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Unit 1-2: Magnetsostatics

The theory of magnetostatics was developed over the years by doing experiments on the forces produced by wires
carrying a steady electric current. Here we will not follow that historical development but instead use an alternative
presentation that yields the same results.

Just like a stationary electric charge produces an electric field, an electric charge in motion is found to produce a
magnetic field. For a charge q′, located at the orgin r′ = 0, and moving with a velocity v′ (where |v′| � c, with c the
speed of light in the vacuum) a magnetic field will be produced at position r equal to

B(r) = k2q
′v′ × r

r3
=
k2
k1

v′ ×E(r). (1.2.1)

Here E(r) = k1q
′r/r3 is the electrostatic field produced by q′, and k2 is a new universal constant of nature. Just as

we saw that the value of k1 is set by the units we choose for charge, so here the value of k2 is set by the units we
choose for magnetic field.

Lorentz Force

A magnetic field exerts a force on a charge that is moving. The total electric and magnetic force acting on a charge
is called the Lorentz force. For a charge q at position r moving with velocity v, the Lorentz force q feels due to the
electric and magnetic fields at its position is

F = q [E(r) + k3v ×B(r)] (1.2.2)

The first term is the familiar Coulomb force, the second term is the magnetic force. The constant k3 is another
universal constant of nature (by universal we mean it has the same value for all charges no matter where they are or
how they are moving). However, unlike k1 and k2, we cannot choose this new constant k3 to have any value we like –
defining the units of charge q has already been used to set the value of k1, while defining the units of magnetic field
B has been used to set the value of k2. There is no further freedom of units to play with, so given choices for k1 and
k2, the value of k3 is fixed by nature.

Combining the above, the force on a charge q at position r, moving with velocity v, due to a charge q′ at the origin
r′ = 0, moving with velocity v′ is, in the non-relativistic limit |v|, |v′| � c,

F = k1qq
′ r

r3
+ k2k3qq

′v × (v′ × r)

r3
(1.2.3)

The first term is just the Coulomb force, the second term is the magnetic analog of the Coulomb force.

The magnetic part is just the point charge equivalent of the Biot-Savart Law for the force between current carrying
wires. If we regard qv = I as the current of charge q, and q′v′ = I′ as the current of charge q′, then the magnetic
force is k2k3I× (I′ × r)/r3, which is just the Biot-Savart Law.

We can rewrite the above force as

F = k1qq
′
(

1 +
k2k3
k1

v × v′×
)

r

r3
(1.2.4)

From this we see that k2k3/k1 must have the units of (velocity)−2. Since velocity has units that are unaffected by
whatever we choose for the units of charge or magnetic field, then the numerical value of the combination k2k3/k1 must
be independent of whatever choices we made for our units of q and B, and so be independent of the unit-dependent
values of k1 and k2. Experimentally it is found that

k2k3
k1

=
1

c2
where c is the speed of light in the vacuum. (1.2.5)

Continuum Current Density
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For charges qi at positions ri(t), with velocities vi = dri/dt, we define the continuum current density as,

j(r, t) =
∑
i

qi vi(t) δ(r− ri(t)) (1.2.6)

This expression treats each charge i as if it gives a current qivi located at the position ri of the charge.

Noting that the units of the delta function are 1/(length)3, the units of j are

(charge)

(
length

time

)(
1

length3

)
=

(
charge

area · time

)
=

(
current

area

)
(1.2.7)

For a surface S∫
S

da n̂ · j = I the total current (charge per unit time) flowing through the surface S. (1.2.8)

Charge Conservation

For a volume V bounded by a surface S, charge conservation can be written as,

d

dt

∫
V
d3r ρ(r, t) = −

∮
S
da n̂ · j(r, t)

rate of change of total
charge in V

=
(-) rate of charge
flowing out of V

through the surface S

(1.2.9)

Using Gauss’ Theorem we can then write∮
S

da n̂ · j =

∫
V

d3r∇ · j = −
∫
V

d3r
∂ρ(r, t)

∂t
(1.2.10)

Since this must hold true for any volume V , the integrands of the last two terms must be equal. So this results in the
law of local charge conservation,

∂ρ

∂t
+ ∇ · j = 0 (1.2.11)

A static situation has a charge density that does not change in time, so ∂ρ/∂t = 0. From this, and the above
conservation law, we see that the condition for a magnetostatic situation is ∇ · j = 0. For a magnetostatic situation,
charges may be moving, but they must move in such a way that whatever charge leaves a point in space, it is
immediately replaced by an equal amount of charge flowing into that point in space, so that ρ stays the same. The
condition that requires outflow = inflow is that the current density is divergenceless.

Maxwell’s Equations for Magnetostatics

For a set of charges qi at positions ri, moving with velocities vi, we can generalize Eq. (1.2.1) to,

B(r) =
∑
i

k2 qi vi ×
(r− ri)

|r− ri|3
= k2

∫
d3r′ j(r′)× (r− r′)

|r− r′|3
= k2

∫
d3r′ j(r′)×∇

(
−1

|r− r′|

)
(1.2.12)

To check that the middle step is correct, just substitute in our definition of the current density j from Eq. (1.2.6) and
integrate over the delta functions. The last step follows from Eq. (1.1.14).

