Force and torque on electric dipoles

Localized charge distribution $f(r)$ with net charge $\int d^3r \cdot f = 0$

Force on f in slowly varying electric field \vec{E} is

$$\vec{F} = \int d^3r \; f(r) \; \hat{E}(r)$$

define $\vec{r} = \vec{r}_0 + \vec{r}'$ where \vec{r}_0 is some fixed reference point in center of charge distribution f, and \vec{r}' is distance relative to \vec{r}_0

$$\vec{F} = \int d^3r' \; f(\vec{r}') \; \hat{E}(\vec{r}_0 + \vec{r}')$$

Since \vec{E} is slowly varying on length scale where $f \neq 0$, we expand

$$\vec{F} \approx \int d^3r' \; f(\vec{r}') \left[\hat{E}(\vec{r}_0) + (\vec{r}' \cdot \nabla) \hat{E}(\vec{r}_0) \right] + \cdots$$

$$= \hat{E}(\vec{r}_0) \int d^3r' \; f(\vec{r}') + \left(\int d^3r' \; f(\vec{r}') \vec{r}' \cdot \nabla \right) \hat{E}(\vec{r}_0)$$

$$= 0 + (\vec{\phi}, \nabla) \hat{E}(\vec{r}_0)$$

$$\vec{F} = (\vec{\phi}, \nabla) \hat{E} = \sum_{\alpha} \vec{p}_\alpha \frac{\partial \hat{E}}{\partial \vec{q}_\alpha}$$

For $\vec{E} = \text{constant}$, $\vec{F} = 0$
Torque on a magnetic dipole

\[\vec{N} = \int d^3r \, \vec{p}(\vec{r}) \times \vec{E}(\vec{r}) \approx \int d^3r \, \vec{p}(\vec{r}) \times [\vec{E}(\vec{r}) + \cdots] \]

to lowest order \[\vec{N} = \vec{P} \times \vec{E} \]

Force and torque on magnetic dipoles

localized magnetostatic current distribution \(\vec{j}(\vec{r}) \)

\[\vec{F} = \frac{1}{c} \int d^3r \, \vec{J} \times \vec{B} \]

expand about center of current \(\vec{r}_0 \)

\[\vec{B}(\vec{r}) \approx \vec{B}(\vec{r}_0) + (\vec{r} - \vec{r}_0) \vec{b}(\vec{r}_0) + \cdots \]

\[\vec{F} = \frac{1}{c} \left[\int d^3r' \, \vec{j}(\vec{r}') \times \vec{b}(\vec{r}_0) + \frac{1}{c} \int d^3r' \, \vec{j}(\vec{r}') \times (\vec{r}' - \vec{r}_0) \vec{b}(\vec{r}_0) \right] \]

from discussion of magnetic dipole approx we had \(\int d^3r \vec{j} = 0 \) for magnetostatics, where \(\nabla \cdot \vec{j} = 0 \), so 1st term vanishes.

The 2nd term can be written as

\[\vec{F}_d = \frac{\varepsilon_0 \mu_0}{c} \int d^3r' \, \vec{j}_d \, r'_s \times \vec{r}'_d \, \vec{B}_r \]

we need the tensor \(\frac{1}{4} \int d^3r' \, \vec{r}'_d \times \vec{r}'_s - \vec{r}'_d \times \vec{r}'_s \)

\[= \frac{1}{2c} \int d^3r' \left[\vec{r}'_d \times \vec{r}'_s - \vec{r}'_s \times \vec{r}'_d \right] \]

we get

\[\vec{m} = \frac{1}{2} \varepsilon_0 \mu_0 c \int d^3r \, \vec{J} \times \vec{r} \]

\(\vec{m} \) magnetic dipole

\(m = \frac{1}{2} \varepsilon_0 \mu_0 c \int d^3r \, \vec{J} \times \vec{r} \)
\[F_a = \varepsilon \partial \times E \times \partial (m \sigma) - \partial_x B_x \]
\[= \left(\varepsilon \partial_x \partial_y \partial_z - \varepsilon \partial_y \partial_z \partial_x \right) m \sigma \partial_x B_x \]
\[= \varepsilon \partial_m \left(\partial \times (m \cdot \vec{B}) \right) - \varepsilon \partial_x \partial \times \vec{B} \]
\[\vec{F} = \vec{\nabla} \left(m \cdot \vec{B} \right) \quad \text{as} \quad \vec{F} \cdot \vec{B} = 0 \]

