Momentum Conservation

For charges \(q_i \) at positions \(\vec{r}_i \) with velocities \(\vec{v}_i \),

\[
\frac{d \vec{P}_{\text{mech}}}{dt} = \sum_i \frac{d \vec{P}_i}{dt} = \sum_i q_i \left(\vec{E}(\vec{r}_i) + \frac{1}{c^2} \vec{v}_i \times \vec{B}(\vec{r}_i) \right)
\]

"Mechanical" force on

\[\text{momentum of charge} \]

\[
\vec{p}_E + \frac{1}{c^2} \vec{v} \times \vec{B} = \frac{1}{4\pi} \int \left[\vec{E}(\vec{r} \cdot \vec{E}) + \vec{B}(\vec{r} \cdot \vec{B}) - \vec{E}(\vec{r} \cdot \vec{B}) - \vec{B}(\vec{r} \cdot \vec{E}) \right]
\]

\[
\text{Now } \frac{\partial}{\partial t} (\vec{E} \times \vec{B}) = \frac{1}{c^2} \left(\frac{\partial \vec{E}}{\partial t} \times \vec{B} \right) + \frac{1}{c} \left(\vec{E} \times \frac{\partial \vec{B}}{\partial t} \right) - \frac{1}{c^2} \frac{\partial}{\partial t} (\vec{E} \times \vec{B}) \quad \text{use } \vec{v} \times \vec{E} = -\frac{1}{c^2} \frac{\partial \vec{B}}{\partial t}
\]

\[
= \frac{1}{c^2} \left(\frac{\partial \vec{E}}{\partial t} \times \vec{B} \right) - \vec{E} \times (\vec{v} \times \vec{E})
\]

\[
= -\frac{1}{c^2} \left(\frac{\partial \vec{E}}{\partial t} \times \vec{B} \right) + \vec{E} \times (\vec{v} \times \vec{E})
\]

Therefore,

\[
\vec{p}_E + \frac{1}{c^2} \vec{v} \times \vec{B} = \frac{1}{4\pi} \int \left[\vec{E}(\vec{r} \cdot \vec{E}) + \vec{B}(\vec{r} \cdot \vec{B}) - \vec{E}(\vec{r} \cdot \vec{B}) - \vec{B}(\vec{r} \cdot \vec{E}) \right]
\]

Define electromagnetic momentum density

\[
\vec{\Pi} = \frac{1}{c^2} \vec{E} \times \vec{B}
\]

Then

\[
\frac{d \vec{P}_{\text{mech}}}{dt} + \frac{d}{dt} \int \vec{\Pi} = \frac{1}{4\pi} \int \left[\vec{E}(\vec{r} \cdot \vec{E}) - \vec{E}(\vec{r} \cdot \vec{B}) + \vec{B}(\vec{r} \cdot \vec{B}) - \vec{B}(\vec{r} \cdot \vec{E}) \right]
\]

\[
\text{want to rewrite as a surface integral}
The component of integrand on right hand side is (E^2) part only
(sum over repeated indices)

\[E_i \partial_j E_j - E_{ijk} E_j E_{kem} \partial_k E_m \]

\[= E_i \partial_j E_j - (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) E_j \partial_k E_m \]

\[= E_i \partial_j E_j - E_j \partial_i E_j + E_j \partial_j E_i \]

\[= \partial_j \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2 \right) \]

Define Maxwell's stress tensor

\[T_{ij} = \frac{1}{2} \left[E_i E_j + B_i B_j - \frac{1}{2} \delta_{ij} (E^2 + B^2) \right] \]

(mote \(T_{ij} = T_{ji} \) Symmetric tensor)

Then

\[\frac{d}{dt} \rho_{\text{mech}} + \frac{d}{dt} \int d^3r \, \Pi_i = \int d^3r \, \partial_j T_{ij} \]

\[= \oint da \, T_{ij} \hat{n}_j \]

\[\frac{d}{dt} \rho_{\text{mech}} + \frac{d}{dt} \int d^3r \, \Pi = \oint S \, da \, \frac{\partial}{\partial x_i} F_i \hat{N} \]

- \(T_{ij} \) gives the flow of the \(i^{th} \) component of electromagnetic field momentum through an element of surface area \(S \) to direction \(\hat{n}_j \)
Note: $\frac{d\mathbf{P}}{dx}$ is equal to the total electromagnetic force on the volume V.

Here we can write

$$\mathbf{F}_{\text{Em}} = \oint_S \mathbf{T} \cdot \hat{n} \, dA - \int_V \nabla \cdot \mathbf{B} \, dV$$

For static situations, the second term vanishes and

$$\mathbf{F}_{\text{Em}} = \oint_S \mathbf{T} \cdot \hat{n} \, dA$$

the ij component of static force on unit area with normal \hat{e}_j.

This is origin of the term "stress" tensor.

\mathbf{T} is like the stress tensor of an elastic medium.

T_{xx}, T_{yy}, T_{zz} are like pressure.

