Force and torque on electric dipoles

Localized charge distribution \(p(\vec{r}) \) with net charge \(\int d^3r \, p = 0 \)

Force on \(q \) in slowly varying electric field \(\vec{E} \) is

\[
\vec{F} = \int d^3r \, p(\vec{r}) \, \vec{E}(\vec{r})
\]

define \(\vec{r} = \vec{r}_0 + \vec{r}' \) where \(\vec{r}_0 \) is some fixed reference point in center of charge distribution \(p \), and \(\vec{r}' \) to distance relative to \(\vec{r}_0 \)

\[
\vec{F} = \int d^3r' \, p(\vec{r}') \, \vec{E}(\vec{r}_0 + \vec{r}')
\]

Since \(\vec{E} \) is slowly varying on length scale where \(p \neq 0 \), we expand

\[
\vec{F} = \int d^3r' \, p(\vec{r}') \left[\vec{E}(\vec{r}_0) + (\vec{r}_0 \cdot \vec{\nabla}) \vec{E}(\vec{r}_0) \right] + \ldots
\]

\[
= \vec{E}(\vec{r}_0) \int d^3r' \, p(\vec{r}') + \left(\int d^3r' \, p(\vec{r}') \vec{r}' \cdot \vec{\nabla} \right) \vec{E}(\vec{r}_0)
\]

\[
= 0 + (\vec{p}, \vec{\nabla}) \vec{E}(\vec{r}_0)
\]

\[
\vec{F} = (\vec{p} \cdot \vec{\nabla}) \vec{E} = \sum_{\alpha = 1}^{3} \varphi_\alpha \frac{\partial \vec{E}}{\partial r_\alpha}
\]

For \(\vec{E} = \text{constant} \), \(\vec{F} = 0 \)
Torque on p is

$$\vec{T} = \int d^3 \tau \, j(\vec{r}) \vec{r} \times \vec{E}(\vec{r}) \approx \int d^3 \tau \, j(\vec{r}) \vec{r} \times [\vec{E}(\vec{r}) + \cdots]$$

to lowest order

$$\vec{T} = \vec{p} \times \vec{E}$$

Force and torque on magnetic dipoles

Localized magnetostatic current distribution $\vec{j}(\vec{r})$

$$\vec{F} = \frac{i}{c} \int d^3 \tau \, \vec{j} \times \vec{B}$$

Expand about center of current \vec{r}_0

$$\vec{B}(\vec{r}) = \vec{B}(\vec{r}_0) + (\vec{r} - \vec{r}_0) \cdot \vec{B}'(\vec{r}_0) + \cdots$$

$$\vec{F} = \frac{i}{c} \int d^3 \vec{r} \, \vec{j}(\vec{r}) \times \vec{B}(\vec{r}_0) + \frac{1}{c} \int d^3 \vec{r} \, \vec{j}(\vec{r}) \times (\vec{r} - \vec{r}_0) \cdot \vec{B}'(\vec{r}_0)$$

from discussion of magnetic dipole approx we had $\int d^3 \vec{r} \, \vec{j} = 0$

for magnetostatics where $\vec{V} \cdot \vec{j} = 0$, so 1st term vanishes.

The 2nd term can be written as

$$\vec{F}_d = \frac{\varepsilon_0 \mu_0}{c} \int d^3 \vec{r} \, \vec{j}_\mu \cdot \vec{r}_\nu \partial_\nu \vec{B}_\rho$$

we need the tensor $\frac{1}{c} \int d^3 \vec{r} \, \vec{j}_\mu \cdot \vec{r}_\nu = \frac{-i}{c} \int d^3 \vec{r} \, r_\mu' \vec{j}_\nu'$

$$= \frac{1}{2c} \int d^3 \vec{r} \, \left[\vec{j}_\mu r_\nu' - r_\mu' \vec{j}_\nu \right]$$

$$= -\vec{\nabla} \times \vec{j}$$
\[F_\alpha = \varepsilon_{\alpha \beta \gamma} \varepsilon_{\sigma \rho \delta} (-m_\sigma) \partial_\delta B_\beta \]

\[= - (\delta_\alpha^0 \delta_\rho^1 - \delta_\rho^0 \delta_\alpha^1) m_\sigma \partial_1 B_0 \]

\[= \ddot{\mathbf{M}} = \ddot{\nabla} (\ddot{\mathbf{M}} \cdot \ddot{\mathbf{B}}) - m_\sigma \ddot{\nabla} \cdot \ddot{\mathbf{B}} \]

\[\ddot{\mathbf{F}} = \ddot{\nabla} (\ddot{\mathbf{M}} \cdot \ddot{\mathbf{B}}) \quad \text{as} \quad \ddot{\nabla} \cdot \ddot{\mathbf{B}} = 0 \]

