The Coulomb problem as a boundary value problem

Consider a conducting sphere of radius \(R \) with net charge \(q \) (as \(R \to 0 \) we get a point charge).

What is \(\phi(r) \)? What is \(E(r) \)?

Review: Properties of conductors in electrostatics

1) \(\vec{E} = 0 \) inside conductor - if \(\vec{E} \neq 0 \) then a current
 \(\vec{j} = \sigma \vec{E} \) flows and it is not statics (\(\sigma \) is conductivity)
2) \(\vec{j} = 0 \) inside conductor - if \(\vec{E} = 0 \) inside, then \(\nabla \cdot \vec{E} = \nabla \cdot \vec{j} = 0 \)
3) Any net charge on the conductor must lie on the surface - follows from (2)
4) \(\phi = \) constant throughout conductor - if \(\vec{E} = 0 \)
 then \(\vec{E} = -\nabla \phi \Rightarrow \phi \) is constant
5) Just outside the conductor, \(\vec{E} \) is \(\perp \) to surface.
 - If \(\vec{E} \) has a component \(\parallel \) to surface, then it exerts a force on electrons at the surface, leading to a surface current - so would not be static

For conducting sphere, \(\vec{E} = 0 \) for \(r > R \) and \(r < R \)
all charge \(\pm q \) on the surface \(\Rightarrow \nabla^2 \phi = 0 \) for \(\{r \geq R, r < R\} \)

Spherical symmetry \(\Rightarrow \) expect spherically symmetric solution

\[\Rightarrow \phi(\hat{r}) \text{ depends only on } r = \hat{r} \hat{r} \]
Solve Laplace’s equation by writing $\nabla^2 \phi$ in spherical coordinates, only the radial terms do not vanish.

$$\nabla^2 \phi = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\phi}{dr} \right) = 0$$

$$r^2 \frac{d\phi}{dr} = -C_0 \quad \text{a constant}$$

$$\frac{d\phi}{dr} = -\frac{C_0}{r^2}$$

$$\phi(r) = \frac{C_0}{r} + C_1, \quad C_1 \text{ a constant}$$

"outside" $r > R$ \hspace{1cm} \phi_{\text{out}}(r) = \frac{C_0^{\text{out}}}{r} + C_1^{\text{out}}$

"inside" $r < R$ \hspace{1cm} \phi_{\text{in}}(r) = \frac{C_0^{\text{in}}}{r} + C_1^{\text{in}}$

The solution "outside" does not necessarily go smoothly into the solution "inside" because of the charge layer at $r = R$ that separates the two regions. We need to determine the constants $C_0^{\text{in}}, C_0^{\text{out}}, C_1^{\text{in}}, C_1^{\text{out}}$ by applying boundary conditions corresponding to the physical situation.

1. For $r > R$, assume $\phi \to 0$ as $r \to \infty$ - boundary condition at infinity \hspace{1cm} $\Rightarrow C_1^{\text{out}} = 0$

$\phi(r) = \frac{C_0^{\text{out}}}{r}$ recover the expected Coulomb form.
2) For \(r < R \).

 i) We could use the fact that the region \(r < R \) is a conductor with \(\phi \) constant to conclude \(C_0 = 0 \).

 ii) Or, if we were dealing with a charged shell instead of a conductor, we could argue as follows:

 no charge at origin \(r = 0 \) \(\Rightarrow \) expect \(\phi \) should be finite at origin \(\Rightarrow C_0 = 0 \)

 So \(\phi(r) = C \) a constant

3) Now we need boundary condition at \(r = R \) where "inside" and "outside" meet.

Review: Electric field and potential at a surface charge layer

\(\sigma(r) \) \(\Rightarrow \) a general surface \(S \) with surface charge density \(\sigma(r) \) \(\Rightarrow \) for \(\mathbf{E} \) on \(S \), \(\sigma(r) \) \(\text{da} \) is total charge \(\text{in area} \) \(\text{da} \) on surface

i) Take "Gaussian pillbox" surface about point \(\mathbf{r} \) on the surface \(S \)

 top and bottom areas of pill box \(\text{da} \)

 side view

 side of pillbox \(\text{dl} \)

