We will see that this situation in general corresponds to \textit{elliptically polarized wave}. \\

\textbf{General Case}: \(E_1 \) and \(E_2 \) are complex constants \\\nwrite \(E_1 \hat{E}_1 + E_2 \hat{E}_2 = \hat{U} e^{i\phi} \) \\\nwhere \(\phi \) is chosen so that \(\hat{U} \cdot \hat{U} \) is real \\\n- one can always do this since \(\hat{U} \cdot \hat{U} = (E_1^2 + E_2^2) e^{-2i\phi} \) \\\nso \(2\phi \) is just the phase of the complex \(E_1^2 + E_2^2 \) \\\n
\(\hat{U} \) is a complex vector \(\Rightarrow \hat{U} = \hat{U}_a + i \hat{U}_b \) \\\nwith \(\hat{U}_a \) and \(\hat{U}_b \) real vectors \\\nSince \(\hat{U} \cdot \hat{U} \) is real \(\Rightarrow \hat{U}_a \cdot \hat{U}_b = 0 \) \\\nso \(\hat{U}_a \perp \hat{U}_b \) orthogonal \\\n
let \(\hat{e}_a \) be the unit vector in direction of \(\hat{U}_a \) \\\nso \(\hat{U}_a = \|U_a\| \hat{e}_a \) with \(\|U_a\| = 1 \) \\\nlet \(\hat{e}_b = \hat{\mathbf{m}} \times \hat{e}_a \) so that \(\{\hat{\mathbf{m}}, \hat{e}_a, \hat{e}_b\} \) are a right-handed coordinate system \\\n
Then \(\hat{U}_b = \pm \|U_b\| \hat{e}_b \) where \(\|U_b\| = 1 \) \\\n
since \(\hat{U}_a \perp \hat{U}_b \) and both \(\hat{U}_a \) and \(\hat{U}_b \) are \(\perp \) to \(\hat{\mathbf{m}} \). \\\n
It is \((+\) if \(\hat{U}_b \) is parallel to \(\hat{e}_b \) and \nIt is \((-\) if \(\hat{U}_b \) is anti-parallel to \(\hat{e}_b \).
In this representation we have

\[\tilde{E}(\tilde{r}, t) = \text{Re} \left\{ \tilde{u} e^{i\Psi} e^{-i(k_1 \tilde{r} - \omega t)} \right\} \]

\[= e^{-k_2 \hat{\mathbf{r}} \cdot \tilde{r}} \text{Re} \left\{ u_a \hat{e}_a e^{i(k_1 \hat{\mathbf{r}} \cdot \tilde{r} - \omega t + \Phi)} \right\} \]

\[= e^{-k_2 \hat{\mathbf{r}} \cdot \tilde{r}} \left\{ u_a \hat{e}_a \cos(\Psi + \Phi) \right\} \]

where we write \(\Psi = k_1 \hat{\mathbf{r}} \cdot \tilde{r} - \omega t \)

Let's define \(e^{-k_2 \hat{\mathbf{r}} \cdot \tilde{r}} u_a \rightarrow u_a \]

\(e^{-k_2 \hat{\mathbf{r}} \cdot \tilde{r}} u_b \rightarrow u_b \)

so we don't have to keep writing the constant attenuation factor that is a common factor of all components of \(\tilde{E} \).

Then define \(E_a \) and \(E_b \) as the components of \(\tilde{E} \) in the directions \(\hat{e}_a \) and \(\hat{e}_b \) respectively.

\[E_a = u_a \cos(\Psi + \Phi) \]

\[E_b = u_b \sin(\Psi + \Phi) \]

This then gives

\[\left(\frac{E_a}{u_a} \right)^2 + \left(\frac{E_b}{u_b} \right)^2 = \cos^2(\Psi + \Phi) + \sin^2(\Psi + \Phi) = 1 \]

This is just the equation for an ellipse.
with semi-axes of lengths U_a and U_b, oriented in the directions of \hat{e}_a and \hat{e}_b.

\[\begin{align*}
\text{E} & \quad (\text{E}) \quad \text{Ea} \\
\text{Ea} & \quad \text{Eb} \\
\text{Ua} & \quad \text{Ub} \\
\text{0} & \quad \text{0}
\end{align*} \]

\[\Rightarrow \text{At a fixed position } \text{P, the tip of the vector } \text{E} \text{ will trace out the above ellipse as the time increases by one period of oscillation } 2\pi/\omega. \]

For (+), i.e. $\vec{U}_b = U_b \hat{e}_b$, \vec{E} goes around the ellipse **counterclockwise** as t increases.

