Green's function - part II

Greens 2nd identity

\[\frac{1}{V} \int d^3r' \left(\phi \nabla'^2 - 4 \nabla'^2 \phi \right) = \oint_{\partial S'} \left(\phi \frac{\nabla G}{\partial m'} - 4 \frac{\partial \phi}{\partial m'} \right) \]

Apply above with \(\phi(r) \) electrostatic potential with \(\nabla^2 \phi = -4\pi \rho(r) \)

\(G(r, r') = G(r, r') \) the Green function satisfying

\[\nabla'^2 G(r, r') = -4\pi \delta(r-r') \]

We saw one solution of above is

\[G(r, r') = \frac{1}{|r-r'|} \]

but a more general solution is

\[G(r, r') = \frac{1}{|r-r'|} + F(r, r') \]

where \(\nabla'^2 F(r, r') = 0 \), for \(r' \) in volume \(V \), we will choose \(F(r, r') \) to simplify solution of \(\phi \)

\[\Rightarrow \frac{1}{V} \int d^3r' \left(\phi(r') \nabla'^2 G(r, r') - G(r', r') \nabla'^2 \phi(r') \right) \]

\[= \frac{1}{V} \int d^3r' \left(\phi(r') \left[-4\pi \delta(r-r')\right] - G(r, r') \left[-4\pi \delta(r-r')\right] \right) \]

\[= -4\pi \phi(r) + 4\pi \oint_{\partial S'} G(r, r') \rho(r') \]

\[= \oint_{\partial S'} \left(\phi \frac{\nabla G}{\partial m'} - G \frac{\partial \phi}{\partial m'} \right) \]
\[\phi (\vec{r}) = \int_V d^3 r' \, G (\vec{r}, \vec{r}') \, \phi (\vec{r}') + \oint_S d\alpha' \left(G (\vec{r}, \vec{r}') \frac{\partial \phi (\vec{r}')}{\partial \vec{m}'} - \phi (\vec{r}') \frac{\partial G (\vec{r}, \vec{r}')}{\partial \vec{m}'} \right) \]

Consider the Dirichlet boundary problem. If we can choose \(F (\vec{r}, \vec{r}') \) such that \(G (\vec{r}, \vec{r}') = 0 \) for \(\vec{r}' \) on the boundary surface \(S \), then the above simplifies to

\[\left[\phi (\vec{r}) = \int_V d^3 r' \, G_d (\vec{r}, \vec{r}') \, \phi (\vec{r}') - \oint_S d\alpha' \, \frac{\phi (\vec{r}')}{S} \frac{\partial G (\vec{r}, \vec{r}')}{\partial \vec{m}'} \right] \]

Since \(\phi (\vec{r}) \) is specified in \(V \), and \(\phi (\vec{r}) \) is specified on \(S \), above then gives desired solution for \(\phi (\vec{r}) \) inside volume \(V \).

Finally, \(G_d \) is therefore equivalent to finding an \(F (\vec{r}, \vec{r}') \) such that \(\nabla'^2 F (\vec{r}, \vec{r}') = 0 \) for \(\vec{r}' \) in \(V \) (solves Laplace eqn) and

\[F (\vec{r}, \vec{r}') = \frac{-1}{|\vec{r} - \vec{r}'|} \text{ for } \vec{r}' \text{ on boundary surface } S' \]

Always exists unique solution for \(F \)
Next consider Neumann boundary problem.

One might think to find \(F(r, \vec{r}') \) such that \(\frac{\partial G(r, \vec{r}')}{\partial n'} = 0 \) on boundary surface. But this is not possible.

Consider \(\int V \Delta G(r, \vec{r}') \, d^3r' = \int V \cdot \vec{V}' \, G(r, \vec{r}') \, d^3r' \)

\[
= \int_S \vec{V}' \, G(r, \vec{r}') \cdot \hat{n} \, da'
\]

\[
= \int_S \frac{\partial G(r, \vec{r}')}{\partial n'} \, da' = -4\pi \text{ since } \Delta G = -4\pi \delta(r - r')
\]

So we can't have \(\frac{\partial G}{\partial n'} = 0 \) for \(r' \) on \(S' \)

Simplest choice is then \(\frac{\partial G(x, \vec{r}')}{\partial n'} = -4\pi \) for \(r' \) on \(S \)

Then

\[
\phi(r) = \int_V d^3r' \, G(r, \vec{r}') \, F(r') + \int_S \frac{da'}{4\pi} \, G(r, \vec{r}') \, \frac{\partial \phi(r)}{\partial n'}
\]

\[
+ \int_S \frac{da'}{4\pi} \, \phi(r') \left(\frac{-4\pi}{S'} \right)
\]

\[
\phi(r') = \int_V d^3r' \, G(r, \vec{r}') \, F(r') + \int_S \frac{da'}{4\pi} \, G(r, \vec{r}') \, \frac{\partial \phi(r)}{\partial n'}
\]

\[
+ \left< \phi \right>_S
\]

Since \(F(r) \) is specified in \(V \)

and \(\frac{\partial \phi}{\partial n} \) is specified on \(S' \)

constant = average value of \(\phi \) on surface \(S' \).

above gives solution \(\phi(r) \) in \(V \) within additive constant \(\left< \phi \right>_S \)

Since \(F = -\nabla \phi \) the constant \(\left< \phi \right>_S \) is of no consequence.
Finding $G_{N}(\bar{r}, \bar{r}')$ is therefore equivalent to finding
an $\bar{F}(\bar{r}, \bar{r}')$ such that

$$\nabla^2 \bar{F}(\bar{r}, \bar{r}') = 0 \text{ for } \bar{r}' \text{ in } V$$

and

$$\frac{\partial \bar{F}(\bar{r}, \bar{r}')}{\partial n'} = -\frac{4\pi}{S} \text{ for } \bar{r}' \text{ on surface } S'$$

always exists a unique solution (within additive constant)

While G_{D} and G_{N} always exist in principle, they
depend in detail on the shape of the surface S' and
are difficult to find except for simple geometries

In proceeding we defined G by

$$\nabla^2 \bar{G}(\bar{r}, \bar{r}') = -\frac{4\pi}{S} \delta(\bar{r}-\bar{r}')$$

But our earlier interpretation of $G(\bar{r}, \bar{r}')$ was that
it was potential at \bar{r} due to point source at \bar{r}', i.e.

$$\nabla^2 G(\bar{r}, \bar{r}') = -4\pi \delta(\bar{r}-\bar{r}')$$

Note, for general surface S', $G(\bar{r}, \bar{r}')$ is not in general a function of $|\bar{r}-\bar{r}'|$ but
depends on \bar{r} and \bar{r}' separately. But the equivalence
of the two definitions of G above is obtained by
noting that one can prove the symmetry property

$$G(\bar{r}, \bar{r}') = G(\bar{r}', \bar{r})$$

for Dirichlet b.c., and one can impose it as
an additional requirement for Neumann b.c.
(see Jackson, end section 1.10)