}{d \Omega}=\dot{R}^{2} \frac{0}{\vec{S}} \cdot \hat{R}=\frac{\mu_{0}}{(4 \pi)^{2} c} q^{2} \dot{\theta}^{2} \sin ^{2} \theta
\end{aligned}
$$

sine as we foul larker fun elutrié dipole approx
Total radiated power in frame K is

$$
\begin{aligned}
\dot{P} & =\int d \Omega \frac{d \dot{P}}{d \Omega}=\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta \frac{\mu_{0}}{(4 \pi)^{2} c} q^{2} a^{2} \sin ^{2} \theta \\
& =\frac{\mu_{0}}{(4 \pi)^{2} c} q^{2} a^{2} 2 \pi \int_{0}^{\pi} d \theta \sin ^{3} \theta \\
& =\frac{\mu_{0}}{(4 \pi)^{2} c} q^{2} a^{2} 2 \pi\left(\frac{4}{3}\right)=\frac{1}{4 \pi \varepsilon_{\theta}} \frac{2}{3} \frac{q^{2} a^{2}}{c^{3}} \quad \text { usury } \quad \mu_{0}=\frac{1}{\varepsilon_{0} c^{2}}
\end{aligned}
$$

exactly the sane us Lermor's formula!

$$
\begin{aligned}
& \hat{\hat{R}} \times(\dot{\hat{R}} \times \dot{a})=\dot{\hat{R}}(\hat{R} \cdot \vec{a})-\dot{\vec{a}}(\dot{\hat{R}} \cdot \hat{R})=\dot{\hat{R}}(\dot{\hat{R}} \cdot \vec{a})-\dot{\vec{a}} \\
& \text { So }[\hat{R} \times(\dot{\hat{R}} \times \stackrel{\rightharpoonup}{a})] \times[\hat{\hat{R}} \times \vec{a}]=(\hat{R} \cdot \vec{a}) \hat{R} \times(\hat{R} \times \stackrel{\rightharpoonup}{a})-\dot{\vec{a}} \times(\hat{R} \times \stackrel{\rightharpoonup}{a}) \\
& =(\hat{R} \cdot \dot{\vec{a}})[\dot{\hat{R}}(\hat{R} \cdot \dot{a})-\dot{a}]-\dot{\hat{R}} \dot{a}^{2}+\dot{\vec{a}}(\hat{R} \cdot \dot{\vec{a}}) \\
& =\hat{\hat{R}}(\dot{\hat{R}} \cdot \dot{\vec{a}})^{2}-\frac{\dot{a}}{a}(\hat{R} \cdot \dot{\vec{a}})-\hat{R} \dot{a}^{2}+\dot{\vec{a}}(\hat{R} \cdot \hat{a})
\end{aligned}
$$

So Lormor's formula, whit h we dervied orijuily fran the elective dipole approx, holds exactly in the instantaneous rest frame of the clone where $\stackrel{\stackrel{\rightharpoonup}{v}}{v}=0$
Thin's not supposing since we saw that all the fuegher moments in our multeprile uppronsiou for radiation, ce the magnetic depots, the elutic quadruple, etc, were all of order $\left(\frac{v}{c}\right)^{n} \times$ (electric supple term) ad so vanish as $v \rightarrow 0$.

We can now consider the general cause where $\vec{v} \neq 0$

$$
\left.\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{8 R}{[\vec{R} \cdot(c \hat{R}-\vec{v})]^{3}}\left\{(c \hat{R}-\vec{v})\left(c^{2}-v^{2}\right)+\vec{R} \times[c \hat{R}-\vec{v}) \times \vec{a}\right]\right\}
$$

thin term fie's the veloats field $\sim 1 / R^{2}$ this term ques the radiated field $\sim 1 / R$
we keep only the radiation prot

