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Unit 2-3: Separation of Variables

Our next special method for solving Poisson’s equation is the method of separation of variables. As with the image
charge method, separation of variables only works well for certain simple geometries.

Rectangular Coordinates

If the system has a rectangular boundary, and contains no charge, we can look for solutions to ∇2φ = 0 of the form,

φ(r) = X(x)Y (y)Z(z) product of three functions, each of which depends on one variable only (2.3.1)

Then,

∇2φ = 0 ⇒ 1

φ
∇2φ = 0 ⇒ 1

X(x)

d2X

dx2
+

1

Y (y)

d2Y

dy2
+

1

Z(z)

d2Z

dz2
= 0 (2.3.2)

The only way this can be equal to zero for all values of x, y, and z, is if each of the three terms is a constant. Call
them a2, b2, and c2. Then we have,

1

X

d2X

dx2
= a2 ⇒ X(x) = A1e−ax +A2eax (2.3.3)

1

Y

d2Y

dy2
= b2 ⇒ Y (y) = B1e−by +B2eby (2.3.4)

1

Z

d2Z

dz2
= c2 ⇒ Z(z) = C1e−cz + C2ecz (2.3.5)

with a2 + b2 + c2 = 0 ⇒ at least one of the a2, b2, c2 must be negative ⇒ at least one of the a, b, c is an imaginary
number.

Above is one particular solution, but there are many solutions, each with different values of a, b, and c. The general
solution is a superposition of these,

φ(x, y, z) =
∑
i

(
A1ie

−aix +A2ie
aix
) (
B1ie

−biy +B2ie
biy
) (
C1ie

−ciz + C2ie
ciz
)

(2.3.6)

where a2i + b2i + c2i = 0 for all i.
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Consider a U-shaped channel shaped as shown in the diagram. The channel extends
infinitely along the ẑ axis. We have the following boundary conditions on the surfaces
of the channel, φ = 0 on the vertical sides, φ is a specified function on the bottom
horizontal side, and φ→ 0 as y →∞,

φ(0, y) = 0, φ(a, y) = 0, φ(x, y) = 0 as y →∞ , φ(x, 0) = f(x) a specified function (2.3.7)

Because of the translational symmetry along the ẑ axis, the solution must be independent of z, so

φ(x, y) =
∑
i

(
A1ie

−aix +A2ie
aix
) (
B1ie

−biy +B2ie
biy
)

with a2i + b2i = 0 (2.3.8)

We can see that the correct thing is to choose a to be imaginary so that the dependence on y will exponentially decay
as y →∞. We then write,

ai = iαi, bi = αi so that a2i + b2i = 0 is automatically satsified (2.3.9)
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Using these we can write,

φ(x, y) =
∑
i

(Ai cosαix+Bi sinαix)
(
Cie
−αiy +Die

αiy
)

(2.3.10)

where

Ai = (A1i +A2i), Bi = i(A1i −A21), Ci = B1i, Di = B2i (2.3.11)

Now φ(x, y)→ 0 as y →∞ for all x ⇒ Di = 0 .

So now,

φ(x, y) =
∑
i

(A′i cosαix+B′i sinαix) e−αiy (2.3.12)

where A′i = AiCi and B′i = BiCi.

Now we use the boundary condition on the left vertical side at x = 0,

φ(0, y) = 0 ⇒
∑
i

A′ie
−αiy = 0 for all y ⇒ A′i = 0 . (2.3.13)

So now,

φ(x, y) =
∑
i

B′i sin(αix)e−αiy (2.3.14)

Now we use the boundary condition on the right vertical side at x = a,

φ(a, y) = 0 ⇒
∑
i

B′i sin(αia)e−αiy = 0 for all y (2.3.15)

⇒ sin(αia) = 0 ⇒ αia = nπ ⇒ αi =
nπ

a
for integer n ≥ 1 (2.3.16)

So now,

φ(x, y) =

∞∑
n=1

B′n sin
(nπx

a

)
e−nπy/a (2.3.17)

