Physical example with \(\sigma(\theta) = \kappa \cos \theta \)

Two spheres of radii \(R \), with equal but opposite uniform charge densities \(\rho \) and \(-\rho\), displaced by small distance \(d \ll R \)

Surface charge \(\sigma \) builds up due to displacement. This is a uniformly "polarized" sphere.

\[
\sigma(\theta) = \rho \, d \cos \theta
\]

Surface charge \(\sigma' \): \(\sigma(\theta) = \rho \, d \cos \theta \)

\[
d \cos \theta = Sr
\]

Total dipole moment is \((pd) \frac{4}{3} \pi R^3 \)

Polarization = \(\frac{\text{dipole moment}}{\text{volume}} \) = \(\rho d \)

\(E \) field inside a uniformly polarized sphere is constant. \(E = -\rho d \frac{4\pi}{3} \)
(3) **Grounded Conducting Sphere in Uniform Electric Field** \(\mathbf{E} = \frac{E_0}{r} \hat{z} \)

As \(r \to \infty \) far from sphere, \(\mathbf{E} = E_0 \hat{z} \Rightarrow \phi = -E_0 z \)

Boundary Conditions:

\[
\begin{align*}
\phi(r, \theta) &= 0 \\
\phi(r \to \infty, \theta) &= -E_0 \cos \theta
\end{align*}
\]

The solution outside the sphere has the form:

\[
\phi(r, \theta) = \sum_{l=0}^{\infty} \left[A_l r^l + \frac{B_l}{r^{l+1}} \right] P_l(\cos \theta)
\]

From boundary condition as \(r \to \infty \) we have:

\[A_l = 0 \quad \text{all } l \neq 1 \]

\[A_1 = -E_0 \quad \text{since } P_1(\cos \theta) = \cos \theta \]

\[
\phi(r, \theta) = -E_0 \cos \theta + \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}} P_l(\cos \theta)
\]

From \(\phi(r, \theta) = 0 \), we have:

\[
0 = -E_0 R \cos \theta + \sum_{l=0}^{\infty} \frac{B_l}{R^{l+1}} P_l(\cos \theta)
\]

\[\Rightarrow B_l = 0 \quad \text{all } l \neq 1 \]

\[B_1 = \frac{E_0 R}{R^2} \Rightarrow B_1 = \frac{E_0 R^3}{R^2} \]
\[\phi(r, \theta) = -E_0 \left(r - \frac{R^3}{r^2} \right) \cos \theta \]

1st term is just potential \(-E_0 \cos \theta\) of the uniform applied electric field.

2nd term is potential due to the induced surface charge on the sphere – it is a dyole field.

Induced charge density is

\[
4\pi \sigma(\theta) = -\frac{\partial \phi}{\partial r} \bigg|_{r=R} = E_0 \left(1 + 2\frac{R^3}{r^3} \right) \cos \theta = 3E_0 \cos \theta
\]

\[
\sigma(\theta) = \frac{3}{4\pi} E_0 \cos \theta \quad \text{like uniformly polarized sphere} \quad k = \frac{3E_0}{4\pi}
\]

From (2) we know that the field inside the sphere due to this \(\sigma\) is just

\[
-\frac{4}{3} \pi k \hat{z} = -\frac{4}{3} \pi \frac{3E_0}{4\pi} \hat{z}
\]

\[
= -E_0 \hat{z}. \text{ This is just what is required so that the total field in the conducting sphere vanishes.}
\]

Can check that outside the sphere, \(\vec{E} = -\nabla \phi\) is normal to surface of sphere at \(r = R\).
Multiply Expansion

region with \(p \neq 0 \)

We want to find the potential \(\phi \) for an arbitrary localized distribution of charge \(\rho \), at distances far away \(r \gg R \).

\[
\phi(r) = \int d^3r' \frac{\rho(r')}{|r-r'|}
\]

we want an expansion of \(\frac{1}{|r-r'|} \) in powers of \(\left(\frac{r'}{r} \right) \)

for \(r \gg r' \)

\[
\frac{1}{|r-r'|}
\]

view this as the potential at \(r \) due to a unit point charge located at position \(r' \).

We take \(r' \) on the \(z \) axis.

\[
\phi(r, \theta) = \sum_{\ell=0}^{\infty} \frac{B\ell}{r^{\ell+1}} P_{\ell}(\cos \theta)
\]

\[
\frac{1}{r} \sum_{\ell=0}^{\infty} \frac{B\ell}{r^{\ell}} P_{\ell}(\cos \theta)
\]

The problem has azimuthal symmetry \(\Rightarrow \phi \) depends only on \(r \) and \(\theta \), so we can express it as an expansion in Legendre polynomials.