Torque on \(\vec{j} \):
\[\vec{N} = \frac{1}{c} \int d^3r (\vec{r} \times (\vec{r} \times \vec{B})) \quad \text{to lowest order,} \quad \vec{B} = \vec{B}(\vec{r}) \]
\[= \frac{1}{c} \int d^3r \left[\vec{r} \times (\vec{r} \cdot \vec{B}) - \vec{B}(\vec{r} \cdot \vec{f}) \right] \]

2nd term \(= 0 \) as follows:
\[\int d^3r \vec{r} \cdot \vec{f} = \int d^3r \vec{r} \cdot \vec{\nabla}(\vec{r}^2) \quad \text{as} \quad \vec{\nabla}(\vec{r}^2) = \vec{r} \]
\[= -\int d^3r (\vec{r} \cdot \vec{f}) (\vec{r}^2) \quad \text{integrate by parts, surface term \(\to 0 \) as} \quad \vec{j} \quad \text{is localized} \]
\[= 0 \quad \text{as} \quad \vec{\nabla} \cdot \vec{j} = 0 \quad \text{in magnetostatics} \]

1st term involves:
\[\int d^3r \vec{j} \cdot \vec{r} = -\int d^3r \vec{r} \cdot \vec{j} = \frac{1}{2} \int d^3r \left[\vec{F} \cdot \vec{r} - \vec{r} \cdot \vec{F} \right] \]

So,
\[\vec{N} = \frac{1}{2c} \int d^3r \left[\vec{r} \cdot \vec{F} (\vec{r} \cdot \vec{B}) - \vec{F} (\vec{r} \cdot \vec{B}) \right] \]
\[\vec{N} = \frac{1}{2c} \int d^3r \left(\vec{r} \times \vec{B} \right) \]

\[= \frac{1}{2c} \int d^3r \left(\vec{r} \times \vec{j} \right) \times \vec{B} \]

\[\vec{N} = \vec{m} \times \vec{B} \]
Electrostatic energy of interaction

\[E = \frac{1}{8\pi} \int d^3r \ E^2 \]

Suppose the charge density \(\rho \) that produces \(\vec{E} \) can be broken into two pieces, \(\rho = \rho_1 + \rho_2 \), with \(\vec{E} = \vec{E}_1 + \vec{E}_2 \) where \(\nabla \cdot \vec{E}_1 = 4\pi \rho_1 \) and \(\nabla \cdot \vec{E}_2 = 4\pi \rho_2 \).

Then

\[E = \frac{1}{8\pi} \int d^3r \left[(\vec{E}_1)^2 + (\vec{E}_2)^2 + 2 \vec{E}_1 \cdot \vec{E}_2 \right] \]

"self-energy" "self-energy" "interaction" energy

of \(\rho_1 \) of \(\rho_2 \) of \(\rho_1 \) with \(\rho_2 \)

\[E_{\text{int}} = \frac{1}{4\pi} \int d^3r \vec{E}_1 \cdot \vec{E}_2 \]

\[= \int d^3r \ \rho_1 \phi_2 = \int d^3r \ \rho_2 \phi_1 \]

where \(\vec{E}_1 = -\nabla \phi_1 \), \(\vec{E}_2 = -\nabla \phi_2 \), by similar manipulations as earlier.

Integrals are over all space.

Apply to the interaction energy of a dipole in an external \(\vec{E} \) field.

\[E_{\text{int}} = \int d^3r \ \rho_1 \phi_2 \]

- potential of external \(\vec{E} \) field
- charge distribution of dipole
Assuming \(\phi \) varies on length scale of \(\rho \), then we can expand \(\phi_2(\vec{r}) = \phi_2(\vec{r}_0) + (\vec{r} - \vec{r}_0) \cdot \nabla \phi_2(\vec{r}_0) \)

where \(\vec{r}_0 \) is the center of mass or any other convenient reference position within \(\rho \).