Torque on \(\ddot{\mathbf{J}} \):

\[\ddot{\mathbf{N}} = \frac{i}{c} \int d^3 r \ddot{\nabla} \times (\ddot{\mathbf{J}} \times \ddot{\mathbf{B}}) \quad \text{to lowest order,} \quad \ddot{\mathbf{B}} = \ddot{\mathbf{B}}(\ddot{\mathbf{r}}) \]

\[= \frac{i}{c} \int d^3 r \left[\ddot{\nabla} (\ddot{\mathbf{J}} \cdot \ddot{\mathbf{B}}) - \ddot{\mathbf{B}} (\ddot{\nabla} \cdot \ddot{\mathbf{J}}) \right] \]

2nd term \(= 0 \) as follows:

\[\int d^3 r \ddot{\nabla} \ddot{\mathbf{J}} = \int d^3 r \ddot{\nabla} \ddot{\mathbf{J}} \cdot \ddot{\mathbf{B}} (\ddot{r}^2) \quad \text{as} \quad \ddot{\nabla} (\ddot{r}^2) = \ddot{r} \]

\[= - \int d^3 r (\ddot{\nabla} \ddot{r}^2) \ddot{\mathbf{B}} (\ddot{r}^2) \quad \text{integrate by parts,} \]

\[= 0 \quad \text{as} \quad \ddot{\nabla} \cdot \ddot{\mathbf{J}} = 0 \quad \text{in magnetostatics} \]

1st term involves \(\ddot{\mathbf{M}} \):

\[\int d^3 r \ddot{\mathbf{J}} \ddot{\nabla} \ddot{\mathbf{M}} = - \int d^3 r \ddot{\nabla} \ddot{\mathbf{J}} \ddot{r} = \frac{1}{2} \int d^3 r \left[\ddot{r} \ddot{\mathbf{B}} - \ddot{\mathbf{B}} \ddot{r} \right] \]

So

\[\ddot{\mathbf{N}} = \frac{i}{2c} \int d^3 r \left[\ddot{\nabla} (\ddot{r} \ddot{\mathbf{B}}) - \ddot{\mathbf{B}} (\ddot{r} \cdot \ddot{\mathbf{B}}) \right] \]
\[\vec{N} = \frac{1}{2c} \int d^3r \left[\vec{r} \times (\vec{r} \cdot \vec{B}) - \vec{r} (\vec{r} \cdot \vec{B}) \right] \times \vec{B} \]

\[= \frac{1}{2c} \int d^3r \left(\vec{r} \times \frac{\vec{r} \cdot \vec{B}}{c} \right) \times \vec{B} \]

\[\vec{N} = \vec{m} \times \vec{B} \]
Electrostatic energy of interaction

\[E = \frac{1}{8\pi} \int d^3r \ E^2 \]

Suppose the charge density \(\rho \) that produces \(E \) can be broken into two pieces, \(\rho = \rho_1 + \rho_2 \) with \(E = E_1 + E_2 \) where \(\nabla \cdot E_1 = 4\pi \rho_1 \) and \(\nabla \cdot E_2 = 4\pi \rho_2 \). Then

\[E = \frac{1}{8\pi} \int d^3r \left[E_1^2 + E_2^2 + 2 E_1 \cdot E_2 \right] \]

"self-energy" "self-energy" "interaction" energy

of \(\rho_1 \) of \(\rho_2 \) of \(\rho_1 \) with \(\rho_2 \)

\[E_{\text{int}} = \frac{1}{4\pi} \int d^3r \ E_1 \cdot E_2 \]

\[= \int d^3r \ \rho_1 \phi_2 = \int d^3r \ \rho_2 \phi_1 \]

where \(\vec{E}_1 = -\nabla \phi_1 \), \(\vec{E}_2 = -\nabla \phi_2 \), by similar manipulations as earlier.