For any constant vector A and any scalar function φ(r), we have the following vector identity: ∇×(Aφ) = −A×∇φ.
Regarding j(r′) as A, and 1/|r− r′| as φ, we can then use this to write,

B(r) = k2∇×
[∫

d3r′
j(r′)

|r− r′|

]
so B is the curl of some vector function. (1.2.13)
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Note that although j(r′) varies with position r′, it is a constant with respect to the operator ∇, since ∇ differentiates
only with respect to the variable r and not with respect to the variable r′.

From Eq. (1.2.13) it follows that,

∇ ·B(r) = 0
since the divergence of the curl of any vector function must always
vanish, ∇ · (∇×A(r)) = 0 for any A(r).

(1.2.14)

The integral version of Eq. (1.2.14) is obtained from using Gauss’ Theorem,

∫
V

d3r∇ ·B =

∮
S

da n̂ ·B = 0 (1.2.15)

Having found the divergence of B, we now want to find its curl. Taking the curl of Eq. (1.2.13) we get,

∇×B(r) = k2∇×
[
∇×

(∫
d3r′

j(r′)

|r− r′|

)]
(1.2.16)

For any vector field A(r) we have the vector identity ∇ × (∇ ×A) = ∇(∇ ·A) − ∇2A. Applying this identity to
Eq. (1.2.16) gives,

∇×B(r) = k2∇
[∫

d3r′∇ ·
(

j(r′)

|r− r′|

)]
− k2

∫
d3r′∇2

(
j(r′)

|r− r′|

)
(1.2.17)

and, since for a constant vector A and scalar function φ(r) one has ∇2(Aφ) = A∇2φ, we can write,

∇×B(r) = k2∇
[∫

d3r′∇ ·
(

j(r′)

|r− r′|

)]
− k2

∫
d3r′ j(r′)∇2

(
1

|r− r′|

)
(1.2.18)

where we used the fact that j(r′) is just a constant vector with respect the ∇2, since ∇2 operates on r and not on r′.

In the second term above we can use Eq. (1.1.29) to write ∇2

(
1

|r− r′|

)
= −4πδ(r− r′).

In the first term we can write, ∇ ·
(

j(r′)

|r− r′|

)
= j(r′) ·∇

(
1

|r− r′|

)
= −j(r′) ·∇′

(
1

|r− r′|

)
,

where we used that (i) for any constant vector A and any scalar function φ(r), ∇ · (Aφ) = A ·∇φ, and (ii) that,
when applied to 1/|r − r′|, ∇′ = −∇ (the first differentiates with respect to r′, while the second differentiates with
respect to r).

Using these in Eq. (1.2.18) gives

∇×B(r) = −k2∇
[∫

d3r′ j(r′) ·∇′
(

1

|r− r′|

)]
+ 4πk2

∫
d3r′ j(r′)δ(r− r′) (1.2.19)

Integrating over the delta function in the second term just gives 4πk2 j(r). To rewrite the first term we use the vector
identity that for any vector function A(r) and any scalar function φ(r), we have ∇ · (Aφ) = A ·∇φ+ (∇ ·A)φ, which
we can rearranged to be A ·∇φ = ∇ · (Aφ) − (∇ ·A)φ. Taking j as A and 1/|r − r′| as φ, and regarding these as
functions of r′, we can rewrite the integral in the first term of Eq. (1.2.19) as,∫

d3r′ j(r′) ·∇′
(

1

|r− r′|

)
=

∫
d3r′∇′ ·

(
j(r′)

|r− r′|

)
−
∫
d3r′

[
∇′ · j(r′)

] 1

|r− r′|
(1.2.20)

For a magnetostatic situation, the second term above must vanish, since a magnetostatic situation is defined by the
condition ∇ · j(r) = 0. For the first term we can use Gauss’ Theorem to write,∫

d3r′∇′ ·
(

j(r′)

|r− r′|

)
=

∫
S

da′ n̂ ·
(

j(r′)

|r− r′|

)
(1.2.21)
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If we let the volume of integration be all of space, then the surface S enclosing that volume moves off to infinity, and
if the current j is sufficiently localized so that j(r)→ 0 sufficiently rapidly as |r| → ∞, then the surface integral above
will vanish. Thus we conclude that the first term in Eq. (1.2.19) vanishes, and we are left with,

∇×B(r) = 4πk2 j(r) Ampere’s Law for magnetostatics (1.2.22)

We can use Stokes Theorem to rewrite this in integral form,

∫
S

da n̂ ·∇×B =

∮
C

d` ·B = 4πk2

∫
S

da n̂ · j = 4πk2Ithrough (1.2.23)

where C is the curve bounding the surface S, d` is the differential tangent to the curve, and Ithrough is the current
flowing through the surface.

We thus have Maxwell’s equations for magnetostatics,

∇ ·B(r) = 0, ∇×B(r) = 4πk2 j(r) (1.2.24)

Note, although we derived the above equations starting from a non-relativistic point charge version of the Biot-Savart
Law, they turn out to remain correct for all magnetostatic situations.


