\[\nabla^2 \phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \phi}{\partial \phi^2} = 0 \]

\[\phi(r, \theta, \phi) = R(r) \Theta(\theta) \Phi(\phi) \]

\[r^2 \nabla^2 \phi = \Theta \Phi \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{R \Phi}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + \frac{R \Theta}{\sin^2 \theta} \frac{d^2 \Phi}{d\phi^2} = -\frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = 0 \]

\[\frac{r^2 \sin \theta}{\Phi} \nabla^2 \phi = \frac{\sin \theta}{R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{\sin \theta}{\Theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + \frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = 0 \]

\[\text{depends only on } r \quad \text{ad } \theta \]
\[\text{depends only on } \phi \]
\[= -\text{const} \]
\[= \text{const} \]

\[\frac{1}{r^2} \frac{d^2 \Phi}{d\phi^2} = -m^2 \]

\[\Rightarrow \Phi = e^{\pm i m \phi} \]

\[\text{m integer for } 2\pi \text{ periodicity in } \phi \]

\[\Rightarrow \frac{\sin \theta}{R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{\sin \theta}{\Theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) = -m^2 \]

\[\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{1}{\Theta \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) - \frac{m^2}{\sin^2 \theta} = 0 \]

\[\text{depends only on } r \]
\[\text{depends only on } \theta \]
\[= -\text{const} \]
\[= -\text{const} \]
Call the constant \(L(l+1) \)

For \(R \):

\[
\frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) = L(l+1) = 0
\]

Solutions are of the form:

\[
R(r) = a_0 r^2 + b_0 r^{-(l+1)}
\]

Substitute \(u \) to verify:

\[
\frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) = \frac{d}{du} \left(r^2 (la_0 r^{e-1} - (l+1)b_0 r^{-e-2}) \right)
\]

\[
= \frac{d}{du} \left(la_0 r^{e+1} - (l+1)b_0 r^{-e} \right)
\]

\[
= l(l+1)a_0 r^2 + l(l+1)b_0 r^{-(l+1)} = L(l+1)R
\]

For \(\theta \):

\[
\frac{1}{\sin \theta} \frac{d}{d\theta} (\sin \theta \frac{d\theta}{d\phi}) - \frac{m^2}{\sin^2 \theta} = -L(l+1)
\]

Let \(x = \cos \theta \)

\[
dx = -\sin \theta \, d\theta
\]

\[
\frac{d\theta}{dx} = \frac{1}{\sin \theta}
\]

\(0 \leq \theta \leq \pi \)

Solutions for \(-1 \leq x \leq 1\) correspond to \(L \geq 0 \) integers.

Above becomes:

\[
\frac{d}{dx} \left[(1-x^2) \frac{d\theta}{dx} \right] + \left[L(l+1) - \frac{m^2}{1-x^2} \right] \theta = 0
\]

Called generalized Legendre Equation - solutions are called the associated Legendre functions. Ordinary Legendre polynomials are solutions for \(m = 0 \).
For the special case \(m = 0 \), i.e., the solution has azimuthal symmetry and \(\phi \) does not depend on the angle \(\theta \) (i.e., rotational symmetry about \(\phi \) axis),

we want the solutions to

\[
\frac{d}{dx} \left[(1-x^2) \frac{d\Theta}{dx} \right] + \ell(\ell+1) \Theta = 0
\]

The solutions are known as the Legendre polynomials, \(P_\ell(x) \).

They are given, for \(\ell \) integer, by

\[
P_\ell(x) = \frac{1}{2\ell+1} \frac{d^\ell}{dx^\ell} (x^2-1)^\ell
\]

Rodriguez's formula

The lowest \(\ell \) polynomials are

\[
P_0(x) = 1, \quad P_2(x) = \frac{1}{2} (3x^2 - 1) \\
P_1(x) = x, \quad P_3(x) = \frac{1}{2} (5x^3 - 3x)
\]

In general, \(P_\ell(x) \) is a polynomial of order \(\ell \) with only even powers if \(\ell \) is even, and only odd powers if \(\ell \) is odd. \(\Rightarrow P_\ell(x) \) is even or \(x \) for \(\ell \) even \(\Rightarrow x \) for \(\ell \) odd

\(P_\ell(x) \) is normalized so that \(P_\ell(1) = 1 \).
Note: Legendre polynomials are only for integer \(l \geq 0 \). What about solutions for non-integer \(l \)?