Integrals are over all space.

Apply to the interaction energy of a dipole in an external \(\vec{E} \) field

\[E_{\text{int}} = \int d^3r \ \rho_1 \phi_2 \]

\(\phi \) potential of external \(\vec{E} \) field

\(\rho \) charge distribution of dipole
Assuming \(\phi_2 \) varies on length scale of \(\rho_1 \) then we can expand \(\phi_2(\vec{r}) = \phi_2(\vec{r}_0) + (\vec{r} - \vec{r}_0) \cdot \nabla \phi_2(\vec{r}_0) \)

where \(\vec{r}_0 \) is the center of mass or any other convenient reference position within \(\rho_1 \)

\[
\text{\(\Sigma \text{Int} = \int d^3r \, \rho_1(\vec{r}) \left[\phi_2(\vec{r}_0) + (\vec{r} - \vec{r}_0) \cdot \nabla \phi_2(\vec{r}_0) \right] \)}
\]

\[
= q \, \phi_2(\vec{r}_0) + \left[\int d^3r \, \rho_1(\vec{r}) (\vec{r} - \vec{r}_0) \right] \cdot \nabla \phi_2(\vec{r}_0)
\]

\[
= q \, \phi_2(\vec{r}_0) + \vec{\rho} \cdot \vec{E}
\]

where \(q \) is total charge in \(\rho_1 \) and \(\vec{\rho} \) is dipole moment with respect to \(\vec{r}_0 \)

\(\vec{E} \) is external \(E \)-field

For a neutral charge distribution \(q = 0 \) and \(\vec{\rho} \) is independent of the origin about which it is computed, so

\[
\Sigma \text{Int} = -\vec{\rho} \cdot \vec{E}
\]

\(\Sigma \text{Int} \) is lowest when \(\vec{\rho} \parallel \vec{E} \)

\(\Rightarrow \) in thermal ensemble, dipoles tend to align parallel to an applied \(\vec{E} \)
Energy of magnetic dipole in external field

We had that the force on the dipole was

\[\vec{F} = -\nabla (m \cdot \vec{B}) \]

If we regard this force as coming from the gradient of a potential energy \(U \) then \(\vec{F} = -\nabla U \Rightarrow \)

\[U = -m \cdot \vec{B} \]

or equivalently, energy = work done to move dipole into position from \(\vec{0} \)

\[W = -\int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{l} = -\int_{\vec{r}_0}^{\vec{r}} \nabla (m \cdot \vec{B}) \cdot d\vec{l} = -m \cdot \vec{B}(\vec{r}) \]

This is the correct energy to use in cases where \(m \)

is due to intrinsic magnetic moments of atom or molecule—say from electron or nuclear spin. For a thermal ensemble, magnetic moments tend to align to \(\vec{B} \).

The answer comes out quite differently if we are talking about a magnetic moment produced by a classical current loop. To see this, consider what we would get if we tried to do the calculation in a similar way to how we did if the the energy of an electric dipole in an electric field...
Magnetostatic energy of interaction

\[\mathcal{E} = \frac{1}{8\pi} \int d^3r \ B^2 \]

Suppose current \(\mathcal{J} \) that produces \(B \) can be divided
\[\mathcal{J} = \mathcal{J}_1 + \mathcal{J}_2 \]
with \(B = B_1 + B_2 \), where \(\nabla \times B_1 = \frac{4\pi}{c} \mathcal{J}_1 \)
and \(\nabla \times B_2 = \frac{4\pi}{c} \mathcal{J}_2 \). Then

\[\mathcal{E} = \frac{1}{8\pi} \int d^3r \left[B_1^2 + B_2^2 + 2 B_1 \cdot B_2 \right] \]

self energy self energy interaction energy
of \(\mathcal{J}_1 \) of \(\mathcal{J}_2 \) of \(\mathcal{J}_1 \) with \(\mathcal{J}_2 \)

\[\mathcal{E}_{\text{int}} = \frac{1}{4\pi} \int d^3r \ B_1 \cdot B_2 \]
\[= \frac{1}{c} \int d^3r \ \mathcal{J}_1 \cdot \mathcal{A}_2 = \frac{1}{c} \int d^3r \ \mathcal{J}_2 \cdot \mathcal{A}_1 \]

where \(B_1 = \nabla \times \mathcal{A}_1 \), \(B_2 = \nabla \times \mathcal{A}_2 \), by similar manipulations as earlier

integrals are over all space

Apply to the interaction energy of a magnetic dipole in an external \(B \) field.