For (-), i.e $\vec{U}_b = -U_b \hat{e}_b$, \vec{E} goes around the ellipse **clockwise** as t increases.

Such a wave is said to be **elliptically polarized**.

Special cases

1. $U_a = 0$ or $U_b = 0$
 - the wave is **linearly polarized**
(2) \(U_a = U_b \)

The tip of \(\mathbf{E} \) traces out a circle as \(t \) increases. The wave is circularly polarized.

The (+) case is said to have right handed circular polarization.

The (-) case is said to have left handed circular polarization.

One can define circular polarization basis vectors

\[
\hat{\mathbf{e}}_+ = \frac{\hat{\mathbf{e}}_a + i \hat{\mathbf{e}}_b}{\sqrt{2}}, \quad \hat{\mathbf{e}}_- = \frac{\hat{\mathbf{e}}_a - i \hat{\mathbf{e}}_b}{\sqrt{2}}
\]

with \(\hat{\mathbf{e}}_a \) and \(\hat{\mathbf{e}}_b \) orthogonal.

A wave with complex amplitude \(\hat{E}_w = E \hat{e}_+ \) is right handed circularly polarized.

A wave with complex amplitude \(\hat{E}_w = E \hat{e}_- \) is left handed circularly polarized.

Just as the general case can always be written as a superposition of two orthogonal linearly polarized waves, i.e.

\[
\hat{E}_w = E_1 \hat{e}_1 + E_2 \hat{e}_2
\]
one can also always write the general case as a superposition of a left handed and a right handed circularly polarized wave

$$\mathbf{U} = \mathbf{U}_a + i \mathbf{U}_b = \mathbf{U}_a \hat{e}_a + i \mathbf{U}_b \hat{e}_b$$

$$= \left(\frac{\mathbf{U}_a + \mathbf{U}_b}{\sqrt{2}} \right) \hat{e}_+ + \left(\frac{\mathbf{U}_a - \mathbf{U}_b}{\sqrt{2}} \right) \hat{e}_-$$

(resubstitute in for \hat{e}_\pm and expand, to see that this is so)

⇒ An elliptically polarized wave can be written as a superposition of circularly polarized waves

As a special case of the above (if $\mathbf{U}_a=0$ or $\mathbf{U}_b=0$) a linearly polarized wave can always be written as a superposition of circularly polarized waves.
magnetic field

In the above general formulation we can write \(\vec{H} \) as

\[
\vec{H} = \frac{e}{\omega \mu} \operatorname{Re} \left\{ k \hat{m} \times \vec{U} e^{i \Phi} e^{i (k \cdot \hat{r} - \omega t)} \right\}
\]

\[
= \frac{c |k|}{\omega \mu} \operatorname{Re} \left\{ \hat{m} \times (U_a \hat{e}_a \pm i U_b \hat{e}_b) e^{i (k \cdot \hat{r} - \omega t + \delta + \Phi)} \right\}
\]

\[
= \frac{c |k|}{\omega \mu} \operatorname{Re} \left\{ (U_a \hat{e}_b \mp i U_b \hat{e}_a) e^{i (k \cdot \hat{r} - \omega t + \delta + \Phi)} \right\}
\]

\[
\vec{H} = \frac{c |k|}{\omega \mu} e^{-k_2 \hat{m} \cdot \hat{r}} \left[U_a \hat{e}_b \cos (\Phi + \delta + \phi) \pm U_b \hat{e}_a \sin (\Phi + \delta + \phi) \right]
\]

we had for the electric field

\[
\vec{E} = e^{-k_2 \hat{m} \cdot \hat{r}} \left[U_a \hat{e}_a \cos (\Phi + \delta + \phi) \mp U_b \hat{e}_b \sin (\Phi + \delta + \phi) \right]
\]

Consider \(\vec{E} \cdot \vec{H} \). From the above, with \(\hat{e}_a \cdot \hat{e}_b = 0 \), we get

\[
\vec{E} \cdot \vec{H} = e^{-2k_2 \hat{m} \cdot \hat{r}} \operatorname{Re} \left\{ \frac{c |k|}{\omega \mu} U_a U_b (\pm 1) \left[\sin (\Phi + \delta + \phi) \cos (\Phi + \delta + \phi) \right. \right.