For \(r \gg r' \),

\[
\phi(r, \theta) = \sum_{\ell=0}^{\infty} \frac{B\ell}{r^{\ell+1}} P_{\ell}(\cos \theta)
\]

\[
\text{all } A_{\ell} = 0
\]

as need \(\phi \geq 0 \)

as \(r \to \infty \)
We know \(\phi(r, \theta = 0) = \frac{1}{r - r'} \) (for \(r > r' \))

\[\Rightarrow \phi(r, 0) = \frac{1}{r} \sum_{l=0}^{\infty} \frac{B_l}{r^2} P_l(1) \]

\[= \frac{1}{r} \sum_{l=0}^{\infty} \frac{B_l}{r^2} \quad \text{as } P_l(1) = 1 \]

\[= \frac{1}{r} \left(\frac{1}{1 - \frac{r'}{r}} \right) \quad \text{exact result from Coulomb} \]

Now Taylor expansion \(\frac{1}{1 - \epsilon} = 1 + \epsilon + \epsilon^2 + \epsilon^3 + \epsilon^4 + \ldots \)

\[\Rightarrow \frac{1}{r} \sum_{l=0}^{\infty} \frac{B_l}{r^2} = \frac{1}{r} \left(1 + \left(\frac{r'}{r} \right) + \left(\frac{r'}{r} \right)^2 + \left(\frac{r'}{r} \right)^3 + \ldots \right) \]

\[\Rightarrow B_l = \left(\frac{r'}{r} \right)^l \quad \text{is solution} \]

So for \(r > r' \)

\[\frac{1}{|r - r'|} = \frac{1}{r} \sum_{l=0}^{\infty} \left(\frac{r'}{r} \right)^l P_l(\cos \theta) \]

So, for the charge contribution \(\rho \),

\[\phi(r^2) = \int_0^{1} d^3r' \frac{\rho(r')}{|r - r'|} = \int_0^{1} d^3r' \frac{\rho(r')}{r^2} \sum_{l=0}^{\infty} \left(\frac{r'}{r} \right)^2 P_l(\cos \theta) \]

\[= \sum_{l=0}^{\infty} \frac{1}{r^{l+1}} \int_0^{1} d^3r' \phi(r') \left(\frac{r'}{r} \right)^l P_l(\cos \theta) \]

where \(\theta \) is the angle between the fixed observation point \(r \) and the integration variable \(r' \).
This is the multipole expansion, which expresses the potential far from a localized source as a power series in \(r/r \). It is exact provided one adds all the infinite \(l \) terms. In practice, one generally approximates by summing only up to some finite \(l \).

Note: to do the integrals

\[
\int d^3r \ f(\vec{r}) \ (\vec{r})^2 \ \rho (\cos \theta)
\]

\(\theta \) is defined as the angle of \(\vec{r} \) with respect to observation point \(\vec{r}' \). We therefore in principle have to repeat the integration every time we change \(\vec{r} \).

We will find a way around this by

(i) just looking explicitly at the few lowest order terms

(ii) a general method involving spherical harmonics \(Y_l^m (\theta, \phi) \)
monopole: \(l=0 \) term

\[
\phi^{(0)}(\vec{r}) = \frac{1}{r} \int d^3r' \, f(r') \quad \text{where} \quad \phi = \int d^3r' \, f(r') \text{ is total charge}
\]

dipole: \(l=1 \) term

\[
\phi^{(1)}(\vec{r}) = \frac{1}{r^2} \int d^3r' \, \delta(\vec{r} - \vec{r}') \, \vec{r}' \cdot \vec{p} \, (\cos \theta)
\]

\[
\phi^{(1)}(\vec{r}) = \frac{1}{r^2} \int d^3r' \, f(\vec{r}') \, r' \, \cos \theta
\]

Now \(\vec{r} \cdot \vec{r}' = rr' \cos \theta \quad \Rightarrow \quad \vec{r} \cdot \vec{r}' = r' \cos \theta \)

\[
\phi^{(1)}(\vec{r}) = \frac{1}{r^2} \int d^3r' \, f(\vec{r}') \, \vec{r}'
\]

\[
\phi^{(1)}(\vec{r}) = \frac{\vec{p} \cdot \vec{r}}{r^2} \quad \text{where} \quad \vec{p} = \int d^3r' \, f(\vec{r}') \, \vec{r}'
\]