\[
\begin{align*}
E_{\text{int}} &= \int d^3r \, \rho_1(\vec{r}) \left[\phi_2(\vec{r}_0) + (\vec{r} - \vec{r}_0) \cdot \nabla \phi_2(\vec{r}_0) \right] \\
&= q \, \phi_2(\vec{r}_0) + \left[\int d^3r \, \rho_1(\vec{r}) (\vec{r} - \vec{r}_0) \right] \cdot \nabla \phi_2(\vec{r}_0) \\
&= q \, \phi_2(\vec{r}_0) + \vec{\mu} \cdot \vec{E}
\end{align*}
\]

Where \(q \) is total charge in \(\rho_1 \) and \(\vec{\mu} \) is dipole moment with respect to \(\vec{r}_0 \). \(\vec{E} = -\nabla \phi_2 \) is external \(E \)-field.

For a neutral charge distribution \(q = 0 \) and \(\vec{\mu} \) is independent of the origin about which it is computed, so

\[
E_{\text{int}} = -\vec{\mu} \cdot \vec{E}
\]
< does not include the energy needed to make the dipole or to make \(\vec{E} \).

\(E_{\text{int}} \) is lowest when \(\vec{\mu} \parallel \vec{E} \).

\(\Rightarrow \) in thermal ensemble, dipoles tend to align parallel to an applied \(\vec{E} \).
Energy of magnetic dipole in external field

We had that the force on the dipole was

\[\mathbf{F} = \nabla (m \cdot \mathbf{B}) \]

If we regard the force as coming from the gradient of a potential energy \(U \) then \(\mathbf{F} = -\nabla U \Rightarrow \)

\[U = -m \cdot \mathbf{B} \]

or equivalently, energy = work done to move dipole into position from \(\mathbf{B} \)

\[W = -\int_{0}^{F} \mathbf{F} \cdot d\mathbf{r} = -\int_{0}^{1} \nabla (m \cdot \mathbf{B}) \cdot d\mathbf{r} = \frac{m \cdot \mathbf{B}^2}{2} \]

This is the correct energy to use in cases where \(m \)

is due to intrinsic magnetic moments of atom or molecule—say from electron or nuclear spin. For a thermal ensemble, magnetic moments tend to align \(\parallel \) to \(\mathbf{B} \).

The answer comes out quite differently if we are talking about a magnetic moment produced by a classical current loop. To see this, consider what we would get if we tried to do the calculation in a similar way to how we did if the the energy of an electric dipole in an electric field...
Magnetostatic energy of interaction

\[E = \frac{1}{8\pi} \int d^3r \ B^2 \]

Suppose current \(\mathbf{j} \) that produces \(\mathbf{B} \) can be divided

\[\mathbf{j} = \mathbf{j}_1 + \mathbf{j}_2 \quad \text{with} \quad \mathbf{B} = \mathbf{B}_1 + \mathbf{B}_2, \quad \text{where} \quad \mathbf{\nabla} \times \mathbf{B}_1 = \frac{\mu_0}{c^2} \mathbf{j}_1 \]

and \(\mathbf{\nabla} \times \mathbf{B}_2 = \frac{\mu_0}{c^2} \mathbf{j}_2 \). Then

\[E = \frac{1}{8\pi} \int d^3r \left[\mathbf{B}_1^2 + \mathbf{B}_2^2 + 2 \mathbf{B}_1 \cdot \mathbf{B}_2 \right] \]

- self energy
- self energy
- interaction energy
- \(\mathbf{B}_1 \)
- \(\mathbf{B}_2 \)
- of \(\mathbf{j}_1 \) with \(\mathbf{j}_2 \)

\[E_{\text{int}} = \frac{1}{4\pi} \int d^3r \ \mathbf{B}_1 \cdot \mathbf{B}_2 \]

\[= \frac{1}{c} \int d^3r \ \mathbf{j}_1 \cdot \mathbf{A}_2 = \frac{1}{c} \int d^3r \ \mathbf{j}_2 \cdot \mathbf{A}_1 \]

where \(\mathbf{B}_1 = \mathbf{\nabla} \times \mathbf{A}_1 \), \(\mathbf{B}_2 = \mathbf{\nabla} \times \mathbf{A}_2 \), by similar manipulations as earlier.