The \(P_l(x) \) give one solution for each integer \(l \). But \(P_l(x) \) are defined by a 2nd order differential equation – shouldn't there be a 2nd independent solution for each \(l \)?

It turns out that these "2nd" solutions, as well as solutions for non-integer \(l \), all blow up at either \(x = -1 \) or \(x = 1 \), i.e., at \(\theta = 0 \) or \(\theta = \pi \). They therefore are physically unacceptable and we do not need to consider them. See Jackson 3.2

The Legendre polynomials are orthogonal and form a complete set of basis functions on the interval \(-1 \leq x \leq 1\).

\[
\int_{-1}^{1} dx \ P_l(x) P_m(x) = \int_0^\pi \sin \theta \ P_l(\cos \theta) \ P_m(\cos \theta) = \left\{ \begin{array}{ll} 0 & \text{if } l \neq m \\ \frac{2}{2l+1} & \text{if } l = m \end{array} \right.
\]

"we can expand any function \(f(\theta) \), \(0 \leq \theta \leq \pi \), as a linear combination of the \(P_l(\cos \theta) \). This is the reason they are useful for solving problems of Laplace's eqn with spherical boundary surfaces."
For \(m \neq 0 \), the solutions to (see Jackson 3.5)

\[
d \frac{1}{(1-x^2)} \frac{d}{dx} \left[x \frac{d \Theta}{dx} \right] + \left[\ell(l+1) - \frac{m^2}{1-x^2} \right] \Theta = 0
\]

are the associated Legendre functions \(P^m_\ell(x) \).

For \(P^m_\ell(x) \) to be finite in interval \(-1 \leq x \leq 1\),

one again finds that \(\ell \) must be integer \(\ell > 0 \), and integer \(m \) must satisfy \(|m| \leq \ell \), i.e. \(m = -\ell, -\ell+1, \ldots, 0, \ldots, \ell-1, \ell \).

For each \(\ell \) and \(m \) there is only one such non-divergent solution.

It is typical to combine the solutions \(P^m_\ell(\cos \theta) \) to the \(\theta \)-part of the equation with the \(\Phi_m(\phi) = e^{im\phi} \) solutions to the \(\phi \)-part of the equation to define the spherical harmonics

\[
Y_{\ell m}(\theta, \phi) = \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P^m_\ell(\cos \theta) e^{im\phi}
\]

The \(Y_{\ell m} \) are orthogonal

\[
\int_0^{2\pi} d\phi \int_0^{\pi} \sin \theta d\theta \sin \theta \quad Y^*_{\ell' m'}(\theta, \phi) Y_{\ell m}(\theta, \phi) = \delta_{\ell \ell'} \delta_{m m'}
\]

and are a complete set of basis functions for expanding any function \(f(\theta, \phi) \) defined on the surface of a sphere.
Examples with azimuthal symmetry $m = 0$

General solution to $\nabla^2 \Phi = 0$ can be written in form

$$\Phi(r, \theta) = \sum_{\ell=0}^{\infty} \left[A_\ell r^\ell + \frac{B_\ell}{r^{\ell+1}} \right] P_\ell(\cos \theta)$$

determine the A_ℓ and B_ℓ from the boundary conditions of the particular problem.

1. Suppose one is given $\Phi(R, \theta) = \phi_0(\theta)$ on surface of sphere of radius R.

To find solution of $\nabla^2 \Phi = 0$ inside sphere

Φ should not diverge at origin $\Rightarrow B_\ell = 0$ for all ℓ

$$\Phi(r, \theta) = \sum_{\ell=0}^{\infty} A_\ell r^\ell P_\ell(\cos \theta)$$

$$\Rightarrow \Phi(r, \theta) = \phi_0(\theta) = \sum_{\ell=0}^{\infty} A_\ell R^\ell P_\ell(\cos \theta)$$

$$\Rightarrow \int_0^\pi d\theta \sin \theta \phi_0(\theta) P_m(\cos \theta) = \sum_{\ell=0}^{\infty} A_\ell R^\ell \int_0^\pi d\theta \sin \theta P_\ell(\cos \theta) P_m(\cos \theta)$$

$$= \sum_{\ell=0}^{\infty} A_\ell R^\ell \frac{\ell}{2\ell+1} g_{\ell m}$$

$$= A_m R^m \frac{\pi}{2m+1} \int_0^\pi d\theta \sin \theta \phi_0(\theta) P_m(\cos \theta)$$

$$A_m = \frac{2^{m+1}}{2^m} \int_0^\pi d\theta \sin \theta \phi_0(\theta) P_m(\cos \theta)$$
To find solution of $\Delta^2 \phi = 0$ outside sphere