Gauss' Law in integral form \(\int \sigma \text{da} \cdot \mathbf{E} = 4\pi Q \text{enclosed} \)
\[\int_S \hat{m} \cdot \vec{E} = \int_{\text{top}} \hat{m} \cdot \vec{E} + \int_{\text{bottom}} \hat{m} \cdot \vec{E} \]

\[= (\hat{m}_{\text{top}} \cdot \vec{E}_{\text{top}} + \hat{m}_{\text{bottom}} \cdot \vec{E}_{\text{bottom}}) \, da \quad \text{since } da \text{ is small} \]

\[\vec{E}_{\text{top}} \text{ is electric field at } \vec{r} \text{ just above the surface } S \]

\[\vec{E}_{\text{bottom}} \text{ is electric field at } \vec{r} \text{ just below the surface } S \]

\[\hat{m}_{\text{top}} \equiv \hat{m} \text{ is outward normal on top} \]

\[\hat{m}_{\text{bottom}} = -\hat{m} \text{ is outward normal on bottom} \]

\[\Rightarrow (\vec{E}_{\text{top}} - \vec{E}_{\text{bottom}}) \cdot \hat{m} \, da = 4\pi \sigma \text{ enclosed } = 4\pi \sigma (\vec{r}) \, da \]

\[(\vec{E}_{\text{top}} - \vec{E}_{\text{bottom}}) \cdot \hat{m} = 4\pi \sigma (\vec{r}) \]

Discontinuity in normal component of \(\vec{E} \)

\[\ii) \text{ Take "American loop" } C \text{ at surface about point } \vec{r}. \]

\[\nabla \times \vec{E} = 0 \Rightarrow \oint_C \vec{E} \cdot dl \quad \text{since } \vec{E} \text{ is finite at surface,} \]

\[\text{if take sides } dl \to 0 \text{ their contribution to integral vanishes} \]

\[\Rightarrow \oint_C \vec{E} \cdot dl = (\vec{E}_{\text{top}} - \vec{E}_{\text{bottom}}) \cdot dl \to 0 \]

Where \(dl \) is any infinitesimal tangent to the surface at \(\vec{r} \).
=> tangential component of E is continuous

combine above to write

\[\vec{E}_{\text{top}} - \vec{E}_{\text{bottom}} = 4\pi \sigma \hat{\mathbf{n}} \]

iii) \(\vec{E} = -\nabla \phi \Rightarrow \phi (r_2) - \phi (r_1) = -\int_{r_1}^{r_2} \nabla \phi \cdot d\mathbf{l} \)

Take \(r_2 \) just above \(\hat{\mathbf{n}} \) on surface \(\int \ n \Rightarrow d\mathbf{l} \rightarrow 0 \)

Since \(\vec{E} \) is finite \(\Rightarrow \int \ n \cdot \vec{E} \rightarrow 0 \)

\[\Rightarrow \phi_{\text{top}} = \phi_{\text{bottom}} \]

potential \(\phi \) is continuous at surface charge layer

can rewrite (i) as

\[\left(-\nabla \phi_{\text{top}} + \nabla \phi_{\text{bottom}} \right) \cdot \hat{\mathbf{n}} = 4\pi \sigma \]

\[-\frac{\partial \phi_{\text{top}}}{\partial n} + \frac{\partial \phi_{\text{bottom}}}{\partial n} = 4\pi \sigma \]

I directional derivative of \(\phi \) in direction \(\hat{\mathbf{n}} \)

discontinuity in normal derivative of \(\phi \) at surface

Apply to conducting sphere

\(\phi \) continuous \(\Rightarrow \phi_{\text{in}} (R) = \phi_{\text{out}} (R) \)

\[C_{\text{in}} = \frac{C_{\text{out}}}{R} \]

only one unknown left
normal derivative of \(\phi \) is discontinuous

\[- \frac{\partial \phi^{\text{top}}}{\partial n} + \frac{\partial \phi^{\text{bottom}}}{\partial n} = 4\pi \sigma\]

here \(n = \hat{r} \) the radial direction

\[
\left[- \frac{d\phi^{\text{out}}}{dr} + \frac{d\phi^{\text{in}}}{dr} \right]_{r=R} = 4\pi \sigma
\]

but \(\frac{d\phi^{\text{in}}}{dr} = 0 \) as \(\phi^{\text{in}} \) constant

\[- \frac{d\phi^{\text{out}}}{dr} \bigg|_{r=R} = \frac{4\pi \sigma}{R} \quad \text{charge} q \text{ is uniformly distributed on surface at} \ R\]

\[- \frac{d}{dr} \left(\frac{C^{\text{out}}}{r} \right)_{r=R} = \frac{C^{\text{out}}}{R^2} = 4\pi \sigma = \frac{q}{(4\pi \epsilon_0 R^2)} = \frac{q}{R^2} \]