Finally we use the boundary condition on the bottom horizontal side at y = 0,

φ(x, 0) = f(x) ⇒
∞∑
n=1

B′n sin
(nπx

a

)
= f(x) this is just the Fourier Series for f(x)! (2.3.18)

So we can determine the remaining unknown coefficients B′n by the Fourier coefficient formula,

B′n =
2

a

∫ a

0

dx f(x) sin
(nπx

a

)
(2.3.19)

The above follows from the orthogonality condition,

2

a

∫ a

0

dx sin
(nπx

a

)
sin
(mπx

a

)
=

{
0 m 6= n
1 m = n

(2.3.20)

Just multiply Eq. (2.3.18) by sin
(mπx

a

)
, integrate over x, apply the orthogonality condition, and one gets Eq. (2.3.19).

For the case of f(x) = φ0 a constant,

B′n =
2φ0
a

∫ a

0

dx sin
(nπx

a

)
=

2φ0
a

[
−a
nπ

cos
(nπx

a

)]a
0

=
2φ0
nπ

(1− cosnπ) =


0 n even

4φ0
nπ

n odd
(2.3.21)
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Cylindrical Coordinates

As with the previous example, we will assume that our system contains no charge and has translational symmetry
along the ẑ axis, so φ does not depend on the coordinate z. For φ(r, ϕ), where r is the cylindrical radial coordinate
and ϕ the polar angle, Laplace’s equation in cylindrical coordinates is,

∇2φ(r, ϕ) =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂ϕ2
= 0 (2.3.22)

y

1¥
.

We will assume a separation of variables solution, φ(r, ϕ) = R(r)Φ(ϕ). Then we can
write,

r2∇2φ

φ
=

r

R

d

dr

(
r
dR

dr

)
+

1

Φ

d2Φ

dϕ2
= 0 (2.3.23)

For the above to vanish at all r and ϕ, each term must be a constant,

r

R

d

dr

(
r
dR

dr

)
= ν2 and

1

Φ

d2Φ

dϕ2
= −ν2 (2.3.24)

so that the sum of the two terms is always zero. The solutions to the above are,

R(r) = arν + br−ν Φ(ϕ) = A cos(νφ) +B sin(νφ) for ν 6= 0

R(r) = a0 + b0 ln r Φ(ϕ) = A0 +B0ϕ for ν = 0
(2.3.25)

How did we find these solutions? We just guess! Anytime a differential equation involves powerlaw terms and
derivatives, an algebraic form or a polynomial is a good guess to try.

If our system is such that ϕ can take its entire range of values from 0 to 2π (such as a problem in which φ is specified
on the surface of a cylinder) then φ must obey the periodicity φ(r, ϕ) = φ(r, ϕ+ 2π). This requires that B0 = 0 and
ν = n an integer. In this case we have,

φ(r, ϕ) = a0 + b0 ln r +

∞∑
n=1

[
rn (An cosnϕ+Bn sinnϕ) + r−n (Cn cosnϕ+Dn sinnϕ)

]
(2.3.26)

or reparametrizing,

φ(r, ϕ) = a0 + b0 ln r +

∞∑
n=1

[
anr

n sin(nϕ+ αn) + bnr
−n sin(nϕ+ βn)

]
(2.3.27)

If the region where we are solving for φ includes the origin r = 0 (suppose it is the region inside of the cylinder), then
all the bn = 0 since φ should not diverge at the origin if there is no charge there. If the region where we are solving
for φ excludes r = 0 (suppose it is the region outside the cylinder), then the bn need not be zero. The case b0 6= 0
corresponds to a line charge λ along the ẑ axis.

Consider now the case where ϕ has a restricted range, for example a wedge shaped opening of angle β in a conducting
block, so that ϕ is restricted to 0 ≤ ϕ ≤ β.

Y
wedge of¥¥i .