\(\vec{p} \) is the dipole moment

For a set of point charges \(q_i \) at \(\vec{r}_i \),

\[\vec{p} = \sum q_i \vec{r}_i\]
Quadrupole: $l = 2$ Term

\[
\phi^{(2)}(\vec{r}) = \frac{1}{r^2} \int d^3r' \rho(\vec{r}') r'^2 P_2(\cos \theta)
\]

\[
= \frac{1}{r^3} \int d^3r' \rho(\vec{r}') r'^2 \frac{1}{2} (3 \cos^2 \theta - 1)
\]

where \(\cos \theta = \hat{r} \cdot \vec{r} \).

\[
\phi^{(2)}(\vec{r}) = \frac{1}{r^3} \int d^3r' \rho(\vec{r}') \frac{1}{2} (3 (\vec{r}' \cdot \hat{r})^2 - (\vec{r}')^2)
\]

\[
= \frac{1}{r^3} \vec{r} \cdot \left[\int d^3r' \rho(\vec{r}') \frac{1}{2} (3 \vec{r}' \cdot \hat{r}^2 - (\vec{r}')^2 \hat{l}) \right] \cdot \hat{r}
\]

where \(\hat{l} \) is the identity tensor such that for any two vectors \(\vec{u} \) and \(\vec{v} \), \(\vec{u} \cdot \hat{l} \cdot \vec{v} = \vec{u} \cdot \vec{v} \).

and \(\vec{r}' \vec{r} \) is the tensor such that for any two vectors \(\vec{u} \) and \(\vec{v} \), \(\vec{u} \cdot [\vec{r}' \vec{r}] \cdot \vec{v} = (\vec{u} \cdot \vec{r}') (\vec{r}' \cdot \vec{v}) \).

Define quadrupole tensor \(\mathcal{Q} \equiv \int d^3r' \rho(\vec{r}') (3\vec{r}' \vec{r} - (\vec{r}')^2 \hat{l}) \).

\[
\phi^{(2)}(\vec{r}) = \frac{1}{r^3} \frac{1}{2} \vec{r} \cdot \mathcal{Q} \cdot \hat{r}
\]

so to lowest three terms,

\[
\phi(\vec{r}) = \frac{\rho}{r} + \frac{\vec{p} \cdot \hat{r}}{r^2} + \frac{\hat{r} \cdot \mathcal{Q} \cdot \hat{r}}{2r^3} + \ldots
\]

defined in terms of the moments \(\rho, \vec{p}, \mathcal{Q} \) of the charge distribution.
Note, the moments \(\mathbf{m} \), \(\mathbf{P} \), \(\mathbf{E} \) do not depend on the observation point \(\mathbf{r} \) — we can calculate them once and then use them to get \(\Phi(\mathbf{r}) \) at all \(\mathbf{r} \).

Monopole: \(\Phi = \int d^3r \, p(\mathbf{r}) \) — scalar integral

Dipole: \(\mathbf{P} = \int d^3r \, p(\mathbf{r}) \mathbf{r} \) — vector integral

If we pick a coordinate system, we have to do 3 integrations to get the three components of \(\mathbf{P} \)

\(\hat{e}_i \cdot \mathbf{P} = p_i = \int d^3r \, p(\mathbf{r}) r_i \)

Quadrapole: \(\mathbf{Q} = \int d^3r \, p(\mathbf{r}) \left(\mathbf{3r} \mathbf{r} - (\mathbf{r} \cdot \mathbf{r}) \mathbf{I} \right) \) — tensor integral

If we pick a coordinate system \(x, y, z \) then

\(\mathbf{Q} \) is a matrix with components

\(\hat{e}_i \cdot \mathbf{Q} \hat{e}_j = Q_{ij} = \int d^3r \, p(\mathbf{r}) \left[3r_i r_j - (\mathbf{r} \cdot \mathbf{r}) \delta_{ij} \right] \)

There are 9 elements of the 3x3 matrix \((Q_{ij}) \), but \(Q_{ij} = Q_{ji} \) is symmetric so there are only 6 independent elements to compute.
General method

\[\phi (r') = \sum_{l=0}^{\infty} \frac{1}{r^{l+1}} \int d^3r' \rho (r')(r')^l P_l (\cos \theta) \]

In above, \(\theta \) is angle between \(\hat{r} \) and \(\hat{r}' \).
If we think of \(\rho \) as the spherical coord \(\theta \), then we effect, above is choosing \(\hat{r} \) to be on \(\hat{z} \) axis. We would like a representation in which \(\hat{r} \) is positioned arbitrarily with respect to the axes used in describing \(\rho \).