\[
- \cos (\Phi + \delta + \phi) \sin (\Phi + \delta + \phi) \left. \right] \right\}
\]

\[
= e^{-2k_2 \hat{m} \cdot \hat{r}} \frac{c |k|}{\omega \mu} U_a U_b (\pm 1) \sin \delta
\]

where in the last step we used \(\sin A \cos B - \cos A \sin B = \sin (A - B) \)

We see that \(\vec{E} \cdot \vec{H} = 0 \) only when

1) \(\delta = 0 \), i.e., the medium has no absorption

or

2) \(U_a = 0 \) or \(U_b = 0 \), i.e., the wave is \underline{linearly polarized}
Reflection & Transmission of waves at Interfaces

\(\vec{k}_0 \) = incident wave; \(\theta_2 = \) angle of incidence
\(\vec{k}_1 \) = reflected wave; \(\theta_1 = \) angle of reflection
\(\vec{k}_2 \) = the transmitted or "refracted" wave; \(\theta_2 = \) angle of refraction

Let each wave be given by

\[\vec{F}_n(\vec{r}_0) = \vec{F}_n e^{-i(k_n \cdot \vec{r}_0 - \omega_0 t)} \]

Where \(\vec{F}_n \) can be either \(\vec{E}_n \) or \(\vec{H}_n \) for the electric or magnetic component of the wave.

Boundary condition: tangential component \(\vec{E} \)

must be continuous at \(z=0 \). If \(\vec{E} \) is a vector in \(xy \) plane, and we consider \(\vec{r}_0 = 0 \), then

\[\hat{\mathbf{x}} \cdot \vec{E}_0 e^{-i\omega_0 t} + \hat{\mathbf{x}} \cdot \vec{E}_1 e^{-i\omega_1 t} = \hat{\mathbf{x}} \cdot \vec{E}_2 e^{-i\omega_2 t} \]

must be true for all time. Can only happen if

\[\omega_0 = \omega_1 = \omega_2 \equiv \omega \] all frequencies are equal
Now consider the same boundary condition for \(\mathbf{p} \) a position vector in the xy plane at \(z = 0 \). Since we've all agreed we can cancel out the common \(e^{i\mathbf{k} \cdot \mathbf{p}} \) factors to get

\[
\hat{x} \cdot \mathbf{E}_0 e^{i\mathbf{k}_0 \cdot \mathbf{p}} + \hat{x} \cdot \mathbf{E}_1 e^{i\mathbf{k}_1 \cdot \mathbf{p}} = \hat{x} \cdot \mathbf{E}_2 e^{i\mathbf{k}_2 \cdot \mathbf{p}}
\]

this must be true for all \(\mathbf{p} \). Can only happen if the projections of the \(\mathbf{k}_n \) in the xy plane are all equal

\[
\begin{align*}
\hat{x} \cdot \mathbf{k}_0 &= \hat{x} \cdot \mathbf{k}_1 = \hat{x} \cdot \mathbf{k}_2 \\
\hat{y} \cdot \mathbf{k}_0 &= \hat{y} \cdot \mathbf{k}_1 = \hat{y} \cdot \mathbf{k}_2
\end{align*}
\]

only z components \(k_z \) vectors can be different

Choose coordinate system as in diagram so that all \(\mathbf{k}_n \) vectors lie in the xy plane (\(y \) is out of page)

\[
\begin{align*}
\mathbf{E}_0 &= \mathbf{k}_0 \\
\mathbf{E}_1 &= \mathbf{k}_1 \\
\mathbf{E}_2 &= \mathbf{k}_2
\end{align*}
\]

Since \(\mathbf{E}_0 \) is real and positive, therefore one real vectors

\[
\begin{align*}
k_0 &= k_1 \\
\Rightarrow |\mathbf{k}_0| \sin \Theta_0 &= |\mathbf{k}_1| \sin \Theta_1
\end{align*}
\]

Since \(k_0^2 = \frac{w^2}{c^2} n \mathbf{a} \mathbf{a} \) and \(k_1^2 = \frac{w^2}{c^2} n \mathbf{a} \mathbf{a} \) 7.2.1

Then \(|\mathbf{k}_0| = |\mathbf{k}_1| \) so \(\sin \Theta_0 = \sin \Theta_1 \)

\[
\Theta_0 = \Theta_1
\]