011111111x
shaded region is
a conductor

φ is constant in the conductor, which gives the boundary conditions,

φ(r, ϕ = 0) = φ0 φ(r, ϕ = β) = φ0 (2.3.28)

The general solution is the linear combination

φ(r, ϕ) = (a0 + b0 ln r)(A0 +B0ϕ) +
∑
ν>0

(
aνr

ν + bνr
−ν) (Aν cos νϕ+Bν sin νϕ) (2.3.29)
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The boundary condition that φ(r, 0) = φ0 a constant for all r then requires,

b0 = 0, Aν = 0 for all ν (2.3.30)

So,

φ(r, ϕ) = a0(A0 +B0ϕ) +
∑
ν>0

(
aνr

ν + bνr
−ν)Bν sin νϕ (2.3.31)

Since φ should be continuous as one approaches the conducting surface, and φ = φ0 is a finite constant on the
conducting surface, then φ cannot diverge as one approaches the origin r = 0 along any fixed angle ϕ. This requires

bν = 0 for all ν .

So,

φ(r, ϕ) = a0(A0 +B0ϕ) +
∑
ν>0

aνr
νBν sin νϕ (2.3.32)

The condition φ(r, β) = φ0 a constant for all r then requires,

sin νβ = 0 ⇒ ν =
nπ

β
, with n an integer n ≥ 1 (2.3.33)

So,

φ(r, ϕ) = a0(A0 +B0ϕ) +

∞∑
n=1

anr
nπ/β sin

(
nπϕ

β

)
(2.3.34)

Since φ must approach the constant φ0 as r → 0 along any fixed angle ϕ, we therefore must have

B0 = 0, a0A0 = φ0 . (2.3.35)

So finally we have,

φ(r, ϕ) = φ0 +

∞∑
n=1

anr
nπ/β sin

(
nπϕ

β

)
(2.3.36)

But we still have all the unknown coefficients an ! These will depend on how φ(r, ϕ) behaves as r → ∞. We can’t
make the choice that φ→ 0 as r →∞, because φ = φ0 everywhere on the conducting surface even as r →∞. Thus
we must have additional information if we are to determine the an.

Nevertheless, we can still get very interesting information near the origin at small r. In this limit, the leading term
in the above series expansion for φ comes from the n = 1 term, as it vanishes the most slowly as r → 0. So near the
origin we can write,

φ(r, ϕ) ≈ φ0 + a1r
π/β sin

(
πϕ

β

)
(2.3.37)

The radial and polar components of the electric field are then,

Er(r, ϕ) = −∂φ
∂r

= −πa1
β

r
π
β−1 sin

(
πϕ

β

)
(2.3.38)

Eϕ(r, ϕ) = −1

r

∂φ

∂ϕ
= −πa1

β
r
π
β−1 cos

(
πϕ

β

)
(2.3.39)

Note, at ϕ = 0 or ϕ = β, we have Er = 0 as it must, since the electric field must always be normal to the conducting
surface.
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We thus onclude that as r → 0, E ∼ r
π
β−1 .

The induced surface charge on the surface of the conductor is given by, E · n̂ = 4πσ. For the surface at ϕ = 0, n̂ = ϕ̂.
For the surface at ϕ = β, n̂ = −ϕ̂. We thus have,

σ(r, ϕ = 0) =
Eϕ(r, 0)

4π
= − a1

4β
r
π
β−1 and σ(r, ϕ = β) =

−Eϕ(r, 0)

4π
= − a1

4β
r
π
β−1 (2.3.40)

For π/β > 1, i.e. β < π, E and σ vanish as r → 0 and one approaches the origin.

For π/β < 1¡ i.e.β > π, E and σ diverge as r → 0 and one approaches the origin.

t¥¥nr . instant
Earth

-
e '

E' in-
411cg, Err CEE

Thus we conclude that E diverges at an external corner, while E vanishes at an internal corner. Remember, the above
example had translational symmetry along the ẑ axis, so the “corners” are really infinitely long straight edges.

Our result here is an illustration of the general conclusion that electric fields diverge at sharp conducting corners.
The same is true for a geometry where the conductor is a conical tip (though it is more involved mathematically to
show it). This effect is the basis for the technologies of scanning tunneling microscopy and scanning force microscopy,
where one scans a sharp metallic or semiconductor tip across a surface. In the first case, the strong electric field at the
point of the tip serves to draw electrons off the surface; in the second case the strong electric field at the tip creates
a force between the surface an the tip that deflects a cantilever. In both cases one uses these measurements to infer
the properties and topology of the surface.