Integrals are over all space.

Apply to the interaction energy of a magnetic dipole in an external \(\mathbf{B} \) field.

\[E_{\text{int}} = \frac{1}{2} \int d^3r \mathbf{j}_1 \cdot \mathbf{A}_2 \]

- \(\mathbf{A} \) vector potential of external \(\mathbf{B} \) field
- current distribution of dipole
Assume \(\hat{A} \) varies slowly on length scale of \(\ell \), then expand \(A_i(\mathbf{r}) = A_i(\mathbf{r}_0) + (\mathbf{r} - \mathbf{r}_0) \cdot \nabla A_i(\mathbf{r}_0) \)

\[
E_{\text{int}} = \frac{1}{c} \int d^3r \quad \frac{1}{\epsilon} \cdot \hat{A}(\mathbf{r}_0)
+ \frac{1}{c} \int d^3r \quad \sum_{i,j} \frac{1}{\epsilon} x_{ij} (\mathbf{r} - \mathbf{r}_0) \cdot \frac{\partial}{\partial r_j} A_i(\mathbf{r}_0)
\]

From magnetostatic computation of magnetic dipole moment we had \(\int d^3r \hat{f} = 0 \) for magnetostatics

\(\Rightarrow 1^{\text{st}} \) term above vanishes. So does the piece of 2\text{nd} term \((\int d^3r \hat{f}_{ij}) r_0 \cdot \frac{\partial}{\partial r_j} A_i(\mathbf{r}_0) \)

We are left with

\[
E_{\text{int}} = \left[\frac{1}{c} \int d^3r \quad \frac{1}{\epsilon} x_{ij} \frac{\partial}{\partial r_j} A_i(\mathbf{r}_0) \right] \sum_{ij} \frac{\partial}{\partial r_j} A_i(\mathbf{r}_0)
\]

From computation of magnetic dipole approx
we had

\[
\int d^3r \hat{f}_{ij} = -\int d^3r \hat{x}_{ij} r_2
= \frac{1}{2} \int d^3r \left[\hat{f}_{ij} r_2 - \hat{x}_{ij} r_2 \right]
= \frac{1}{2} \epsilon_{kij} \int d^3r \left(\hat{x}_k \times \hat{r} \right)_k
\]

Recall:

\[
\vec{m} = \frac{1}{2c} \int d^3r \quad \hat{x} \times \hat{r}
\]

\(\Rightarrow \frac{1}{2} \int d^3r \quad \hat{x}_{ij} r_2 = -\epsilon_{kij} m_k \quad \text{mag dipole moment} \)
\[E_{\text{int}} = -m_0 \varepsilon_{kij} \partial_j A_i = m_0 \varepsilon_{kij} \partial_j A_i \]
\[= \vec{m} \cdot (\nabla \times \vec{A}) \]
\[= \vec{m} \cdot \vec{B} = E_{\text{int}} \]

This is opposite in sign to what we found earlier!

Why the difference?

1. When we integrate the work done against the magnetic force to move \(m \) into position from infinity, we found the energy \(U = -m \cdot \vec{B} \).

2. When we compute the interaction energy from
\[E_{\text{int}} = \frac{1}{c^2} \int \frac{d^3r}{d^3r} \vec{r}_1 \cdot \vec{B}_2 \]
\[= \frac{1}{c^2} \int \text{d}^3r \left(\frac{\vec{f}_1(\vec{r}) \cdot \vec{B}_2(\vec{r})}{|\vec{r} - \vec{r}_1|} \right) \]

we found the energy \(E_{\text{int}} = +m \cdot \vec{B} \).

To see which is correct, let us consider computing the interaction energy \(E_{\text{int}} \) directly via method 1.
Consider two loops with currents I_1 and I_2.

What is the work done to move loop 2 in from infinity to its final position with respect to loop 1?