$$
\begin{align*}
& \vec{E}^{\mathrm{rad}}=\frac{1}{4 \pi \dot{\varepsilon}} \frac{q R^{2}}{R^{3} c^{3}\left[1-\frac{\vec{v}}{c} \cdot \hat{R}\right]^{3}}\{\hat{R} \times[(c \hat{R}-\vec{v}) \times \vec{a}]\} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{c^{2} k^{3} R} \hat{R} \times\left[\left(\hat{R}-\frac{\vec{v}}{c}\right) \times \vec{a}\right] \quad \text { where } k \equiv 1-\frac{\vec{w}}{c} \cdot \hat{R} \\
& \vec{B}^{\text {rad }}=\frac{\hat{R}}{C} \times \vec{E} \text { rad } \\
& \vec{S}=\frac{1}{\mu_{0}} \vec{E}^{\mathrm{rad}} \times \vec{B}^{\text {rad }}=\frac{1}{\mu_{0} C} \vec{E}^{\text {rad }} \times\left(\hat{R} \times \vec{E}^{\text {rad }}\right) \\
& \text { we triple product ale } \\
& =\frac{1}{\mu_{0 c}}\left[\left|\vec{E}^{\text {rad }}\right|^{2} \hat{R}-\vec{E}^{\text {rad }}\left(\hat{R} \cdot \vec{E}^{\text {rad }}\right)\right] \text { but } \hat{R} \cdot \stackrel{E}{E}^{\text {rad }}=0 \\
& =\frac{1}{\mu_{0} c}\left|\vec{E}^{\text {rad }}\right|^{2} \hat{R} \\
& \vec{S}=\frac{1}{\mu_{0} c}\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \frac{q^{2}}{c^{4} k^{4} R^{2}}\left|\hat{R} \times\left[\left(\hat{R}-\frac{v}{c}\right) \times \vec{a}\right]\right|^{2} \hat{R} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{g^{2}}{c^{3} k^{6} R^{2}}\left|\hat{R} \times\left[\left(\hat{R}-\frac{\vec{v}}{c}\right) \times \vec{a}\right]\right|^{2} \hat{R} \quad \text { using } \frac{1}{\mu_{0} \varepsilon_{0}}=c^{2}
\end{align*}
$$

ai general this in a messy expmesswow

$$
\frac{d p}{1 \Omega}=R^{2}\langle\vec{S}\rangle \cdot \hat{R}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{q^{2}}{c^{3} k^{6}}\left|\hat{R} \times\left[\left(\hat{R}-\frac{\tilde{v}}{2}\right) \times \vec{a}\right]\right|^{2}
$$

Consider the special case of loner motion where $\vec{v} \| \vec{a}$
Then

$$
\begin{aligned}
& \hat{R} \times\left[\left(\hat{R}-\frac{\vec{v}}{2}\right) \times \vec{a}\right]=\hat{R} \times(\hat{R} \times \vec{a}) s \\
& =\hat{R}(\hat{R} \cdot \vec{a})-\vec{a} \\
& \begin{aligned}
|\hat{R} \times(\hat{R} \times \vec{a})|^{2} & =|\hat{R}(\hat{R} \cdot \vec{a})-\vec{a}|^{2} \\
& =(\hat{R} \cdot \vec{a})^{2}+a^{2}-2(\hat{R} \cdot \vec{a})^{2} \\
& =a^{2}-(\hat{R} \cdot \vec{a})^{2}
\end{aligned}
\end{aligned}
$$

let θ be the angle between \hat{k} ad \vec{v}, whish is abs the arse between \hat{k} ad \vec{a} since $\vec{v} \| \vec{a}$

$$
\begin{aligned}
& |\hat{R} \times(\hat{k} \times \vec{a})|^{2}=a^{2}-a^{2} \cos ^{2} \theta=a^{2} \sin ^{2} \theta \\
& k=1-\frac{\vec{v}}{c} \cdot \hat{R}=1-\frac{v}{c} \cos \theta
\end{aligned}
$$

$$
\frac{d P}{d \Omega}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{8^{2} a^{2} \sin ^{2} \theta}{c^{3}\left(1-\frac{v}{c} \cos \theta\right)^{6}}
$$

when 若《1 the denominator $\sim 1-6 \frac{\theta}{2} \cos \theta$ goes a very small correction
But now consider $\frac{v}{c} \approx 1$ very relativatic case to what we had form Lormor's monrelativestoc for mola-

Tor θ small we have $\cos \theta=1-\frac{\theta^{2}}{2}, \sin \theta \approx \theta$, the above becomes

$$
\frac{d P}{d \Omega}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{q^{2} a^{2} \theta^{2}}{\left(1-\frac{v}{c}+\frac{v}{c} \frac{\theta^{2}}{2}\right)^{6}} \quad \text { at } \sin l l \theta
$$

To estate the below ar approx

$$
\begin{aligned}
\frac{1}{2}\left(1-\frac{v^{2}}{c^{2}}\right)=\frac{1}{2}\left(1-\frac{v}{c}\right)\left(1+\frac{v}{c}\right) & =\frac{1}{2}\left(1-\frac{v}{c}\right)(2) \text { when } \frac{v}{c} \approx 1 \\
& =1-\frac{v}{c}
\end{aligned}
$$