\[\mathcal{E}_{\text{int}} = \frac{1}{2} \int d^3r \ \mathcal{J}_1 \cdot \mathcal{A}_2 \]
\(\mathcal{T} \) - vector potential of external \(B \) field
\(\mathcal{J} \) - current distribution of dipole
Assuming A varies slowly on length scale of $\frac{c}{\omega}$, then expand $A_i(\vec{r}) = A_i(\vec{r}_0) + (\vec{r} - \vec{r}_0) \cdot \vec{\nabla} A_i(\vec{r}_0)$

$$E_{\text{int}} = \frac{1}{c} \int d^3r \ \vec{f}_i \cdot \vec{A}(\vec{r}_0)$$

$$+ \frac{1}{c} \int d^3r \ \sum_{i,j} \epsilon_{ikj} (\vec{r} - \vec{r}_0)_j \ \partial_j A_i(\vec{r}_0)$$

Dropped terms as we are interested in new monopoles.

From magnetostatic computation of magnetic dipole moment we had $\int d^3r \ \vec{f} = 0$

For magnetostatics

\Rightarrow 1st term above vanishes. So does the piece of 2nd term $\left(\int d^3r \ \epsilon_{ikj} (\vec{r} - \vec{r}_0)_j \ \partial_j A_i(\vec{r}_0) \right)$

We are left with

$$E_{\text{int}} = \left[\frac{1}{c} \int d^3r \ \epsilon_{ikj} R_j \right] \partial_j A_i(\vec{r}_0)$$

From computation of magnetic dipole approx we had

$$\int d^3r \ \epsilon_{ikj} R_j = - \int d^3r \ \delta_{ij} R_i$$

Recall:

$$m = \frac{1}{2c} \int d^3r \ \vec{r} \times \vec{f}$$

$$= \frac{1}{2} \int d^3r \left[\epsilon_{ikj} r_j - \delta_{kj} r_i \right]$$

$$= \frac{1}{2} \epsilon_{kij} \int d^3r \ (\vec{f} \times \vec{r})_k$$

$$\Rightarrow \frac{1}{c} \int d^3r \ \delta_{ij} R_i = - \epsilon_{kij} \ m_b \ \text{mag dipole}$$
\[\mathbf{E}_{\text{int}} = -m_k \varepsilon_{kij} \partial_j A_i = m_k \varepsilon_{kij} \partial_j A_i \]
\[= m_o (\nabla \times \mathbf{A}) = m_o \mathbf{B} = \mathbf{E}_{\text{int}} \]

This is opposite in sign to what we found earlier!

Why the difference?

1. When we integrate the work done against the magnetostatic force to move \(m \) into position from infinity, we found the energy
\[U = -m_o \mathbf{B} \]

2. When we compute the interaction energy from
\[\mathbf{E}_{\text{int}} = \frac{1}{c^2} \int d^3r \mathbf{F}_1 \cdot \mathbf{A}_2 = \frac{1}{c^2} \int d^3r \int d^3r' \frac{\mathbf{F}_1(r) \cdot \mathbf{F}_2(r')}{|r-r'|} \]
we found the energy \(\mathbf{E}_{\text{int}} = +m_o \mathbf{B} \)

To see which is correct, let us consider computing the interaction energy (2) directly via method (1).
Consider two loops with currents I_1 and I_2.

What is the work done to move loop 2 in from infinity to its final position with respect to loop 1?