Spherical Coordinates

Finally we consider spherical coordinates, again for a region that contains no charge and so ∇2φ = 0. You have
probably already seen separation of variables in spherical coordinates when you solved the Schrodinger equation for
the hydrogen atom in quantum mechanics. In spherical coordinates we can write Laplace’s equation as,

∇2φ =
1

r2
∂

∂r

(
r2
∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin2 θ

∂2φ

∂ϕ2
= 0 (2.3.41)

and we then assume a solution of the form,

φ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) (2.3.42)

Then

∇2φ = 0 ⇒ r2∇2φ = 0 ⇒ ΘΦ
d

dr

(
r2
dR

dr

)
+

RΦ

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

RΘ

sin2 θ

d2Φ

dϕ2
= 0 (2.3.43)

⇒ r2 sin2 θ

φ
∇2φ =

sin2 θ

R

d

dr

(
r2
dR

dr

)
+

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

Φ

d2Φ

dϕ2
= 0 (2.3.44)



6

Note that the first two terms of the middle expression in the above depend only on the coordinates r and θ, while the
last term depends only on the coordinate ϕ. For their sum to be zero for all values of r, θ and ϕ, it must be the case
that the last term is a constant, while the sum of the first two terms is the negative of that constant. We’ll call that
constant −m2. So we have,

1

Φ

d2Φ

dϕ2
= −m2 ⇒ d2Φ

dϕ2
= −m2Φ ⇒ Φ(ϕ) = e±imϕ (2.3.45)

Since Φ must have 2π periodicity in ϕ, i.e. Φ(ϕ) = Φ(ϕ+ 2π), we have that m must be an integer .

Returning to the other two pieces we have,

sin2 θ

R

d

dr

(
r2
dR

dr

)
+

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
= m2 (2.3.46)

divide all terms by sin2 θ to get

1

R

d

dr

(
r2
dR

dr

)
+

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
= 0 (2.3.47)

The first term depends only on r, while the next two terms depend only on θ. For them to sum to zero, the first term
must be a constant while the next two terms sum to the negative of that constant. We will call that constant `(`+ 1).

We thus get for the radial part,

1

R

d

dr

(
r2
dR

dr

)
= `(`+ 1) ⇒ d

dr

(
r2
dR

dr

)
= `(`+ 1)R (2.3.48)

Since the differential equation involves powers of r and derivatives with respect to r, a good guess is to try a power
law form for R. One finds that the solution has the form

R(r) = a`r
` + b`r

−(`+1) (2.3.49)

We can substitute this into the differential equation to verify it is the solution,

d

dr

(
r2
dR

dr

)
=

d

dr

(
r2
[
`a`r

`−1 − (`+ 1)b`r
−`−2]) =

d

dr

(
`a`r

`+1 − (`+ 1)b`r
−`) (2.3.50)

= `(`+ 1)a`r
` + `(`+ 1)b`r

−(`+1) = `(`+ 1)R (2.3.51)

For the angular part we have,

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
= −`(`+ 1) (2.3.52)

Let x = cos θ, so that dx = − sin θ dθ, and dθ = −dx
dθ

. Since θ takes the range 0 ≤ θ ≤ π, we have that x takes the

range −1 ≤ x ≤ 1. The above differential equation then becomes,

d

dx

[
(1− x2)

dΘ

dx

]
+

[
`(`+ 1)− m2

1− x2

]
Θ = 0 (2.3.53)

This is called the generalized Legendre Equation, and it has solutions on the range −1 ≤ x ≤ 1 when ` ≥ 0 is an
integer. Those solutions are known as the associated Legendre functions.

For the special case m = 0, we have Φ(ϕ) = 1 is independent of the azimuthal angle ϕ. Thus our solution φ(r, θ, ϕ)
does not depend on the angle ϕ, and the solution has rotational symmetry about the ẑ axis. For m = 0 we have,

d

dx

[
(1− x2)

dΘ

dx

]
+ `(`+ 1)Θ = 0 (2.3.54)
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The solutions are known as the ordinary Legendre polynomials, P`(x). For integer ` they are given by,

P`(x) =
1

2` `!