Angle of incidence = angle of reflection
If \(\varepsilon_b\) is also real and positive (B is transparent) then \(|k_2|\) is real

\[k_{ox} = k_{2x} \Rightarrow |k_0| \sin \theta_0 = |k_2| \sin \theta_2 \]

\[k_2^2 = \frac{\omega^2}{c^2} \varepsilon_b \mu_b \]

\[\Rightarrow \sqrt{\mu_0 \varepsilon_0} \sin \theta_0 = \sqrt{\mu_0 \varepsilon_0} \sin \theta_2 \]

In terms of index of refraction \(M = \frac{k_e}{\omega} = \frac{\omega}{c} \sqrt{\mu \varepsilon} \)

\[M = \sqrt{\mu \varepsilon} \]

\[\Rightarrow m_a \sin \theta_0 = m_b \sin \theta_2 \]

\[
\begin{array}{c|c}
\sin \theta_2 & m_a \\
\sin \theta_0 & m_b \\
\end{array}
\]

Strelo's Law

time for all types of waves, not just EM waves

If \(m_a > m_b\) then \(\theta_2 > \theta_0\)

In this case, when \(\theta_2\) is too large, we will have

\[\frac{m_a}{m_b} \sin \theta_0 > 1 \]

and there will be no solution for \(\theta_2\)

\[\Rightarrow \text{no transmitted wave} \]

This is "total internal reflection" - wave does not exit medium B. The critical angle \(\theta_c\) above which one has total internal reflection is given by

\[\frac{m_a}{m_b} \sin \theta_c = 1 \]

\[\theta_c = \arcsin \left(\frac{m_b}{m_a} \right) \]
Density

\[E = 1 + 4\pi\alpha x \]

Since \(n = \sqrt{n_E} \) and \(n \) grows with density of the material, one usually has total internal reflection when one goes from a denser to a less dense medium.

Examples: diamonds sparkle due to total internal reflection. Diamonds have large \(n \) \(\Rightarrow \) small \(\theta \) \(\Rightarrow \) light bounces around inside many times before it can exit.

Can also see total internal reflection when swimming under water.

More general case: \(\sqrt{n_E} \) is complex so \(\vec{k}_2 \) is complex

\[\vec{k}_2 = \vec{k}_2' + i\vec{k}_2'' \]

\[\vec{k}_2' = |\vec{k}_2'| \]

\[\vec{k}_2'' = |\vec{k}_2''| \]

real part, imaginary part

Note: \(\vec{k}_2' \) and \(\vec{k}_2'' \) need not be in the same direction!

Condiiton \(\vec{k}_{ox} = \vec{k}_{2x} \Rightarrow \begin{cases} \vec{k}_{ox} = \vec{k}_{2x} \Rightarrow \text{equate real and imaginary parts} \end{cases} \]

\[\vec{k}_o \sin \theta_0 = \vec{k}_2' \sin \theta_2' \]

\[\theta = \vec{k}_2'' \sin \theta_2'' \]
\[\Rightarrow \Theta_2'' = 0 \]

\[k_2'' = k_2'' \hat{z} \]

\[\text{Attenuation factor for the transmitted wave is } e^{-k_2' z} \]

\[\rightarrow \text{planes of constant amplitude are parallel to the interface no matter what the angle of incidence } \Theta_0. \]

\[k_0 \sin \Theta_0 = k_0' \sin \Theta_0' \]

\[k_0 = \frac{\omega}{c} \sqrt{\mu_0 \epsilon_0} = \frac{\omega}{c} \mu_0 \]

\[\text{need two equations to solve for } k_2' \text{ and } \Theta_2' \]

\[\text{The 2nd equation comes from dispersion relation in medium (b).} \]

\[\text{planes of constant phase are } \perp \text{ to } \mathbf{k}_2' \]

\[-k_2^2 = \mathbf{k}_2 \cdot \mathbf{k}_2 = (k_2')^2 + (k_2'')^2 + 2i k_2' \cdot k_2'' = \frac{\omega^2}{c^2} \mu_b \epsilon_b \]

\[\mathbf{k}_2' \cdot \mathbf{k}_2'' = k_2' k_2'' \cos \Theta_2' \]

\[\text{Equate real and imaginary parts} \]

\[(k_2')^2 - (k_2'')^2 = \frac{\omega^2}{c^2} \mu_b \epsilon_{b1} \]

\[\epsilon_b = \epsilon_{b1} + i \epsilon_{b2} \]

\[\frac{2 k_2' k_2'' \cos \Theta_2'}{\omega^2} = \frac{\omega^2}{c^2} \mu_b \epsilon_{b2} \]