So $1-\frac{v}{c} \sim \frac{1}{2} r^{2}$

$$
\begin{array}{r}
1-\frac{v}{c}+\frac{v}{c} \hat{\theta}^{2} \simeq \frac{1}{2 \gamma^{2}}+\frac{\theta^{2}}{2} \simeq \frac{1}{2 \gamma^{2}}\left(1+\gamma^{2} \theta^{2}\right) \\
\approx 1
\end{array}
$$

So

$$
\begin{aligned}
\frac{d P}{d S} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{\delta^{2} a^{2}}{c^{3}} \frac{\theta^{2}}{\left[\frac{1}{2 \gamma^{2}}\left(1+\gamma^{2} \theta^{2}\right)\right]^{6}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{8^{2} a^{2}}{c^{3}} 2^{6} \gamma^{1 \theta} \frac{(\gamma \theta)^{2}}{\left[1+(\gamma \theta)^{2}\right]^{6}}
\end{aligned}
$$

Thin vanishes at $\theta=0$, but the maximin coil be ot

$$
\begin{aligned}
& 0=\frac{d}{d \theta}\left\{\frac{(\gamma \theta)^{2}}{\left[1+(\gamma \theta)^{2}\right]^{6}}\right\}=\frac{\left[1+(\gamma \theta)^{2}\right]^{4} 2 \gamma^{2} \theta-(\gamma \theta)^{2} 6\left(1+(\gamma \theta)^{2}\right)^{5} 2 r^{2} \theta}{[1+(\theta)} \\
& {\left[1+(\gamma \theta)^{2}\right]-6(\gamma \theta)^{2}=0} \\
& 1-5(\gamma \theta)^{2}=0 \quad \gamma \theta=\frac{1}{\sqrt{5}} \\
& \theta_{\text {max }}=\frac{1}{\sqrt{5 \gamma}} \\
& \text { for very velativesta motion } \\
& \text { with } \frac{v}{c} \approx 1 \text {, than } \gamma \gg 1
\end{aligned}
$$

Omax close to zero radiation is why strongly collenoted about max Note the factor γ^{10} !

accelerated charge in linear motion

Charged prattele in cuculs moteon'

change moving mi avouler abte of radenit. orbat in y z plame as shown.
what is radeation when arbat is at orcigin at the $t=0$?
Note: radiatcon ennitted by chrje at $z=0$ will wach observer at $(r, 0, \varphi)$ ot tar $t_{1}=a r$.

$$
\frac{d P}{d \Omega}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{q^{2}}{c^{3} k^{6}}\left|\hat{m} \times\left[\left(\hat{m}-\frac{\vec{v}}{c}\right) \times \vec{a}\right]\right|^{2}
$$

where $k=1-\frac{\vec{v}}{c} \cdot \hat{m}$
where $\hat{n}=\hat{r}$ is unit vedor fran charge to observar
(prevocusty we called thi \hat{R}, but since we want do were \hat{R} as the radin of the orbit, we go back to our o(der motation and mee \hat{m})