Magnetostatic force on loop 2 due to loop 1 is

$$\vec{F} = \frac{I_2}{c} \oint_{\partial L_2} \vec{l} \times \vec{B}_1$$

Lorentz force

$$\vec{B}_1(r) = \frac{I_1}{c} \oint_{\partial L_1} \vec{l} \times \left(\vec{r} - \vec{r}_1 \right)$$

Biot-Savart law

$$F = \frac{I_1 I_2}{c^2} \oint_{\partial L_2} \oint_{\partial L_1} \vec{l} \times \left(\vec{l} \times \left(\vec{r}_2 - \vec{r}_1 \right) \right) \frac{1}{|\vec{r}_2 - \vec{r}_1|^3}$$

Use triple product rule

$$\vec{l} \times \left[\vec{l} \times \left(\vec{r}_2 - \vec{r}_1 \right) \right] = \vec{l} \left[\vec{l} \cdot \left(\vec{r}_2 - \vec{r}_1 \right) \right] - \left(\vec{r}_2 - \vec{r}_1 \right) \left(\vec{l} \cdot \vec{l} \right)$$

from the 1st term

$$\oint_{\partial L_2} \vec{l} \cdot \left(\vec{r}_2 - \vec{r}_1 \right) \frac{1}{|\vec{r}_2 - \vec{r}_1|^3} = -\oint_{\partial L_2} \vec{l} \cdot \hat{n} \frac{1}{|\vec{r}_2 - \vec{r}_1|^3} = 0$$

as integral of gradient around closed loop always vanishes!
\[F' = -\frac{I_1 I_2}{C^2} \int \int d\mathbf{l}_1 \cdot d\mathbf{l}_2 \frac{(\mathbf{r}_2 - \mathbf{r}_1)}{|r_2 - r_1|^3} \]

Write \(\mathbf{r}_2 = \mathbf{R} + \delta \mathbf{r}_2 \) where \(\mathbf{R} \) is center of loop 2

Use \(\frac{\mathbf{R} + \delta \mathbf{r}_2 - \mathbf{r}_1}{|\mathbf{R} + \delta \mathbf{r}_2 - \mathbf{r}_1|^3} = -\nabla_{\mathbf{R}} \left(\frac{1}{|\mathbf{R} + \delta \mathbf{r}_2 - \mathbf{r}_1|} \right) \)

\[\mathbf{F} = \frac{I_1 I_2}{C^2} \int \int d\mathbf{l}_1 \cdot d\mathbf{l}_2 \nabla_{\mathbf{R}} \left(\frac{1}{|\mathbf{R} + \delta \mathbf{r}_2 - \mathbf{r}_1|} \right) \]

To move loop 2 we need to apply a force equal and opposite to the above magnetostatic force.

Therefore the work we do in moving loop 2 from infinity to its final position at \(\mathbf{R}_0 \) is

\[W_{\text{mech}} = -\int_{\infty}^{\mathbf{R}_0} \mathbf{F} \cdot d\mathbf{R} = -\frac{I_1 I_2}{C^2} \int \int d\mathbf{l}_1 \cdot d\mathbf{l}_2 \int d\mathbf{R} \cdot \nabla_{\mathbf{R}} \left(\frac{1}{|\mathbf{R} + \delta \mathbf{r}_2 - \mathbf{r}_1|} \right) \]

\[= -\frac{I_1 I_2}{C^2} \int \int d\mathbf{l}_1 \cdot d\mathbf{l}_2 \left. \mathbf{R}_2 \right| \]

where \(\mathbf{r}_2 = \mathbf{R}_0 + \delta \mathbf{r}_2 \)

\[= -\frac{1}{C^2} \int d^3r_1 \int d^3r_2 \left. \frac{f_1(r_1) \cdot f_2(r_2)}{|r_2 - r_1|} \right] \]

Note the minus sign! This is just the negative of the interaction energy!!

\[= -M_{12} I_1 I_2 \]

\(\checkmark \) mutual inductance

Why the minus sign!
The minus sign we have here is the same
minus sign we get when we found \(U = -\vec{m} \cdot \vec{B} \)
by integrating the force on the magnetic dipole.

Why don't we get \(+\frac{1}{c^2} \int d^3r \, d^3r_2 \frac{\vec{f}_1(r) \cdot \vec{f}_2(r)}{r_{12}^2 - r_{12}}\)
with the plus sign we expect from \(E = \frac{1}{8\pi} \int d^3r \, B^2 \)?

Answer: we have left something out.

