Suppose $\sigma(\theta) = k \cos \theta$. What is ϕ?

Note $\sigma(\theta) = k P_1(\cos \theta)$

hence only $A_1 \neq 0$ by orthogonality of $P_0(\cos \theta)$

$$A_1 = \frac{4\pi k}{2} \int_0^\pi \sin \theta P_1(\cos \theta) P_1(\cos \theta)$$

$$= \frac{4\pi k}{2} \left(\frac{2}{2+1} \right) = \frac{4\pi k}{3}$$

$$\Rightarrow \phi(r, \theta) = \begin{cases} \frac{4\pi k}{3} r \cos \theta & r < R \\ \frac{4\pi k}{3} \frac{R^3}{r^2} \cos \theta & r > R \end{cases}$$

we will see that potential outside the sphere is that of an ideal dipole with dipole moment $p = \frac{4\pi k R^3}{3}$

Inside the sphere, the potential $\phi = \frac{4\pi k}{3} z$

where $z = r \cos \theta$. The electric field inside the sphere is therefore the constant

$$\vec{E} = -\nabla \phi = -\frac{4\pi k}{3} \hat{z}$$
outside the sphere the field is

\[E = -\nabla \phi = -\frac{\partial \phi}{\partial r} \hat{r} - \frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\theta} \]

\[= \frac{8\pi k R^3}{3} \cos \theta \hat{r} + \frac{4\pi k R^3}{3} \sin \theta \hat{\theta} \]

\[E = \frac{4\pi k R^3}{3} \frac{1}{r^2} \left[2 \cos \theta \hat{r} + \sin \theta \hat{\theta} \right] \]

dipole field
Physical example with $\sigma(\theta) = k \cos \theta$

Two spheres of radii R, with equal but opposite uniform charge densities ρ and $-\rho$, displaced by small distance $d \ll R$

Surface charge σ builds up due to displacement. This is a uniformly "polarized" sphere.

Surface charge $\sigma': \sigma(\theta) = \rho Sr = \rho d \cos \theta$

\[\sigma(\theta) = \rho d \cos \theta \]

Total dipole moment is $(\rho d)^2 \frac{4\pi}{3} R^3$

Polarization = \frac{\text{dipole moment}}{\text{volume}} = \rho d$

\hat{E} field inside a uniformly polarized sphere is constant.

\[\hat{E} = -\rho d \frac{4\pi}{3} \]
Grounded conducting sphere in uniform electric field $\mathbf{E} = E_0 \hat{z}$

as $r \to \infty$ far from sphere, $\mathbf{E} = E_0 \hat{z} \Rightarrow \phi = -E_0 z$

boundary conditions

\[
\begin{align*}
\phi(r, \theta) &= 0 \\
\phi(r \to \infty, \theta) &= -E_0 r \cos \theta
\end{align*}
\]

Solution outside sphere has the form

\[\phi(r, \theta) = \sum_{\ell=0}^{\infty} \left[A_\ell r^\ell + \frac{B_\ell}{r^{\ell+1}} \right] P_\ell(\cos \theta) \]

From boundary condition as $r \to \infty$, we have

\[A_\ell = 0 \quad \text{all } \ell \neq 1\]

\[A_1 = -E_0 \quad \text{since } P_1(\cos \theta) = \cos \theta\]

\[\phi(r, \theta) = -E_0 r \cos \theta + \sum_{\ell=0}^{\infty} \frac{B_\ell}{r^{\ell+1}} P_\ell(\cos \theta)\]

From $\phi(r, \theta) = 0$ we have

\[0 = -E_0 R \cos \theta + \sum_{\ell=0}^{\infty} \frac{B_\ell}{R^{\ell+1}} P_\ell(\cos \theta)\]

\[\Rightarrow B_\ell = 0 \quad \text{all } \ell \neq 1\]

\[B_1 = \frac{E_0 R}{R^2} \Rightarrow B_1 = +E_0 R^3\]
\[\phi(r, \theta) = -E_0 \left(r - \frac{R^3}{r^2} \right) \cos \theta \]

1st term is just potential \(-E_0 r \cos \theta\) of the uniform applied electric field.

2nd term is potential due to the induced surface charge on the surface — it is a dipole field.

Induced charge density is

\[4\pi \sigma(\theta) = \left. \frac{\partial \Phi}{\partial r} \right|_{r=R} = E_0 \left(1 + 2R^3 r^{-3} \right) \cos \theta = 3E_0 \cos \theta \]

\[\sigma(\theta) = \frac{3}{4\pi} E_0 \cos \theta \] like uniformly polarized sphere \(k = \frac{3E_0}{4\pi} \)

From (2) we know that the field inside the sphere due to this \(\sigma \) is just

\[-\frac{1}{2} \pi \hat{r} = -\frac{1}{2} \pi \frac{3E_0}{4\pi} \hat{r} = -E_0 \hat{r} \] This is just what is required so that the total field inside the conducting sphere vanishes.