\[\text{Solve} \]

\[(k_2')^2 = (k_2'')^2 + \frac{\omega^2}{c^2} \mu_b \epsilon_{b1} \]

\[(k_2')^2 = \left(\frac{\omega^2}{c^2} \mu_b \epsilon_{b2} \frac{1}{2 k_2' \cos \Theta_2'} \right)^2 + \frac{\omega^2}{c^2} \mu_b \epsilon_{b1} \]
\[(k_2')^4 - \frac{c^2 \mu_0 E_b k_2'}{c^4} (k_2')^2 - \frac{\mu_0^2 E_b^2}{4 c^4} \frac{\mu_0 E_b}{4 \cos^2 \theta_2} = 0\]

Quadratic formula:

\[k_2' = \frac{c^2 \sqrt{\mu_0}}{2} \left[\frac{1}{2} E_b + \frac{1}{2} \sqrt{E_b^2 + \frac{E_b^2}{\cos^2 \theta_2}} \right]^{1/2} \]

And:

\[k_2'' = (k_2')^2 - \frac{\omega^2}{c^2} \mu_0 E_b \]

\[k_2'' = \frac{c^2 \sqrt{\mu_0}}{2} \left[-\frac{1}{2} E_b + \frac{1}{2} \sqrt{E_b^2 + \frac{E_b^2}{\cos^2 \theta_2}} \right]^{1/2} \]

Note, these reduce to what we had earlier for a plane wave, if we take \(\theta_2 = 0 \).

Both \(k_2' \) and \(k_2'' \) depend on angle of refraction \(\theta_2 \).

Finally, \(k_2' \sin \theta_2' = \omega n_0 \sin \theta_0 \)

\[
\sin \theta_0 = \sqrt{\frac{\mu_0 E_b}{c^4}} \left[\frac{1}{2} + \frac{1}{2} \sqrt{1 + \frac{E_b^2}{E_b^2 \cos^2 \theta_2}} \right]^{1/2} \sin \theta_2' \]

determines \(\theta_2' \) in terms of given \(\theta_0 \).

Cases:

1) for a nearly transparent material with \(E_b \ll E_b' \)

\[n_0 = \sqrt{\mu_0 E_b} \]

defines \(n_0 = \sqrt{\mu_0 E_b} \) index of refraction
\[
m_a \sin \theta_0 = m_b \sin \theta_2' \left[1 + \frac{E_{b2}^2}{4 E_{b1}^2 \cos^2 \theta_2'} \right]^{1/2}
\]

\[
\approx m_b \sin \theta_2' \left[1 + \frac{E_{b2}^2}{8 E_{b1}^2 \cos^2 \theta_2'} \right]
\]

Small correction to Snell's law for \(E_{b2} \ll 1 \) can solve iteratively\(\frac{E_{b1}}{E_{b2}} \)

to lowest order:

\[
m_a \sin \theta_2' = m_b \sin \theta_2' \Rightarrow \cos^2 \theta_2' = 1 - \sin^2 \theta_2' = 1 - \left(\frac{m_a \sin \theta_0}{m_b} \right)^2
\]

So to next order,

\[
m_a \sin \theta_2' = m_b \sin \theta_2' \left[1 + \frac{E_{b2}^2}{8 E_{b1}^2 \left(1 - \frac{m_a^2}{m_b^2} \sin^2 \theta_2' \right)} \right]
\]

or \(\sin \theta_2' = \frac{m_a \sin \theta_0}{m_b} \left[1 + \frac{E_{b2}^2}{8 E_{b1}^2 \left(1 - \frac{m_a^2}{m_b^2} \sin^2 \theta_0 \right)} \right] \)

\[
\frac{E_{b1}}{E_{b2}} \geq \frac{m_a}{m_b} \sin \theta_0
\]

result is that \(\theta_2' \) is smaller than Snell's law would predict.
for a good conductor, or absorbing region of a dielectric, $E_b_2 \gg E_b_1$

to lowest order

$$M_a \sin \theta_0 = \sqrt{M_b E_b_1} \left(\frac{1}{2} \frac{E_b_2}{E_b_1 \cos \theta_2} \right)^{1/2} \sin \theta_2$$

$$M_a \sin \theta_0 = \sqrt{\frac{M_b E_b_2}{2}} \frac{\sin \theta_2}{\sqrt{\cos \theta_2}}$$

Snell's law only holds if both media are transparent.

very different from Snell's Law!