\[\Rightarrow C^{\text{out}} = R, \quad C^{\text{in}} = \frac{C^{\text{out}}}{R} = \frac{q}{R}\]

\[\phi(r) = \begin{cases} \frac{q}{R} & r < R \text{ inside} \\ \frac{q}{r} & r > R \text{ outside} \end{cases}\]

\[\Rightarrow \mathbf{E} = -\nabla \phi = -\frac{d\phi}{dr} = \begin{cases} 0 & r < R \text{ inside} \\ \frac{q}{r^2} & r > R \text{ outside} \end{cases}\]

we get familiar Coulomb solution!
Summary: We can view the preceding solution for \(\phi \) as solving Laplace's equation \(\nabla^2 \phi = 0 \) subject to a specified boundary condition on the normal derivative of \(\phi \) at the boundary \(r = R \) of the "outside" region of the system.

Alternate problem:
Another physical situation would be to connect a conducting sphere to a battery that charges the sphere to a fixed voltage \(\phi_0 \) (stat volts) with respect to ground \(\phi = 0 \) at \(r \to \infty \).

As before, outside the sphere \(\phi = \frac{\phi_0}{r} \)
Now the boundary condition is to specify the value of \(\phi \) on the boundary of the outside region, i.e.
\[
\phi(R) = \phi_0
\]
\[
\Rightarrow \frac{\phi_0}{R} = \phi_0, \quad C_0 = \phi_0 R
\]
\[
\phi(r) = \phi_0 \frac{R}{r}
\]
(from preceding solution, we know that charging the sphere to voltage \(\phi_0 \) (stat volts) induces a net charge \(q = \phi_0 R \) on it.)
These two versions of the conducting sphere problem are examples of a more general boundary value problem.

Solve $\nabla^2 \phi = 0$ in a given region of space subject to one of the following two types of boundary conditions on the boundary surfaces of the region:

i) Neumann boundary condition

$$\frac{\partial \phi}{\partial n} \text{ - normal derivative of } \phi \text{ is specified on the boundary surface}$$

ii) Dirichlet boundary condition

$$\phi \text{ - value of } \phi \text{ is specified on the boundary surfaces}$$

If the boundary surfaces consist of disjoint pieces, it is possible to specify either (i) or (ii) on each piece separately to get a mixed boundary value problem.
Some more problems

Infinite conducting wire of radius R with line charge density $\lambda = \text{charge per unit length}$

Surface charge $\sigma = \frac{\lambda}{2\pi R}$

Expect cylindrical symmetry $\Rightarrow \phi$ depends only on cylindrical coord r.

$\nabla^2 \phi = 0 \quad \text{for} \quad r > R, \quad r < R$

Use ∇^2 in cylindrical coords — only radial term non vanishing

$\nabla^2 \phi = \frac{1}{r} \frac{d}{dr} \left(r \frac{d\phi}{dr} \right) = 0$

$r \frac{d\phi}{dr} = C_0 \quad \text{constant}$

$\frac{d\phi}{dr} = \frac{C_0}{r}$

$\phi(r) = C_0 \ln r + C_1 \quad \text{const}$

Note: one cannot now choose $\phi \to 0$ as $r \to \infty$!

One needs to fix ϕ at some other radius, a convenient choice is $r = R$, but any other choice could also be made.
\[
\phi_{\text{out}} = C_0 \ln r + C_1^{\text{out}} \\
\phi_{\text{in}} = C_0 \ln r + C_1^{\text{in}}
\]

\[\phi_{\text{in}} = \text{const } \text{in conductor } \Rightarrow C_0^{\text{in}} = 0\]

or \[\phi_{\text{in}} \text{ should not diverge as } r \to 0 \Rightarrow C_0^{\text{in}} = 0\]

So \[\phi_{\text{in}} = C_1^{\text{in}} \text{ constant}\]

Boundary condition at \(r = R\)

\[
\left[-\frac{d\phi_{\text{out}}}{dr} + \frac{d\phi_{\text{in}}}{dr} \right]_{r=R} = 4\pi \sigma
\]

\[
\Rightarrow -\frac{C_0^{\text{out}}}{R} = 4\pi \sigma = 4\pi \left(\frac{1}{2\pi R} \right) = \frac{2\lambda}{R}
\]

\[C_0^{\text{out}} = -2\lambda\]

\[\phi_{\text{out}}^{\text{out}} = -2\lambda \ln R + C_1^{\text{out}}\]

Continuity of \(\phi\)

\[\phi_{\text{in}}(R) = \phi_{\text{out}}(R) \Rightarrow C_1^{\text{in}} = -2\lambda \ln R + C_1^{\text{out}}\]

Remaining const. \(C_1^{\text{out}}\) is not too important as it is just a common additive constant to both \(\phi_{\text{in}}\) and \(\phi_{\text{out}}\) \(\Rightarrow\) does not change \(\epsilon = -\nabla \phi\).