(
d

dx

)` (
x2 − 1

)`
Rodriguez’s formula (2.3.55)

The polynomials for the lowest few ` are,

P0(x) = 1, P1(x) = x, P2(x) =
1

2

(
3x2 − 1

)
, P3(x) =

1

2

(
5x3 − 3x

)
(2.3.56)

In general, P`(x) is a polynomial of order ` with only even powers if ` is even, and only odd powers if ` is odd. Thus
P`(x) has the symmetry,

P`(x) = P`(−x) when ` is even, P`(x) = −P`(−x) when ` is odd (2.3.57)

P`(x) is normalized so that P`(1) = 1.

Note: The Legendre polynomials are the solutions only when ` is an integer and ` ≥ 0. One can wonder about
solutions for non-integer `. Also, for each integer `, the Legendre polynomials give only one solution. But the
differential equation that defines the P`(x) is a 2nd order differential equation – 2nd order differential equations
should have two solutions for each value of `. So where are these “2nd” solutions, and where are the solutions for
non-integer values of `?

It turns out that all these other solutions blow up at either x = −1 or at x = 1, i.e. at θ = 0 or θ = π. They therefore
are physically unacceptable for problems where θ is allowed to take its full range of values, 0 ≤ θ ≤ π, and where
there is no reason why φ(r, θ, ϕ) should be singular at either θ = 0 or π. See Jackson section 3.2 for details.

The Legendre polynomials are orthogonal and form a complete set of basis functions on the interval −1 ≤ x ≤ 1,

∫ 1

−1
dxP`(x)P`(x) =

∫ π

0

dθ sin θP`(cos θ)P`(cos θ) =


0 ` 6= m

2

2`+ 1
` = m

(2.3.58)

We can therefore expand any function f(θ) on the interval 0 ≤ θ ≤ π as a linear combination of the P`(cos θ). This
is the reason they are useful for solving problems of Laplace’s equation with spherical boundary conditions.

For the more general case when m 6= 0, the solutions to Eq. (2.3.53) are the associated Legendre functions Pm` (x).
For Pm` (x) to be finite in the interval −1 ≤ x ≤ 1, one finds that ` must be an integer ` > 0, and the integer values of
m must statisfy |m| ≤ `, i.e. m = −`,−`+ 1, . . . , 0, . . . , `−1, `. For each such ` and m there is only one non-divergent
solution. See Jackson section 3.5 for details.

It is typical to combine the solutions Pm` (cos θ) to the θ part of Laplace’s equation with the Φm(ϕ) = eimϕ solutions
to the ϕ part, to define the spherical harmonics

Y`m(θ, φ) ≡

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimϕ (2.3.59)

The Y`m(θ, φ) are orthogonal,∫ 2π

0

dϕ

∫ π

0

dθ sin θ Y ∗`′m′(θ, φ)Y`m(θ, φ) = δ``′δmm′ (2.3.60)

where Y ∗`m is the complex conjugate of Y`m. They form a complete set of basis functions for expanding any function
f(θ, ϕ) defined on the surface of a sphere.

Behavior of fields near a conical hole or sharp tip
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Consider the geometry of a conical hole in a conductor, as in the diagram. The
geometry has rotational symmetry about the ẑ axis. We want to solve ∇2φ = 0
with separation of variables, but now θ is restricted to the range 0 ≤ θ ≤ β. We still
have azimuthal symmetry, so this corresponds to the case m = 0 for the solution
Φm(ϕ). But now, since we do not need the solution to be finite for all 0 ≤ θ ≤ π,
but only for the range 0 ≤ θ ≤ β, we have to consider all the “other” solutions to
the equation for Θ(θ), i.e. ` no longer has to be integer, though one still needs ` ≥ 0
for the solution to be finite at θ = 0. Similar to what we found for sharp edges in

cylindrical coordinates, one finds that the resulting electric field E→ 0 as r → 0 when β < π, and E→∞ as r → 0
when β > π. See Jackson section 3.4 for details.

