1) [25 points total]

a) [13 pts] A point charge q > 0 is positioned a large distance r from a neutral atom of atomic polarizability α . How does the force between the charge and the atom vary with distance r? Is the force repulsive or attractive? What happens if now q < 0?

b) [12 pts] Consider two semi-infinite dielectrics with real positive dielectric constants ε_1 and ε_2 that meet at a plane interface as in the figure below. If a *static* uniform electric field \mathbf{E}_1 is present in dielectric 1, making an angle θ_1 with respect to the normal to the interface, then what is the angle θ_2 of the static uniform electric field \mathbf{E}_2 in dielectric 2? Assume that there is no free charge at the interface. Write your answer for θ_2 in terms of θ_1 , ε_1 and ε_2 .

2) [25 points total]

Two thin concentric conducting spherical shells of inner radius a and outer radius b carry total free charges +Q and -Q respectively. The space between them is half filled by a dielectric material with dielectric constant ε , as sketched below.

a) [9 pts] [Find the electric field **E** everywhere between the shells, a < r < b.

b) [8 pts] Calculate the total surface charge density $\sigma_{tot}(\theta)$ on the surface of the inner shell at r = a.

c) [8 pts] Calculate the induced bound surface charge density $\sigma_b(\theta)$ on the surface of the dielectric at r = a.

3) [25 points total]

a) [9 pts] Consider the propagation of a linearly polarized plane transverse electromagnetic wave traveling in the $\hat{\mathbf{z}}$ direction in a dielectric material. In lecture we considered behavior as a function of the wave frequency ω and found that behavior could be considered to belong to one of three different regimes: transparent propagation, resonant absorption, and total reflection. Describe the characteristic feature of the complex dielectric function $\varepsilon(\omega)$, and the complex wavevector k, in each of these three regimes.

b) [6 pts] Consider the *effective* dielectric function $\varepsilon(\omega)$ of a conductor, and explain qualitatively what is the difference between this and the $\varepsilon(\omega)$ of a dielectric insulator. What is a clear physical example of a difference in behavior between the conductor and the dielectric, with respect to electromagnetic plane wave propagation.

c) [10 pts] Consider a linearly polarized plane transverse electromagnetic wave traveling in the \hat{z} direction with frequency ω in the region of total reflection of either a dielectric or conductor. Compute the time averaged Poynting vector^{*}

$$\left< \mathbf{S}(\mathbf{r},t) \right> = \frac{c}{4\pi} \left< \mathbf{E}(\mathbf{r},t) \times \mathbf{H}(\mathbf{r},t) \right>$$

and explain why your result is consistent with this being a region of total reflection. For this calculation you may assume that μ is a real constant.

*In lecture we mentioned some difficulties with using this formula for **S** in a general situation, but it should be ok when talking about waves of a single frequency ω .

4) [25 points total]

Consider the radiation emitted by a thin circular wire loop of radius R, centered about the origin in the xy plane at z = 0. The current flowing in the loop is given by

$$I(\varphi, t) = \operatorname{Re}\left[I_0 \cos(n\varphi) \mathrm{e}^{-i\omega t}\right]$$

where φ is the usual azimuthal angle in spherical coordinates (i.e. the angle in the xy plane). The frequency ω is such that $R\omega \ll c$.

a) [8 pts] If n = 0, show that there is magnetic dipole radiation but no electric dipole radiation.

b) [8 pts] If n = 1, show that there is electric dipole radiation but no magnetic dipole radiation.

c) [9 pts] If n = 2, show that there is neither electric dipole nor magnetic dipole radiation. What happens in this case? You must do a calculation or give a convincing argument to support your answer, not just give a guess.

Hint: For all parts, think about what the charge in the loop is doing. If you argue convincingly, you don't need to do an involved calculation.