If use the condition \(\phi(R) = 0\) then we can solve for \(C_1^{\text{out}}\).
\[\phi(r) = \begin{cases} -2A \ln(r/R) & r > R \\ 0 & r < R \end{cases} \]

\[\mathbf{E} (r) = \begin{cases} \frac{2A}{r^2} & r > R \\ 0 & r < R \end{cases} \]

infinite conducting half space

\[\sigma \quad \text{uniform surface charge density} \]

\[\nabla^2 \phi = \frac{d^2 \phi}{dx^2} = 0 \]

\[\begin{align*}
\phi^x(x) &= \phi^x_0 x + \phi^x_1 & x > 0 \\
\phi^x(x) &= \phi^x_0 x + \phi^x_1 & x < 0
\end{align*} \]

for \(x < 0 \), \(\phi = \text{const} \text{ at conductor} \Rightarrow \phi^x_1 = 0 \)

at \(x = 0 \), \(\phi \text{ continuous} \Rightarrow \phi^x(0) = \phi^x(0) \)

\[\phi^x_1 = \phi^x_1 \]

\[\frac{d \phi^x}{dx} \text{ discontinuous} \Rightarrow \]

\[- \frac{d \phi^x}{dx} \bigg|_{x=0} = 4\pi \sigma \]

\[c^x_0 = -4\pi \sigma \]

\[\Rightarrow \phi(x) = \begin{cases} -4\pi \sigma x + \phi^x_1 & x > 0 \\
\phi^x_1 & x < 0 \end{cases} \]

const \(\phi^x_1 \) does not change value of \(\mathbf{E} \)
as for the wire, we cannot choose \(\phi \to 0 \) as \(x \to \infty \).

We can set \(\phi \to 0 \) not

\[
\vec{\nabla} \phi = \vec{E} = \begin{cases}
4\pi \sigma \hat{x} & x > 0 \\
0 & x < 0
\end{cases}
\]

infinite charged plane

Similar to previous problem, but now no conductor at \(x < 0 \), just free space on both sides of the charged plane at \(x = 0 \).

Symmetry

\[
\nabla^2 \phi = \frac{d^2 \phi}{dx^2} = 0 \quad \Rightarrow \quad \phi^+ = C_0^+ x + C_1^+ \quad x > 0 \\
\phi^- = C_0^- x + C_1^- \quad x < 0
\]

Continuity of \(\phi \) at \(x = 0 \)

\[
\phi^+(0) = \phi^-(0) \quad \Rightarrow \quad C_1^+ = C_1^-
\]

Discontinuity of \(\frac{d\phi}{dx} \) at \(x = 0 \)

\[
- \frac{d\phi^+}{dx} + \frac{d\phi^-}{dx} = 4\pi \sigma
\]

\[
- C_0^+ + C_0^- = 4\pi \sigma
\]

Define \(\bar{C}_0 = \frac{C_0^+ + C_0^-}{2} \)

Then we can write
\[C_0^\downarrow = \overline{C_0} + 2\pi\sigma \]
\[C_0^\uparrow = \overline{C_0} - 2\pi\sigma \]

\[
\phi = \begin{cases}
-2\pi\sigma x + \overline{C_0} x + C_1^\downarrow & x > 0 \\
2\pi\sigma x + \overline{C_0} x + C_1^\uparrow & x < 0
\end{cases}
\]

\[
-\frac{d\phi}{dx} = \vec{E} = \begin{cases}
(2\pi\sigma - \overline{C_0}) \hat{x} & x > 0 \\
(-2\pi\sigma - \overline{C_0}) \hat{x} & x < 0
\end{cases}
\]

Constant \(C_1 \) does not affect \(\vec{E} \) - additive constant to \(\phi \)

\(\overline{C_0} \) represents constant uniform electric field \(-\overline{C_0} \hat{x}\),

that exists independently of the charged surface.

If we assumed that all \(\vec{E} \) fields are just those arising from the plane, then we can set \(C_0 = 0 \).