Off-diagonal element are like shear stresses.
Force on a conductor surface.

Net force on surface per unit area is

\[\mathbf{F} = \mathbf{\dot{E}}_{\text{above}} \cdot \mathbf{\hat{m}} - \mathbf{\dot{E}}_{\text{below}} \cdot \mathbf{\hat{m}} \]

\(t = 0 \) as \(\mathbf{\dot{E}} = 0 \) inside conductor

\[\mathbf{F} = \frac{\mathbf{\dot{E}}}{4\pi} \left[\mathbf{\hat{m}} \cdot (\mathbf{\ddot{E}} - \mathbf{\dot{E}}^2) \right] \]

For conductive surface

\[\mathbf{\hat{m}} \cdot \mathbf{\ddot{E}}_{\text{above}} = \frac{4\pi}{\varepsilon_0} \delta \quad \text{(since} \mathbf{\dot{E}}_{\text{below}} = 0) \]

and tangential component \(\mathbf{\dot{E}} = 0 \)

\[\Rightarrow \mathbf{\dot{E}} = \frac{4\pi}{\varepsilon_0} \mathbf{\hat{m}} \]

So

\[\mathbf{\ddot{F}} = \frac{\mathbf{\dot{E}}}{4\pi} \left[(\frac{4\pi}{\varepsilon_0} \mathbf{\hat{m}}) (\frac{4\pi}{\varepsilon_0}) - \frac{1}{2} \mathbf{\hat{m}} (\frac{4\pi}{\varepsilon_0})^2 \right] \]

\[\mathbf{\ddot{F}} = \mathbf{\hat{m}} \left[(\frac{4\pi}{\varepsilon_0})^2 - \frac{1}{2} (\frac{4\pi}{\varepsilon_0})^2 \right] = 2\pi \varepsilon_0^2 \mathbf{\hat{m}} \]

Force per unit area

\[\mathbf{F} = 2\pi \varepsilon_0^2 \mathbf{\hat{m}} = \frac{1}{2} \varepsilon \mathbf{\dot{E}} \]

Note:

\(\frac{\mathbf{\dot{E}}}{\varepsilon_0} \).

Namely, one might have thought \(\mathbf{\ddot{F}} = \frac{\mathbf{\dot{E}}}{\varepsilon_0} \). But need

where \(\mathbf{\dot{E}}_{\text{ave}} = \frac{1}{2} (\mathbf{\dot{E}}_{\text{above}} + \mathbf{\dot{E}}_{\text{below}}) \) to exclude self-field of charge on

average field at surface

Surface from acting on itself, see

averaging over above + below

also Jackson pp 92 for another approach.
Consider a set of conductors with potential \(\phi(\vec{r}) = V_c \) fixed on conductor \(i \).

(Also need condition on \(\phi(\vec{r}) \to \infty \) if system is not enclosed)

From uniqueness theorem we know that specifying the \(V_c \) on each conductor is enough to determine the potential \(\phi(\vec{r}) \) everywhere. We can write this potential in the following form.

Let \(\phi^{(i)}(\vec{r}) \) be the solution to the boundary value problem

\[
\nabla^2 \phi^{(i)}(\vec{r}) = 0 \quad \text{and} \quad \phi^{(i)}(\vec{r}) = \begin{cases} 1 & \text{if } \vec{r} \text{ on surface of conductor } i, \\ 0 & \text{if } \vec{r} \text{ on surface of any other conductor } j, \quad j \neq i \end{cases}
\]

Then by superposition

\[
\phi(\vec{r}) = \sum_i V_c \phi^{(i)}(\vec{r})
\]

is a solution to the problem \(\nabla^2 \phi = 0 \) and \(\phi(\vec{r}) = V_c \) for \(\vec{r} \) on surface of conductor \(i \).

The surface charge density at \(\vec{r} \) on surface of conductor \(i \) is

\[
\sigma^{(i)}(\vec{r}) = \frac{-1}{4\pi} \frac{\partial \phi^{(i)}(\vec{r})}{\partial \vec{m}} = -\frac{1}{4\pi} \frac{\partial}{\partial \vec{m}} \frac{\vec{r}}{\epsilon} \cdot \nabla \phi^{(i)}(\vec{r})
\]

where \(\frac{\partial \phi}{\partial \vec{m}} = \nabla \phi \cdot \hat{m} \) is the derivative normal to the surface at point \(\vec{r} \),
The total charge on conductor \(i \) is

\[
Q_i = \oint_{S_i} d\alpha \; \sigma_i(\alpha) = -\frac{1}{4\pi} \sum_j V_j \oint_{S_i} d\alpha \frac{\partial \Phi_j}{\partial m}
\]

\(\uparrow \) surface of conductor \(i \)

Define \(C_{ij} \equiv -\frac{1}{4\pi} \oint_{S_i} d\alpha \frac{\partial \Phi_j}{\partial m} \)

the \(C_{ij} \) depend only on the geometry of the conductors

Then we have

\[
Q_i = \sum_j C_{ij} V_j
\]