At $t=0$ then chaje in at the orisin, $\vec{v}=v \hat{y}$,

$$
\begin{aligned}
& \vec{a}=\frac{v^{2}}{k} \hat{z}, \quad \hat{m}=\hat{r}=\sin \theta \cos \varphi \hat{x}+\sin \theta \sin \varphi \hat{y}+\cos \theta \hat{z} \\
& \left(\hat{n}-\frac{\vec{v}}{c}\right) \times \vec{a}=\left(\sin \theta \cos \varphi \hat{x}+\left(\sin \theta \sin \varphi-\frac{v}{c}\right) \hat{y}+\cos \theta \hat{z}\right) \times \frac{v^{2}}{R} \hat{z} \\
& =\frac{v^{2}}{R}\left[-\sin ^{2} \theta \cos \varphi \hat{y}+\left(\sin \theta \sin \varphi-v^{-}\right) \hat{x}\right] \\
& \hat{m} \times\left[\left(\hat{m}-\frac{\vec{v}}{c}\right) \times \vec{a}\right]= \\
& (\sin \theta \cos \varphi \hat{x}+\sin \theta \sin \varphi \hat{y}+\cos \theta \hat{y}) \\
& x \frac{v^{2}}{R}\left(-\sin \theta \cos \varphi \hat{y}+\left(\sin \theta \sin \varphi-\frac{v-}{z}\right) \hat{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{v^{2}}{R}\left(-\sin ^{2} \theta \cos ^{2} \phi \tilde{y}-\sin \theta \sin \varphi\left(\sin \theta \sin \varphi-\frac{v}{c}\right) \hat{z}\right. \\
& \left.+\cos \theta \sin \theta \cos \phi \hat{x}+\cos \theta\left(\sin \theta \sin \varphi-\frac{w}{c}\right) \hat{y}\right) \\
& =\frac{v^{2}}{R}\left[\left(-\sin ^{2} \theta+\frac{v}{c} \sin \theta \sin \varphi\right) \hat{\xi}\right. \\
& +\cos \theta \sin \theta \cos \varphi \hat{x}+\cos \theta(\sin \theta \sin \varphi-\hat{y}) \hat{y}] \\
& \left|\hat{m} \times\left[\left(\hat{m}-\frac{\vec{v}}{c}\right) \times \vec{a}\right]\right|^{2} \\
& =\frac{v^{4}}{\beta^{2}}\left[\sin ^{4} \theta+\left(\frac{v}{c}\right)^{2} \sin ^{2} \theta \sin ^{2} \varphi-2\left(\frac{v}{c}\right) \sin ^{3} \theta \sin \varphi\right. \\
& +\cos ^{2} \theta \sin ^{2} \theta \cos ^{2} \varphi+\cos ^{2} \theta \sin ^{2} \theta \sin ^{2} \varphi \\
& \left.-2\left(\frac{\pi}{c}\right) \cos ^{2} \theta \sin \theta \sin \phi\right] \\
& =\frac{v^{4}}{R^{2}}\left[\begin{array}{c}
\sin ^{4} \theta+\sin ^{2} \theta \cos ^{2} \theta \cos ^{2} \varphi+\cos ^{2} \theta \sin ^{2} \theta \sin ^{2} \varphi \\
-2\left(\frac{v}{c}\right)\left(\sin ^{3} \theta \sin \varphi+\sin \theta \cos ^{2} \theta \sin \varphi\right)
\end{array}\right. \\
& \left.+\left(\frac{N}{C}\right)^{2}\left(\sin ^{2} \theta \sin ^{2} \varphi+\cos ^{2} \theta\right)\right] \\
& =\frac{v^{4}}{R^{2}}\left[\sin ^{2} \theta-2\left(\frac{v}{c}\right) \sin \theta \sin \varphi+\left(\frac{v}{c}\right)^{2}\left(1-\sin ^{2} \theta \cos ^{2} \varphi\right)\right] \\
& \frac{d P}{d \Omega}=\frac{1}{4 \pi \varepsilon} \frac{1}{4 \pi} \frac{E^{2} a^{2}}{c^{3}} \frac{\left[\sin ^{2} \theta-2\left(\frac{v}{c}\right) \sin \theta-\sin \varphi+\left(\frac{2}{c}\right]^{2}\left(1-\sin ^{2} \theta \cos ^{2} \varphi\right)\right]}{\left[1-\frac{v}{c} \sin \theta \sin \varphi\right]^{6}}
\end{aligned}
$$

Note, in geneal we have both θ ad a dependence to $\frac{d A}{d S}$ Note $\frac{v^{4}}{R^{2}}=a^{2}$

Speuil cases:
(1) Radution wto the $x 3$ plame - pengendicide do plave of ankit $\varphi=0 \Rightarrow \sin \varphi=0, \cos \varphi=1$

$$
\begin{aligned}
\frac{d P}{d \Omega} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{q^{2} a^{2}}{c^{3}}\left[\sin ^{2} \theta+\left(\frac{y}{c}\right)^{2}\left(1-\sin ^{2} \theta\right)\right] \\
& =\frac{1}{4 \pi \varepsilon_{2}} \frac{1}{4 \pi} \frac{q^{2} a^{2}}{c^{3}}\left[\sin ^{2} \theta+\left(\frac{\pi}{c}\right)^{2} \cos ^{2} \theta\right]
\end{aligned}
$$

In x z plave witux<0, $\varphi=\pi \Rightarrow \sin \varphi=0, \cos \varphi=-1$

$$
\frac{d p}{d \Omega}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{B^{2} a^{2}}{c^{3}}\left[\sin ^{2} \theta+\left(\frac{v^{2}}{c}\right)^{2}\left(1-\sin ^{2} \theta\right)\right] \text { same as } x \geq 0
$$

