1) $[25$ points total]
a) [13 pts] A point charge $q>0$ is positioned a large distance r from a neutral atom of atomic polarizability α. How does the force between the charge and the atom vary with distance r ? Is the force repulsive or attractive? What happens if now $q<0$?
b) [12 pts] Consider two semi-infinite dielectrics with real positive dielectric constants ε_{1} and ε_{2} that meet at a plane interface as in the figure below. If a static uniform electric field \mathbf{E}_{1} is present in dielectric 1 , making an angle θ_{1} with respect to the normal to the interface, then what is the angle θ_{2} of the static uniform electric field \mathbf{E}_{2} in dielectric 2? Assume that there is no free charge at the interface. Write your answer for θ_{2} in terms of $\theta_{1}, \varepsilon_{1}$ and ε_{2}.

2) [25 points total]

Two thin concentric conducting spherical shells of inner radius a and outer radius b carry total free charges $+Q$ and $-Q$ respectively. The space between them is half filled by a dielectric material with dielectric constant ε, as sketched below.

a) $[9 \mathrm{pts}]$ [Find the electric field \mathbf{E} everywhere between the shells, $a<r<b$.
b) [8 pts] Calculate the total surface charge density $\sigma_{\mathrm{tot}}(\theta)$ on the surface of the inner shell at $r=a$.
c) $[8 \mathrm{pts}]$ Calculate the induced bound surface charge density $\sigma_{b}(\theta)$ on the surface of the dielectric at $r=a$.
3) [25 points total]
a) [9 pts$]$ Consider the propagation of a linearly polarized plane transverse electromagnetic wave traveling in the $\hat{\mathbf{z}}$ direction in a dielectric material. In lecture we considered behavior as a function of the wave frequency ω and found that behavior could be considered to belong to one of three different regimes: transparent propagation, resonant absorption, and total reflection. Describe the characteristic feature of the complex dielectric function $\varepsilon(\omega)$, and the complex wavevector k, in each of these three regimes.
b) [6 pts] Consider the effective dielectric function $\varepsilon(\omega)$ of a conductor, and explain qualitatively what is the difference between this and the $\varepsilon(\omega)$ of a dielectric insulator. What is a clear physical example of a difference in behavior between the conductor and the dielectric, with respect to electromagnetic plane wave propagation.
c) [10 pts] Consider a linearly polarized plane transverse electromagnetic wave traveling in the $\hat{\mathbf{z}}$ direction with frequency ω in the region of total reflection of either a dielectric or conductor. Compute the time averaged Poynting vector*

$$
\langle\mathbf{S}(\mathbf{r}, t)\rangle=\frac{c}{4 \pi}\langle\mathbf{E}(\mathbf{r}, t) \times \mathbf{H}(\mathbf{r}, t)\rangle
$$

and explain why your result is consistent with this being a region of total reflection. For this calculation you may assume that μ is a real constant.
*In lecture we mentioned some difficulties with using this formula for \mathbf{S} in a general situation, but it should be ok when talking about waves of a single frequency ω.
4) $[25$ points total]

Consider the radiation emitted by a thin circular wire loop of radius R, centered about the origin in the $x y$ plane at $z=0$. The current flowing in the loop is given by

$$
I(\varphi, t)=\operatorname{Re}\left[I_{0} \cos (n \varphi) \mathrm{e}^{-i \omega t}\right]
$$

where φ is the usual azimuthal angle in spherical coordinates (i.e. the angle in the $x y$ plane). The frequency ω is such that $R \omega \ll c$.
a) [8 pts$]$ If $n=0$, show that there is magnetic dipole radiation but no electric dipole radiation.
b) [8 pts$]$ If $n=1$, show that there is electric dipole radiation but no magnetic dipole radiation.
c) [9 pts$]$ If $n=2$, show that there is neither electric dipole nor magnetic dipole radiation. What happens in this case? You must do a calculation or give a convincing argument to support your answer, not just give a guess.

Hint: For all parts, think about what the charge in the loop is doing. If you argue convincingly, you don't need to do an involved calculation.