Can check that outside the sphere, \(\vec{E} = -\hat{r} \Phi \) is normal to surface of sphere at \(r = R \).
Behavior of fields near a cylindrical hole at sharp tip

We now want to solve the $\nabla^2 \phi = 0$ with separation of variables, but now ϕ is restricted to range $0 \leq \theta \leq \beta$.

We still have azimuthal symmetry, but now, since we do not need solution to ϕ be finite for all $0 \leq \theta \leq \pi$, but only $\theta \in (0, \beta)$, we have more solutions to the Θ equation, i.e., l does not have to be integer. It still needs $l > 0$ to be finite at $\theta = 0$.

See Jackson sec. 3.4 for details.
Multiple Expansions

Region with \(p \neq 0 \)

We want to find the potential \(\phi \) for an arbitrary localized distribution of charge \(\rho \), at distances far away \(r \gg R \).

\[
\phi(\vec{r}) = \int d^3r' \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|}
\]

General Coulomb formula:

We want an expansion of \(\frac{1}{|\vec{r} - \vec{r}'|} \) in powers of \(\frac{r'}{r} \) for \(r \gg r' \).

View this as the potential at \(\vec{r} \) due to a unit point charge located at position \(\vec{r}' \).

We take \(\vec{r}' \) on the \(\hat{z} \) axis.

\[
\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{r}
\]

The problem has azimuthal symmetry \(\phi \) depends only on \(r \) and \(\theta \), so we can express it as an expansion in Legendre polynomials.

For \(r \gg r' \),

\[
\phi(r, \theta) = \sum_{\ell=0}^{\infty} \frac{B_{2\ell}}{r^{\ell+1}} P_{2\ell}(\cos \theta)
\]

all \(A_\ell = 0 \)

as \(\ell \rightarrow \infty \)

\[
= \frac{1}{r} \sum_{\ell=0}^{\infty} \frac{B_{2\ell}}{r^{\ell}} P_{2\ell}(\cos \theta)
\]

as \(r \rightarrow \infty \)
We know \(\phi (r, \theta = 0) = \frac{1}{r - r'} \) (for \(r > r' \))

\[\phi (r, 0) = \frac{1}{r} \sum_{\ell = 0}^{\infty} \frac{B_{\ell}}{r'^{\ell+1}} P_{\ell} (1) \]

\[= \frac{1}{r} \sum_{\ell = 0}^{\infty} \frac{B_{\ell}}{r'^{\ell+1}} \] as \(P_{\ell} (1) = 1 \)

\[= \frac{1}{r} \left(\frac{1}{1 - r/r'} \right) \approx \text{exact result from Coulomb} \]

Now Taylor expansion \(\frac{1}{1 - \epsilon} = 1 + \epsilon + \epsilon^2 + \epsilon^3 + \epsilon^4 + \cdots \)

\[\Rightarrow \frac{1}{r} \sum_{\ell = 0}^{\infty} \frac{B_{\ell}}{r'^{\ell+1}} = \frac{1}{r} \left(1 + \frac{r'}{r} + \left(\frac{r'}{r} \right)^2 + \left(\frac{r'}{r} \right)^3 + \cdots \right) \]

\[\Rightarrow B_{\ell} = \left(\frac{r'}{r} \right)^{\ell} \] is solution

So for \(r > r' \)

\[\frac{1}{|r - r'|} = \frac{1}{r} \sum_{\ell = 0}^{\infty} \left(\frac{r'}{r} \right)^{\ell} P_{\ell} (\cos \theta) \]

So for the charge distribution \(\rho \),

\[\phi (r) = \int d^3 r' \frac{\rho (r')}{|r - r'|} = \int d^3 r' \frac{\rho (r')}{r} \sum_{\ell = 0}^{\infty} \left(\frac{r'}{r} \right)^{\ell} P_{\ell} (\cos \theta) \]

\[= \sum_{\ell = 0}^{\infty} \frac{1}{r^{\ell+1}} \int d^3 r' \rho (r') \left(\frac{r'}{r} \right)^{\ell} P_{\ell} (\cos \theta) \]

Where \(\theta \) is the angle between the fixed observation point \(r \) and the integration variable \(r' \).
This is the multipole expansion, which expresses the potential far from a localized source as a point series in \(r / r_0 \). It is exact provided one adds all the infinite \(l \) terms. In practice, one generally approximates by summing only up to some finite \(l \).

Note: in doing the integrals

\[\int d^3 \vec{r} \int \frac{1}{(r_1^0)^l} \vec{r} \cdot \vec{e}_l \left(\cos \theta \right) \]

\(\theta \) is defined as the angle of \(\vec{r} \) with respect to observation point \(\vec{r}_0 \). We therefore in principle have to repeat the integration every time we change \(\vec{r}_0 \).

We will find a way around this by

(i) just looking explicitly at the few lowest order terms

(ii) a general method involving spherical harmonics \(Y_{lm} (\theta, \phi) \)