\(C_{ij} \) is the capacitance matrix

The charge on conductor \(i \) is a linear function of the potentials \(V_j \) on the conductors \(j \)

Since we know that specifying the \(Q_i \) that is on each conductor will uniquely determine \(\Phi(\vec{r}) \) and hence the potential \(V_i \) on each conductor, the capacitance matrix is invertible

\[
V_i = \sum_j \left[C^{-1}\right]_{ij} Q_j
\]

The electrostatic energy of the conductors is then

\[
E = \frac{1}{2} \sum \left[\frac{1}{2} \epsilon \sum_{i,j} C_{ij} V_i V_j \right]
\]
Compute to define capacitance of two conductors by

\[C = \frac{Q}{V_1 - V_2} \]

when conductor 1 has charge \(Q \) and conductor 2 has charge \(-Q\).

\(V_1 - V_2 \) is potential difference between the two conductors.

All other conductors fixed at \(V_0 = 0 \).

We can determine \(C \) in terms of the elements of the matrix \(C \):

\[Q = C_{11}V_1 + C_{12}V_2 \]

\[-Q = C_{21}V_1 + C_{22}V_2 \]

\[\Rightarrow V_2 = -\frac{(C_{11} + C_{21})V_1}{C_{12} + C_{22}} \]

\[V_1 - V_2 = \left[1 + \left(\frac{C_{11} + C_{21}}{C_{12} + C_{22}} \right) \right] V_1 \]

\[C = \frac{Q}{V_1 - V_2} = \frac{C_{11} - C_{12} \left(\frac{C_{11} + C_{21}}{C_{12} + C_{22}} \right)}{1 + \left(\frac{C_{11} + C_{21}}{C_{12} + C_{22}} \right)} \]

\[C = \frac{C_{11}C_{22} - C_{12}C_{21}}{C_{11} + C_{12} + C_{21} + C_{22}} \]

\[\]

Capacitance can also be defined when the space between the conductors is filled with a dielectric \(\varepsilon \).
In this case, if \(q_0 \) is the free charge, then \(q_0 / \varepsilon \) is the effective total charge to use in computing \(\phi \).
\[\frac{\Phi_i}{\varepsilon} = \sum_j C_{ij}^{(0)} V_j \]

where \(C_{ij}^{(0)} \) are capacitances appropriate to a vacuum between the conductors.

\[A_i = \sum_j \varepsilon C_{ij}^{(0)} V_j \]

\[= \sum_j C_{ij} V_j \quad \text{where} \quad C_{ij} = \varepsilon C_{ij}^{(0)} \]

the capacitance is increased by a factor the dielectric constant \(\varepsilon \).
Inductance

Consider a set of current carrying loops C_i with currents I_i.

In Coulomb's gauge, we can write the magnetic vector potential \vec{A} from these current loops as

$$\vec{A}(\vec{r}) = \frac{1}{c} \int \frac{d^3r'}{\mid \vec{r} - \vec{r}' \mid} \vec{J}(\vec{r}') = \sum_i \frac{I_i}{c} \oint_{C_i} \vec{dl}' \cdot \frac{\vec{r} - \vec{r}'}{\mid \vec{r} - \vec{r}' \mid}$$

Integrate over loop C_i, integration variable is \vec{r}'.

The magnetic flux through loop i is

$$\Phi_i = \oint_{S_i} \vec{m} \cdot \vec{B} = \oint_{S_i} \vec{m} \cdot \vec{n} \times \vec{A} = \oint_{C_i} \vec{dl} \cdot \vec{A}$$

Surface bounded by loop C_i.

$$\Phi_i = \oint_{C_i} \frac{\vec{I} \cdot \vec{r}}{c^2} \oint_{C_j} \frac{\vec{r}'}{\mid \vec{r} - \vec{r}' \mid}$$

Pure geometrical quantity.

$$\Phi_i = c \sum_j M_{ij} I_j$$

where $M_{ij} = \oint_{C_i} \oint_{C_j} \frac{\vec{dl}_i \cdot \vec{dl}_j}{c^2 \mid \vec{r} - \vec{r}' \mid}$

Is the mutual inductance of loops i and j. $M_{ij} = M_{ji}$.

\[L_i = M_{ii} \text{ is self-inductance of loop (i)} \]

The sign convention in the above is that
\[\Phi_i \] is computed in direction given by right hand rule, according to the direction taken for current in loop (i)

\[\Phi_i \]

Magnetic energy

\[\mathcal{E} = \frac{1}{2c} \int d\mathbf{s} \cdot \mathbf{A} = \frac{1}{2c} \sum_i \oint \mathbf{d}l \cdot \mathbf{A} I_i \]

\[= \frac{1}{2c} \sum_i \Phi_i I_i \]

\[\mathcal{E} = \frac{1}{2} \sum_{i,j} M_{ij} I_i I_j \]