Examples with azimuthal symmetry: m = 0

When the problem has azimuthal symmetry, the general solution to ∇2φ = 0 can be written as a linear combination
of products of the R`(r) with the Legendre polynomials P`(cos θ). This gives

φ(r, θ) =

∞∑
`=0

[
A`r

` +
B`
r`+1

]
P`(cos θ) (2.3.61)

The goal is to determine the coefficients A` and B` from the boundary conditions of the particular problem.

Example 1

Suppose one is given the value of the potential φ(R, θ) = φ0(θ) on the surface of a sphere of radius R.

Inside: To find the solution to ∇2φ = 0 inside the sphere, we note that φ should not diverge at the origin, i.e. as

r → 0. This leads to the conclusion that B` = 0 for all ` . Thus, inside,

φ(r, θ) =

∞∑
`=0

A`r
`P`(cos θ) (2.3.62)

At the surface r = R we must have

φ0(θ) = φ(R, θ) =

∞∑
`=0

A`R
`P`(cos θ) (2.3.63)

To find the coefficients A` we multiply both sides by sin θPm(cos θ), integrate over θ, and apply the orthogonality
condition of Eq. (2.3.58),∫ π

0

dθ sin θ φ0(θ)Pm(cos θ) =

∞∑
`=0

A`R
`

∫ π

0

dθ sin θ Pm(cos θ)P`(cos θ) (2.3.64)

=

∞∑
`=0

A`R
`

(
2

2`+ 1

)
δ`m = AmR

m 2

2m+ 1
(2.3.65)

Thus

Am =
2m+ 1

2Rm

∫ π

0

dθ sin θ φ0(θ)Pm(cos θ) (2.3.66)

Outside: To find the solution to ∇2φ = 0 outside the sphere, we can require that φ→ 0 as r →∞. This leads to the

conclusion that A` = 0 for all ` . Thus, outside,

φ(r, θ) =

∞∑
`=0

B`
r`+1

P`(cos θ) (2.3.67)
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At the surface r = R we must have

φ0(θ) = φ(R, θ) =

∞∑
`=0

B`
R`+1

P`(cos θ) (2.3.68)

We can solve for the coefficients B` with the same approach as we used above for the A` inside the sphere. We get,

Bm =
2m+ 1

2
Rm+1

∫ π

0

dθ sin θ φ0(θ)Pm(cos θ) ⇒ Bm = AmR
2m+1 (2.3.69)

Example 2

Suppose one is given the value of a fixed surface charge density σ(θ) on the surface of a sphere of radius R. What is
the solution φ inside and outside the sphere?

From the previous example we know,

φ(r, θ) =



∞∑
`=0

A`r
` P`(cos θ) r < R i.e. inside

∞∑
`=0

B`
r`+1

P`(cos θ) r > R i.e. outside

(2.3.70)

The boundary conditions at r = R on the surface are now,

(i) φ is continuous

⇒ φin(R, θ)− φout(R, θ) =

∞∑
`=0

[
A`R

` − B`
R`+1

]
P`(cos θ) = 0 (2.3.71)

If an expansion in Legendre polynomials vanishes for all θ, then each coefficient in the expansion must vanish,

⇒ A`R
` =

B`
R`+1

⇒ B` = A`R
2`+1 (2.3.72)

(ii) The jump in the electric field is given by σ(θ)[
−∂φ

out

∂r
+
∂φin

∂r

]
r=R

= 4πσ (2.3.73)

⇒
∞∑
`=0

[
(`+ 1)B`
R`+2

+ `A`R
`−1
]
P`(cos θ) =

∞∑
`=0

[
(`+ 1)A`R

2`+1

R`+2
+ `A`R

`−1
]
P`(cos θ) (2.3.74)

=

∞∑
`=0

(2`+ 1)R`−1A` P`(cos θ) = 4πσ(θ) (2.3.75)

Find the Am by using the orthogonality condition of the Legendre polyonmials,

(2m+ 1)Rm−1Am

(
2

2m+ 1

)
= 4π

∫ π

0

dθ sin θ σ(θ)Pm(cos θ) (2.3.76)

So,

Am =
4π

2Rm−1

∫ π

0

dθ sin θ σ(θ)Pm(cos θ) (2.3.77)
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Example

Suppose σ(θ) = k cos θ on the surface of a sphere of radius R. What is φ inside and outside the sphere?