Faraday's law - when we move loop 2, the magnetic
flux through loop 2 changes. This \(\frac{d\Phi}{dt} \) creates
an emf \(\mathcal{E} = \oint \mathbf{E} \cdot d\mathbf{l} \) around the loop that
would tend to change the current in the loop.

If we are to keep the current fixed at constant \(I_2 \)
then there must be a battery in the loop that does
work to counter this induced emf (electromotive force).

Similarly, the flux through loop 1 is changing and a
battery does work to keep \(I_1 \) constant. We need
to add this work done by the battery to the
mechanical work computed above.

emf induced in loop 1 \(\mathcal{E}_1 = \oint \mathbf{E}_1 \cdot d\mathbf{l} \) \[\text{integrating in direction of current} \]
emf induced in loop 2 \(\mathcal{E}_2 = \oint \mathbf{E}_2 \cdot d\mathbf{l} \)

Faraday \(\mathcal{E}_1 = \frac{-d\Phi_1}{c dt} \) \(\mathcal{E}_1 = \text{flux through loop 1} \)

\(\mathcal{E}_2 = \frac{-d\Phi_2}{c dt} \) \(\mathcal{E}_2 = \text{flux through loop 2} \)
To keep the current constant, the batteries need to provide an emf that counters these Faraday-induced emfs. The work done by the battery per unit time is therefore

\[
\frac{dW_{\text{battery}}}{dt} = -\varepsilon_1 I_1 - \varepsilon_2 I_2
\]

(check units: \(\varepsilon I\) is \([\text{length}] \cdot [\text{force}] \cdot [1/\text{time}]\)

\[= [\text{length}] \cdot [\text{force}] \cdot [\text{energy}]\]

\[
\frac{dW_{\text{battery}}}{dt} = \frac{d\Phi_1}{cdt} I_1 + \frac{d\Phi_2}{cdt} I_2
\]

\[
W_{\text{battery}} = \int_0^T dt \left(\frac{d\Phi_1}{cdt} I_1 + \frac{d\Phi_2}{cdt} I_2 \right)
\]

where \(t = 0\) loop 2 is at infinity
\(t = T\) loop 2 is at final position
\(I_1\), \(I_2\) kept constant as loop moves

\[
W_{\text{battery}} = \frac{1}{2} \overline{\Phi}_1 I_1 + \frac{1}{2} \overline{\Phi}_2 I_2
\]

where \(\overline{\Phi}_1\) and \(\overline{\Phi}_2\)
are fluxes in final position, and are assumed that fluxes = 0 at infinity

\[
\overline{\Phi}_1 = CM_{12} I_2
\]

\[
\overline{\Phi}_2 = CM_{21} I_1 = CM_{12} I_1 \quad \text{as} \quad M_{12} = M_{21}
\]

\[\Rightarrow W_{\text{battery}} = 2M_{12} I_1 I_2\]
add this to the mechanical work

\[W_{\text{total}} = W_{\text{mech}} + W_{\text{battery}} = -M_1 I_1 I_2 + 2M_2 I_1 I_2 \]

\[= M_2 I_1 I_2 = \frac{1}{c^2} \int d^3r_1 \int d^3r_2 \frac{\mathbf{f}_1(r_1) \cdot \mathbf{f}_2(r_2)}{|r_1 - r_2|} \]

we get back the correct interaction energy!

Conclusion: The magnetostatic interaction energy

\[\frac{1}{c^2} \int d^3r_1 \int d^3r_2 \frac{\mathbf{f}_1(r_1) \cdot \mathbf{f}_2(r_2)}{|r_1 - r_2|} \]

includes the work done to maintain the current stationery as the current distributions move.

When we computed the interaction energy of a current loop dipole \(\mathbf{m} \) and found

\[W_{\text{int}} = +\mathbf{m} \cdot \mathbf{B} \]

this included the energy needed to maintain the constant current producing the constant \(\mathbf{m} \).

When we integrated the force on the dipole to find the potential energy

\[U = -\mathbf{m} \cdot \mathbf{B} \]

this did not include the energy needed to maintain the constant current that creates \(\mathbf{m} \).

This is the correct energy expression to use when \(\mathbf{m} \) comes from intrinsic magnetic moments due to particles' intrinsic spin, which cannot be viewed as arising from a current loop!