If require $\phi \rightarrow 0$ as $r \rightarrow 0$, then $A_e = 0$ for all l

\[
\phi (r, \theta) = \sum_{l=0}^{\infty} \frac{B_e}{r^{l+1}} P_e (\cos \theta)
\]

\[
\phi (R, \theta) = \phi_0 (\theta) = \sum_{l=0}^{\infty} \frac{B_e}{R^{l+1}} P_e (\cos \theta)
\]

gives solution

\[
B_m = \frac{2^{m+1}}{2} R^{m+1} \int_0^\pi \sin \theta \phi_0 (\theta) P_m (\cos \theta) d\theta
\]

\[
B_m = A_m R^{2m+1}
\]

2) Suppose one is given surface charge density $\sigma (\theta)$ fixed on surface of sphere of radius R. What is ϕ inside and outside?

From previous example

\[
\phi (r, \theta) = \begin{cases}
\sum_{l=0}^{\infty} A_e r^l P_e (\cos \theta) & r < R \\
\sum_{l=0}^{\infty} \frac{B_e}{r^{l+1}} P_e (\cos \theta) & r > R
\end{cases}
\]

Boundary conditions at $r = R$ on surface

(i) ϕ continuous

\[
\rightarrow \sum_{l=0}^{\infty} \left[A_e R^l - \frac{B_e}{R^{l+1}} \right] P_e (\cos \theta) = 0
\]
If an expansion in Legendre polynomials vanishes for all θ, then each coefficient in the expansion must vanish.

\[\Rightarrow A_e \frac{R^l}{R^{l+1}} = \frac{B_l}{R^{l+1}} \Rightarrow B_l = A_e R^{2l+1} \]

(cii) gpup in electric field at Ω:

\[-\frac{\partial \Phi^\text{out}}{\partial r} \bigg|_{r=R} + \frac{\partial \Phi^\text{in}}{\partial r} \bigg|_{r=R} = 4\pi \sigma \]

\[\Rightarrow \sum_{l=0}^{\infty} \left[\frac{(l+1) B_l}{R^{l+2}} + l A_e R^{l-1} \int P_l(\cos \theta) = 4\pi \sigma \right] \]

\[\Rightarrow \sum_{l=0}^{\infty} \left[\frac{(2l+1) R^{l-1} A_e P_l(\cos \theta)}{R^{l+2}} \right] = 4\pi \sigma \]

\[(2m+1) R^{m-1} A_m \left(\frac{2}{2m+1} \right) = 4\pi \int_0^\pi \sin \theta \sigma(\theta) P_m(\cos \theta) \]

\[A_m = \frac{4\pi}{2 R^{m-1}} \int_0^\pi \sin \theta \sigma(\theta) P_m(\cos \theta) \]
Suppose \(\sigma(\theta) = k \cos \theta \)

What is \(\phi \)?

Note: \(\sigma(\theta) = k P_1(\cos \theta) \)

hence only \(A_1 \neq 0 \) by orthogonality of \(P_n(\cos \theta) \)

\[
A_1 = \frac{4\pi k}{2} \int_0^\pi \sin \theta P_1(\cos \theta) P_1(\cos \theta) \, d\theta
\]

\[
= \frac{4\pi k}{2} \left(\frac{2}{2+1} \right) = \frac{4\pi k}{3}
\]

\[\Rightarrow \phi(r, \theta) = \begin{cases}
\frac{4\pi k}{3} r \cos \theta & r < R \\
\frac{4\pi k}{3} \frac{R^3}{r^2} \cos \theta & r > R
\end{cases}
\]

We will see that potential outside the sphere is that of an ideal dipole with dipole moment

\[p = \frac{4\pi R^3 k}{3} \]