Magnetostatic force on loop 2 due to loop 1 is

$$ F = \frac{I_2}{c^2} \oint_{L_2} \vec{dl}_2 \times \vec{B}_1 \quad \text{Lorentz force} \quad \vec{B}_1 \text{ is magnetic field from loop 1} $$

$$ \vec{B}_1(r) = \frac{I_1}{c} \oint_{L_1} \vec{dl}_1 \times \frac{(\vec{r}_2 - \vec{r}_1)}{|\vec{r}_2 - \vec{r}_1|^3} \quad \text{Biot-Savart law} $$

$$ F = \frac{I_1 I_2}{c^2} \int_{L_2} \oint_{L_1} \vec{dl}_2 \times \left(\vec{dl}_1 \times \frac{(\vec{r}_2 - \vec{r}_1)}{|\vec{r}_2 - \vec{r}_1|^3} \right) $$

Use triple product rule

$$ \vec{dl}_2 \times \left[\vec{dl}_1 \times \left(\vec{r}_2 - \vec{r}_1 \right) \right] = \vec{dl}_1 \left[\vec{dl}_2 \cdot \left(\vec{r}_2 - \vec{r}_1 \right) \right] - \left(\vec{r}_2 - \vec{r}_1 \right) (\vec{dl}_1 \times \vec{dl}_2) $$

from the 1st term

$$ \oint_{L_2} \frac{\vec{dl}_2 \cdot \left(\vec{r}_2 - \vec{r}_1 \right)}{|\vec{r}_2 - \vec{r}_1|^3} = -\oint_{L_2} \frac{\vec{dl}_2 \cdot \nabla_2 \left(\frac{1}{|\vec{r}_2 - \vec{r}_1|} \right)}{|\vec{r}_2 - \vec{r}_1|^3} = 0 $$

as integral of gradient around closed loop always vanishes!
\[F = -\frac{I_1 I_2}{c^2} \oint \oint \frac{\vec{d}l_1 \cdot \vec{d}l_2}{|r_2 - \vec{r}_1|^3} \cdot (\vec{r}_2 - \vec{r}_1) \] \\
write \(\vec{r}_2 = \vec{R} + \delta \vec{r}_2 \) where \(\vec{R} \) is center of loop 2

use \(\frac{\vec{R} + \delta \vec{r}_2 - \vec{r}_1}{|\vec{R} + \delta \vec{r}_2 - \vec{r}_1|^3} = -\frac{\vec{V}_R}{|\vec{R} + \delta \vec{r}_2 - \vec{r}_1|} \)

\[F = \frac{I_1 I_2}{c^2} \oint \oint \vec{d}l_1 \cdot \vec{d}l_2 \ \vec{V}_R \left(\frac{1}{|\vec{R} + \delta \vec{r}_2 - \vec{r}_1|} \right) \]

to move loop 2 we need to apply a force equal and opposite to the above magnetostatic force.

Therefore the work we do in moving loop 2 from infinity to its final position at \(\vec{R}_0 \) is

\[W = -\int_{\infty}^{\vec{R}_0} F \cdot d\vec{R} = -\frac{I_1 I_2}{c^2} \oint \oint \frac{\vec{d}l_1 \cdot \vec{d}l_2}{|r_2 - \vec{r}_1|} \int_{\infty}^{\vec{R}_0} \vec{V}_R \left(\frac{1}{|\vec{R} + \delta \vec{r}_2 - \vec{r}_1|} \right) \]

\[= -\frac{I_1 I_2}{c^2} \oint \oint \frac{\vec{d}l_1 \cdot \vec{d}l_2}{|r_2 - \vec{r}_1|} \] \\
where \(\vec{r}_2 = \vec{R}_0 + \delta \vec{r}_2 \)

\[= -\frac{1}{c^2} \int d^3r_1 \int d^3r_2 \ \frac{\vec{j}_1(\vec{r}_1) \cdot \vec{j}_2(\vec{r}_2)}{|r_2 - \vec{r}_1|} \]

\[= -M_{12} \frac{I_1 I_2}{c^2} \]

\[\vec{r} \] mutual inductance

\[\text{note the minus sign!} \]

\[\text{this is just the negative of the interaction energy!} \]
The minus sign we have here is the same minus sign we get when we found \(U = -\mathbf{m} \cdot \mathbf{a} \) by integrating the force on the magnetic dipole.

Why don't we get \[+ \frac{1}{c^2} \int d^3r_1 d^3r_2 \frac{\mathbf{f}_1(r_1) \cdot \mathbf{f}_2(r_2)}{|r_2 - r_1|} \]
with the plus sign we expect from \(E = \frac{1}{2} \int d^3r \ \mathbf{B}^2 \)?

Answer: we have left something out.