Equivalently, if the plane is the only source of \(\vec{E} \),

then we expect \(\phi \) depends only on \(|x|\) by symmetry.

\[C_1^\downarrow = -C_1^\uparrow \] and again \(C_0 = 0 \). In this case

\[
\phi(x) = \begin{cases}
-2\pi\sigma x & x > 0 \\
2\pi\sigma x & x < 0
\end{cases}
\]

we also set \(C_1^\uparrow = 0 \) here corresponding to \(\phi(0) = 0 \)

\[
\vec{E}(x) = \begin{cases}
2\pi\sigma \hat{x} & x > 0 \\
-2\pi\sigma \hat{x} & x < 0
\end{cases}
\]

\(\vec{E} \) is constant but oppositely directed on either side of the charged plane.
We want to show that the boundary value problem we described is well posed - i.e. there is a unique solution. We start by deriving Green's theorems.

Consider \(\int d^3r \ \nabla \cdot \mathbf{A} = \oint \text{da} \ \hat{\mathbf{n}} \cdot \mathbf{A} \) \text{ Gauss theorem}

let \(\mathbf{A} = \phi \mathbf{\hat{u}} \phi \), \(\phi, \psi \) any two scalar functions

\[\nabla \cdot \mathbf{A} = \phi \nabla \phi + \nabla \phi \cdot \mathbf{\hat{u}} \phi \]

\[\phi \mathbf{\hat{u}} \phi \cdot \hat{\mathbf{n}} = \phi \frac{\partial \phi}{\partial m} \]

\[\Rightarrow \int d^3r \ (\phi \nabla^2 \psi + \nabla \phi \cdot \mathbf{\hat{u}} \phi) = \oint \text{da} \ \phi \frac{\partial \phi}{\partial m} \] \text{ Green's 1st identity}

let \(\phi \leftrightarrow \psi \)

\[\int d^3r \ (\psi \nabla^2 \phi + \nabla \phi \cdot \mathbf{\hat{u}} \phi) = \oint \text{da} \ \psi \frac{\partial \phi}{\partial m} \]

Subtract

\[\int d^3r \ (\phi \nabla^2 \psi - \psi \nabla^2 \phi) = \oint \text{da} \ \left(\phi \frac{\partial \phi}{\partial m} - \psi \frac{\partial \phi}{\partial m} \right) \] \text{ Green's 2nd identity}
Specifying both ϕ and $\frac{\partial \phi}{\partial n}$ on surface is known as
"Cauchy" boundary conditions — for Laplace's equation.
Cauchy b.c. over-specify the problem and a solution cannot in general be found.

Uniqueness

If we have a system of charges in vol V,
and either the potential ϕ, or its normal
derivative $\frac{\partial \phi}{\partial n}$, is specified on the surfaces of V,
then there is a unique solution to Poisson's equation
inside V. Specifying ϕ is known as Dirichlet
boundary conditions. Specifying $\frac{\partial \phi}{\partial n}$ is known as
Neumann boundary conditions.

Proof: Suppose we had two solutions ϕ_1 and ϕ_2,
both with $-\nabla^2 \phi = \rho$ inside V, and obeying
specified b.c. on surface of V.

Define $U = \phi_2 - \phi_1 \implies \nabla^2 U = 0$ inside V

and $U = 0$ on surface S — for Dirichlet b.c.
or $\frac{\partial U}{\partial n} = 0$ on surface S — for Neumann b.c.

Use Green's 1st identity with $\phi = \psi = U$

$$\int_V \left(U \nabla^2 U + \nabla U \cdot \nabla U \right) = \int_S U \frac{\partial U}{\partial n}$$

As $\nabla^2 U = 0$ and $U \propto \frac{\partial U}{\partial n} = 0$
\[\Rightarrow \int \nabla^2 u = 0 \Rightarrow \nabla u = 0 \Rightarrow u = \text{const} \]

For Dirichlet b.c., \(u = 0 \) on surface \(S \), so \(\text{const} = 0 \) and \(\phi_1 = \phi_2 \). Solution is unique.

For Neumann b.c., \(\phi_1 \) and \(\phi_2 \) differ only by an arbitrary constant. Since \(E = -\nabla \phi \), the electric fields \(E_1 = -\nabla \phi_1 \) and \(E_2 = -\nabla \phi_2 \) are the same.

If boundary surface \(S \) consists of several disjoint pieces, then solution is unique if specify \(\phi \) on some pieces and \(\frac{\partial \phi}{\partial n} \) on other pieces.

Solution of Poisson's equation with both \(\phi \) and \(\frac{\partial \phi}{\partial n} \) specified on the same surface \(S \) (Cauchy b.c.) does not in general exist, since specifying either \(\phi \) or \(\frac{\partial \phi}{\partial n} \) alone is enough to give a unique solution.