(2) $\frac{\operatorname{in} y z \text { plane }}{y>0}, \varphi=\frac{\pi}{2} \Rightarrow \sin \varphi=1, \cos \varphi=0$

$$
\left.\begin{array}{rl}
\frac{d P}{d \Omega} & =\frac{1}{4 \pi \varepsilon_{\theta}} \frac{1}{4 \pi} \frac{8^{2} a^{2}}{c^{3}}\left[\sin ^{2} \theta-2\left(\frac{v}{c}\right) \sin \theta+\left(\frac{v}{c}\right)^{2}\right] \\
{\left[1-\frac{v}{c} \sin \theta\right]^{6}}
\end{array}\right] . \frac{(\sin \theta-v / c)^{2}}{\left[1-\frac{v}{c} \sin \theta\right]^{6}}
$$

yz plane, y<0 $\varphi=-\frac{\pi}{2} \Rightarrow \sin \varphi=-1, \cos 2 \varphi=0$

$$
\frac{d P}{d \Omega}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{\varepsilon^{2} a^{2}}{c^{3}} \frac{(\sin \theta+v / L)^{2}}{\left[1+\frac{v}{c} \sin \theta\right]^{6}}
$$

Nom relativegtec hint $\frac{5}{2} \ll 1$ ugnaide all ferms in 0%
$\frac{d P}{4 S}=\frac{1}{4 \pi \varepsilon_{0}} \frac{8^{2}}{c^{3}} a^{2} \sin ^{2} \theta \quad$ Sane result as eaber mon-relativestic hermon formuler
extreme relativate lint $\frac{v}{c}=1 \quad 1-\% \equiv \varepsilon$ vansmall

$$
\frac{v}{e} \approx 1-\varepsilon
$$

in x y plane

$$
\begin{aligned}
\frac{d P}{d \Omega} & =\frac{1}{4 \pi \varepsilon} \frac{1}{4 \pi} \frac{8^{2} a^{2}}{c^{3}}\left[\sin ^{2} \theta+\frac{\left.(1-\varepsilon)^{2} \cos ^{2} \theta\right]}{1-2 \varepsilon}\right] \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{q^{2} a^{2}}{c^{3}}\left[1-2 \varepsilon \cos ^{2} \theta\right] \quad \text { becon }
\end{aligned}
$$

becomes notatienoly symmetric as $\varepsilon \rightarrow 0$
sii $y z$ plane, $y<0$ backwords duechou

$$
\begin{aligned}
\frac{d P}{d \Omega} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{\varepsilon^{2} a^{2}}{c^{3}} \frac{[\sin \theta+1-\varepsilon]^{2}}{[1-(1-\varepsilon) \sin \theta] \varphi} \\
& \simeq \frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{\delta^{2} a^{2}}{c^{3}} \frac{1}{[1+\sin \theta]^{4}} \quad \text { can insere the } \varepsilon
\end{aligned}
$$

on y o dine, $y>0$ for wand dnectoon

$$
\frac{d P}{d \Omega}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{\varepsilon^{2} a^{2}}{c^{3}} \frac{[\sin \theta-1+\varepsilon]^{2}}{[1-(1-\varepsilon) \sin \theta]^{6}}
$$

peed to be canefal swice as $\theta \rightarrow \frac{\pi}{2}$, the denamination $\rightarrow \varepsilon$ and $\frac{d P}{d s t}$ gots lorge! so can't juit take $\varepsilon \rightarrow 0$
$\frac{d \hat{f}}{d \Omega}\left(\theta=\frac{\pi}{2}, \varphi=\frac{\pi}{2}\right)$ alony \hat{y} axis ie mi friwad Snectoo

$$
\begin{aligned}
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{q^{2} a^{2}}{c^{3}} \frac{[1-1+\varepsilon]^{2}}{[1-1+\varepsilon]^{6}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{8^{2} a^{2}}{c^{3}} \frac{1}{\varepsilon^{4}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{4 \pi} \frac{q^{2} a^{3}}{c^{3}} \frac{1}{(1-v / c)^{4}}
\end{aligned}
$$

as $\frac{v}{2} \rightarrow 1$ becomes veystrougly peaked about G^{2} axis
see polor plot ment puge for $\frac{d P}{d S L}(\theta)$ at $C=\frac{\pi}{2}$ in y y plame at variois w / C.

We see that in the relaturstac cose, the udiation gets strongly focused on the forward duection - veny apperit from the son-relativitue limit.

Radeation from chaged praticles mi syn chwetovers guie ving high every, very focwed EM beaws, for motiong materiats - "synchrotron radiation" source