Faraday's Law: when we move loop 2, the magnetic flux through loop 2 changes. This \(\frac{d\Phi}{dt} \) creates an *emf* = \(\oint \mathbf{d} \mathbf{l} \cdot \mathbf{E} \) around the loop that would tend to change the current in the loop. If we are to keep the current fixed at constant \(I_2 \), then there must be a battery in the loop that does work to counter this induced emf (electromotive force).

Similarly, the flux through loop 1 is changing and a battery does work to keep \(I_1 \) constant. We need to add this work done by the battery to the mechanical work computed above.

\[
\text{emf induced in loop 1} \quad E_1 = \oint \mathbf{d} \mathbf{l}_1 \cdot \mathbf{E}_2 \\
\text{integrate once}
\]

\[
\text{emf induced in loop 2} \quad E_2 = \oint \mathbf{d} \mathbf{l}_2 \cdot \mathbf{E}_1 \\
\text{in direction of current}
\]

Faraday \[
E_1 = \frac{-d\Phi_1}{c \, dt} \quad \Phi_1 = \text{flux through loop 1}
\]

\[
E_2 = \frac{-d\Phi_2}{c \, dt} \quad \Phi_2 = \text{flux through loop 2}
\]
To keep the current constant, the batteries need to provide an emf that counters these Faraday induced emfs. The work done by the battery per unit time is therefore

\[
\frac{dW_{\text{battery}}}{dt} = -\varepsilon_1 I_1 - \varepsilon_2 I_2
\]

(check units: \(\varepsilon I\) is \([\text{length}] \cdot [\text{current}] \cdot [1/\text{s}]\)

\[
= [\text{length}] \cdot [\text{force}/\text{s}]\]

\[
= \text{energy/s}
\]

\[
\frac{dW_{\text{battery}}}{dt} = \frac{d\Phi_1}{cdt} I_1 + \frac{d\Phi_2}{cdt} I_2
\]

Where \(t = 0\) loop 2 is at infinity,

\(t = T\) loop 2 is at final position,

\(I_1, I_2\) kept constant as loop moves

\[
W_{\text{battery}} = \int_{0}^{T} dt \left(\frac{d\Phi_1}{cdt} I_1 + \frac{d\Phi_2}{cdt} I_2 \right)
\]

\[
W_{\text{battery}} = \frac{1}{c} \Phi_1 I_1 + \frac{1}{c} \Phi_2 I_2
\]

Where \(\Phi_1, \Phi_2\) are fluxes in final position, and are assumed to be 0 at infinity,

\[
\Phi_1 = c M_{12} I_2
\]

\[
\Phi_2 = c M_{21} I_1 = c M_{12} I_1\]

As \(M_{12} = M_{21}\)

\[
\Rightarrow W_{\text{battery}} = 2 M_{12} I_1 I_2
\]

add this to the mechanical work

\[W_{\text{total}} = W_{\text{mech}} + W_{\text{battery}} = -M_{12} \mathbf{I}_1 \mathbf{I}_2 + 2M_{12} \mathbf{I}_1 \mathbf{I}_2 \]

\[= M_{12} \mathbf{I}_1 \mathbf{I}_2 = \frac{1}{c^2} \int \frac{d^3 \mathbf{r}_1 \, d^3 \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|} \frac{\mathbf{f}_1(\mathbf{r}_1) \cdot \mathbf{f}_2(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} \]

we get back the correct interaction energy!

Conclusion: The magneto-static interaction energy

\[\frac{1}{c^2} \int \frac{d^3 \mathbf{r}_1 \, d^3 \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|} \frac{\mathbf{f}_1(\mathbf{r}_1) \cdot \mathbf{f}_2(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} \]

includes the work done to maintain the currents stationary as the current distributions move.

When we computed the interaction energy of a current loop dipole \(\mathbf{m} \) and find

\[E_{\text{int}} = +\mathbf{m} \cdot \mathbf{B} \]

this includes the energy needed to maintain the constant current producing the constant \(\mathbf{m} \)

When we integrated the force on the dipole to find the potential energy

\[U = -\mathbf{m} \cdot \mathbf{B} \]

this did not include the energy needed to maintain the constant current that creates \(\mathbf{m} \). This is the correct energy expression to use when \(\mathbf{m} \) comes from intrinsic magnetic moments (due to particles intrinsic spin, which cannot be viewed as arising from a current loop).
