Green's function - part II

Green's 2nd identity

\[\int d^3r' \left(\phi \nabla'^2 - 4 \nabla'^2 \phi \right) = \oint_{\partial S} \left(\phi \frac{\partial \Phi'}{\partial m'} - 4 \frac{\partial \Phi'}{\partial m'} \right) \]

Apply above with \(\phi(r') \) electrostatic potential with \(\nabla'^2 \phi = -4\pi \rho(r') \)
\(\Phi(r') = G(r, r') \) the Green function satisfying

\(\nabla'^2 G(r, r') = -4\pi \delta(r-r') \)

We saw one solution of above is \(G(r, r') = \frac{1}{|r-r'|} \)

but a more general solution is

\[G(r, r') = \frac{1}{|r-r'|} + F(r, r') \]

where \(\nabla'^2 F(r, r') = 0 \), for \(r' \) in volume \(V \)
we will choose \(F(r, r') \) to simplify solution of \(\phi \)

\[\Rightarrow \int d^3r' \left(\phi(r') \nabla'^2 G(r, r') - G(r, r') \nabla'^2 \phi(r') \right) \]

\[= \int d^3r' \left(\phi(r') \left[-4\pi \delta(r-r') \right] - G(r, r') \left[-4\pi \delta(r-r') \right] \right) \]

\[= -4\pi \phi(r) + 4\pi \int d^3r' G(r, r') \rho(r') \]

\[= \oint_{\partial S} \left(\phi \frac{\partial \Phi'}{\partial m'} - G \frac{\partial \Phi'}{\partial m'} \right) \]
\[\phi(\vec{r}) = \int_V d^3r' \; G(\vec{r}, \vec{r}') \; \rho(\vec{r}') + \oint_S \frac{\partial \phi(\vec{r}')}{\partial n'} \; G(\vec{r}, \vec{r}') \; \partial G(\vec{r}, \vec{r}') \]

Consider the **Dirichlet boundary problem**. If we can choose \(F(\vec{r}, \vec{r}') \) such that \(G_B(\vec{r}, \vec{r}') = 0 \) for \(\vec{r}' \) on the boundary surface \(S \), then above reduces to

\[
\begin{bmatrix}
\phi(\vec{r}) = \int_V d^3r' \; G_B(\vec{r}, \vec{r}') \; \rho(\vec{r}') - \oint_S \frac{\partial \phi(\vec{r}')}{\partial n'} \; \partial G_B(\vec{r}, \vec{r}')
\end{bmatrix}
\]

Since \(\rho(\vec{r}) \) is specified in \(V \), and \(\phi(\vec{r}) \) is specified on \(S \), above then gives desired solution for \(\phi(\vec{r}) \) inside volume \(V \).

Finally \(G_B \) is therefore equivalent to finding an \(F(\vec{r}, \vec{r}') \) such that \(\nabla^2 F(\vec{r}, \vec{r}') = 0 \) for \(\vec{r}' \) in \(V \) (solves Laplace eqn) and

\[F(\vec{r}, \vec{r}') = \frac{1}{|\vec{r} - \vec{r}'|} \]

for \(\vec{r}' \) on boundary surface \(S \)

Always exists unique solution for \(F \).
Next consider Neumann boundary problem.

One might think to find \(F(r, \mathbf{r}') \) such that \(\frac{\partial G(r, \mathbf{r}')}{\partial m'} = 0 \) on boundary surface. But this is not possible.

Consider \(\int V \nabla^2 G(r, \mathbf{r}') \, d^3 r' = \int V' \cdot \nabla G(r, \mathbf{r}') \, d^3 r' \)

\[= \int_S \mathbf{\nabla'} G(r, \mathbf{r}') \cdot \hat{m} \, da' \]

\[= \int_S \frac{\partial G(r, \mathbf{r}')}{\partial m'} \, da' = -4\pi \text{ since } \nabla^2 G = -4\pi \delta(r-r') \]

So we can't have \(\frac{\partial G}{\partial m'} = 0 \) for \(r' \) on \(S' \).

Simplest choice is then \(\frac{\partial G_N(r, \mathbf{r}')}{\partial m'} = -4\pi \text{ for } r' \text{ on } S \)

Then

\[\phi(\mathbf{r}) = \int V d^3 r' G_N(r, \mathbf{r}') \, f(\mathbf{r}') + \int \frac{da'}{4\pi} G_N(r, \mathbf{r}') \frac{\partial \phi(r)}{\partial m'} \]

\[+ \int \frac{da'}{4\pi} \phi(r') \left(-\frac{4\pi}{S'} \right) \]

\[\left[\phi(\mathbf{r}') = \int V d^3 r'' G_N(\mathbf{r'}, \mathbf{r}') \, f(\mathbf{r}') + \int \frac{da'}{4\pi} G_N(\mathbf{r'}, \mathbf{r}') \frac{\partial \phi(r')}{\partial m'} \right] \]

\[+ \left< \phi \right>_S \]

Since \(f(r) \) is specified in \(V \)

and \(\frac{\partial \phi}{\partial m} \) is specified on \(S' \)

\[\text{constant = average value of } \phi \text{ on surface } S' \]

Above gives solution \(\phi(r) \) in \(V \) within additive constant \(\left< \phi \right>_S \)

\[\text{Since } \nabla^2 \phi = 0 \] the const. \(\left< \phi \right>_S \) is of no consequence.
Finding \(G_N(\vec{r}, \vec{r}') \) is therefore equivalent to finding another \(F(\vec{r}, \vec{r}') \) such that

\[
\nabla'^2 F(\vec{r}, \vec{r}') = 0 \quad \text{for} \quad \vec{r}' \in V
\]

and

\[
\frac{\partial F(\vec{r}, \vec{r}')}{\partial \vec{r}'_i} = -\frac{4\pi}{\Omega} \quad \text{for} \quad \vec{r}' \text{ on surface } S'
\]

always exists a unique solution (within additive constant).

While \(G_D \) and \(G_N \) always exist in principle, they depend in detail on the shape of the surface \(S \) and are difficult to find except for simple geometries.

In proceeding we defined \(G \) by

\[
\nabla'^2 G(\vec{r}, \vec{r}') = -\frac{4\pi\delta(\vec{r} - \vec{r}')}{\Omega}
\]

But our earlier interpretation of \(G(\vec{r}, \vec{r}') \) was that it was potential at \(\vec{r} \) due to point source at \(\vec{r}' \), i.e.

\[
\nabla^2 G(\vec{r}, \vec{r}') = -\frac{4\pi}{\Omega} \delta(\vec{r} - \vec{r}') \quad \text{. Note, for general surface } S' \text{, } G(\vec{r}, \vec{r}') \text{ is not in general a function of } \vec{r} - \vec{r}' \text{ but depends on } \vec{r} \text{ and } \vec{r}' \text{ separately. But the equivalence of the two definitions of } G \text{ above is obtained by noting that one can prove the symmetry property}
\]

\[
G(\vec{r}, \vec{r}') = G(\vec{r}', \vec{r})
\]

for Dirichlet b.c., and one can impose it as an additional requirement for Neumann b.c. (see Jackson, end section 1.10).