Inside the sphere, the potential \(\phi = \frac{4\pi k}{3} \zeta \)

where \(\zeta = r \cos \theta \). The electric field inside the sphere is therefore the constant

\[\vec{E} = -\nabla \phi = -\frac{4\pi k}{3} \zeta \]
outside the sphere the field is

\[E = -\nabla \phi = -\frac{\partial \phi}{\partial r} \mathbf{\hat{r}} - \frac{1}{r} \frac{\partial \phi}{\partial \theta} \mathbf{\hat{\theta}} \]

\[= \frac{8 \pi k R^3}{3 \Gamma^3} \cos \theta \mathbf{\hat{r}} + \frac{4 \pi k R^3}{3 \Gamma^3} \sin \theta \mathbf{\hat{\theta}} \]

\[\mathbf{E} = \frac{4 \pi R^3 k}{3 \Gamma^3} \left[2 \cos \theta \mathbf{\hat{r}} + \sin \theta \mathbf{\hat{\theta}} \right] \]

\[\text{deplete field} \]
Physical example with $\sigma(\theta) = \kappa \cos \theta$.

Two spheres of radius R, with equal but opposite uniform charge densities ρ and $-\rho$, displaced by small distance $d < R$.

Surface charge σ builds up due to displacement. This is a uniformly "polarized" sphere.

Surface charge: $\sigma(\theta) = \rho \, Sr = \rho \, d \cos \theta$.

$\sigma(\theta) = \rho d \cos \theta$.

Total dipole moment is $(\rho d) \frac{4}{3} \pi R^3$.

Polarization = \frac{\text{dipole moment}}{\text{volume}} = \rho d$.

E field inside a uniformly polarized sphere is constant. $E = -\rho d \frac{4\pi}{3}$.

$E = -\rho d \frac{4\pi}{3}$.

$E = -\rho d \frac{4\pi}{3}$.
\(\phi \) and \(\mathbf{E} \) at infinite distance from sphere. \(\mathbf{E} = E_0 \hat{z} \Rightarrow \phi = -E_0 r \cos \theta \)

Boundary conditions:

\[\begin{align*}
\phi (r, \theta) &= 0 \\
\phi (r \to \infty, \theta) &= -E_0 r \cos \theta
\end{align*} \]

Solution outside sphere has the form:

\[\phi (r, \theta) = \sum_{l=0}^{\infty} \left[A_l r^l + \frac{B_l}{r^{l+1}} \right] P_l (\cos \theta) \]

From boundary condition as \(r \to \infty \), we have:

\[A_0 = 0 \quad \text{all } l \neq 1 \]

\[A_1 = -E_0 \quad \text{since } P_1 (\cos \theta) = \cos \theta \]

\[\phi (r, \theta) = -E_0 r \cos \theta + \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}} P_l (\cos \theta) \]

From \(\phi (r, \theta) = 0 \) we have:

\[0 = -E_0 r \cos \theta + \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}} P_l (\cos \theta) \]

\[\Rightarrow B_l = 0 \quad \text{all } l \neq 1 \]

\[B_1 = E_0 R \Rightarrow B_1 = +E_0 R^3 \]
\[\phi(r, \theta) = -E_0 \left(r - \frac{R^3}{r^2} \right) \cos \theta \]

1st term is just potential \(-E_0 r \cos \theta\) of the uniform applied electric field.

2nd term is potential due to the induced surface charge on the surface—it is a dipole field.

Induced charge density is

\[\frac{4\pi \sigma(\theta)}{\partial r} \bigg|_{r=R} = E_0 \left(1 + \frac{2R^3}{r^3} \right) \cos \theta \]

\[= 3E_0 \cos \theta \]

\[\sigma(\theta) = \frac{3}{4\pi} E_0 \cos \theta \quad \text{like uniformly polarized sphere} \]

From (2) we know that the field inside the sphere due to this \(\sigma \) is just

\[-\frac{1}{3} \mu \kappa 2 = -\frac{1}{3} \mu 3E_0 \frac{\dot{\phi}}{4\pi} \]

\[= -E_0 \dot{\phi} \]. This is just what is required so that the total field in the conducting sphere vanishes.

Can check that outside the sphere, \(\vec{E} = -\nabla \phi \)

is normal to surface of sphere at \(r = R \).
Behavior of fields near crucial hole or sharp tip

We now want to solve the $\nabla^2 \phi = 0$

with separation of variables,

but now Θ is restricted to range

$0 \leq \Theta < \beta$.

We still have azimuthal symmetry,

but now, since we do not need solution to ϕ be finite

for all $\Theta \in [0, \pi]$, but only $\Theta \in (0, \beta)$, we have more

solutions to the Θ equation, i.e. it does not have to

be integer, still need $l > 0$ to be finite at $\Theta = 0$.

See Jackson sec. 3.4 for details.