Use the addition theorem for spherical harmonics
- see Jackson 3.6 for discussion & proof

\[P_l (\cos \theta) = \frac{4 \pi}{2l+1} \sum_{m=-l}^{l} Y_{l}^{m} (\theta, \phi) Y_{l}^{m} (\theta, \phi') \]

where \((\theta, \phi)\) are the angles of \(\hat{r} \), \((\theta', \phi')\) are the angles of \(\hat{r}' \), and \(\theta \) is the angle between \(\hat{r} \) and \(\hat{r}' \), i.e. \(\cos \theta = \hat{r} \cdot \hat{r}' \)
\[\cos \theta = \frac{\hat{z} \cdot \hat{r}}{\hat{z} \cdot \hat{r}'} \]
\[\cos \theta' = \frac{\hat{z} \cdot \hat{r}'}{\hat{z} \cdot \hat{r}} \]

\[\Rightarrow \]

\[\phi (r') = \sum_{l=0}^{\infty} \frac{1}{r^{l+1}} \frac{4 \pi}{2l+1} \sum_{m=-l}^{l} \int d^3r' \rho (r')(r')^l \frac{l}{2 \pi} Y_{l}^{m} (\theta', \phi') Y_{l}^{m*} (\theta, \phi) \]

Define the moment

\[\mathbf{r}_{l m} = \int d^3r' \rho (r')(r')^l Y_{l}^{m} (\theta', \phi') \]

independent of observation point
\[\phi(r) = \frac{q}{r} + \frac{p}{r^2} + \frac{\mathbf{e} \cdot \mathbf{e}_0}{2r^3} \]

Electric field \(\mathbf{E} = -\nabla \phi = -\frac{\partial \phi}{\partial r} \mathbf{r} - \frac{1}{r} \frac{\partial \phi}{\partial \theta} \mathbf{\hat{\theta}} = -\frac{\partial \phi}{r \sin \theta} \mathbf{\hat{\phi}} \]

For the monopole term \(\mathbf{E} = \frac{q}{r^2} \mathbf{r} \)

For the dipole term, choose \(\mathbf{p} \) along \(\hat{\phi} \) axis so

\[\phi(r) = \frac{p \cos \theta}{r^2} \]

\[\mathbf{E} = \frac{2p \cos \theta}{r^3} \mathbf{\hat{r}} + \frac{p \sin \theta}{r^3} \mathbf{\hat{\theta}} \]

\[\mathbf{E} = \frac{p}{r^3} (2 \cos \theta \mathbf{\hat{r}} + \sin \theta \mathbf{\hat{\theta}}) \]

Note \(p \cos \theta \mathbf{\hat{r}} = (\mathbf{p} \cdot \mathbf{\hat{r}}) \mathbf{\hat{r}} \)

\(p \sin \theta \mathbf{\hat{\theta}} = - (\mathbf{p} \cdot \mathbf{\hat{\theta}}) \mathbf{\hat{\theta}} \)

Now \(\mathbf{p} = (\mathbf{p} \cdot \mathbf{\hat{r}}) \mathbf{\hat{r}} + (\mathbf{p} \cdot \mathbf{\hat{\theta}}) \mathbf{\hat{\theta}} \)

\[- (\mathbf{p} \cdot \mathbf{\hat{\theta}}) \mathbf{\hat{\theta}} = (\mathbf{p} \cdot \mathbf{\hat{r}}) \mathbf{\hat{r}} - \mathbf{p} \]

\[\mathbf{E} = \frac{1}{r^3} \left[2(\mathbf{p} \cdot \mathbf{\hat{r}}) \mathbf{\hat{r}} + (\mathbf{p} \cdot \mathbf{\hat{\theta}}) \mathbf{\hat{\theta}} - \mathbf{p} \right] \]

\(= \frac{1}{r^3} \left[2(\mathbf{p} \cdot \mathbf{\hat{r}}) \mathbf{\hat{r}} - \mathbf{p} \right] \) expresses \(\mathbf{E} \) in coordinate-free form