Note, since P1(x) = x, we can write σ(θ) = kP1(cos θ). Hence, by the orthogonality of the P`(cos θ) we have that
only A1 6= 0.

A1 =
4π

2
k

∫ π

0

dθ sin θP1(cos θ)P1(cos θ) =
4π

2
k

(
2

2 + 1

)
=

4

3
πk (2.3.78)

Using B1 = A1R
2+1, we get,

φ(r, θ) =


4
3πkr cos θ r < R

4
3πk

R3

r2
cos θ r > R

(2.3.79)

We will soon see that the potential outside the sphere is that of an ideal electric dipole with dipole moment p = 4
3πR

3k.
Inside the sphere, the potential is φ = 4

3πkz, since z = r cos θ. The electric field inside the sphere is therefore constant,

E = −∇φ = −4

3
πk ẑ (2.3.80)

Outside the sphere the field is,

E = −∇φ = −∂φ
∂r

r̂− 1

r

∂φ

∂θ
θ̂ =

8

3
πk
R3

r3
cos θ r̂ +

4

3
πk
R3

r3
sin θ θ̂ (2.3.81)

=
4

3
πR3k

[
2 cos θ r̂ + sin θ θ̂

r3

]
we will soon see that this is just the field of an electric dipole (2.3.82)

E
K

field lies ofan electric
dipole

A physical example with σ(θ) = k cos θ

Consider two spheres with equal radii R, with equal but opposite uniform charge densities ρ and −ρ. When the two
spheres perfectly overlap, then the total ρtot = 0, and there is no net charge. No imagine displacing the positively
charged sphere from the negatively charged sphere by a small distance d along the ẑ axis, d � R. This causes a
surface charge σ(θ) to build up on the surface of the spheres, with a positive charge on the top, and a negative charge
on the bottom.

If we think of each small element of charge in the positively charged sphere as being displaced by its corresponding
element of charge in the negatively charged sphere, then this creates a small electric dipole moment. Considering this
over the entire volume of the spheres, we see that this situation can be described as a uniformly polarized sphere, with
a constant electric dipole density ρd throughout the sphere. We now want to compute the surface charge σ(θ) that
results.
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From the geometry as shown below, we see that the surface charge is σ(θ) = ρδr = ρd cos θ.

d 
d 

δr 

θ

d δr θ

θ δr = dcosθ

+
+ + +

+

�
� � �

�
�

Comparing to our previous example of a sphere with
surface charge σ = k cos θ, we see that the uniformly
polarized sphere is such an example with k = ρd.

So

σ(θ) = ρd cos θ

The total dipole moment on the sphere is p =
(ρd)( 4

3πR
3). The dipole moment density, also called

the polarization density P, is just the total dipole mo-
ment divided by the volume,

P = p/(
4

3
πR3) = ρd

So, from our previous calculation, we conclude that the electric field E inside a sphere with uniform polarization P is
constant, E = − 4

3πk ẑ = − 4
3πρd ẑ = − 4

3πP ẑ. We will come back to this result in our next unit.

Example

Consider a grounded conducting sphere of radius R placed in a uniform electric field E = E0ẑ. What is the resulting
potential φ and what is the surface charge σ induced on the surface of the sphere?

Z
grounded

E. 9 ¥gamdggg
T
x

As r →∞ far from the sphere, we should just have the uniform electric field,
E = E0ẑ ⇒ φ = −E0z = −E0r cos θ. So the boundary conditions are:

φ(R, θ) = 0, φ(r →∞, θ) = −E0r cos θ (2.3.83)

The solution outside the sphere has the form

φ(r, θ) =

∞∑
`=0

[
A`r

` +
B`
r`+1

]
P`(cos θ) (2.3.84)

Note, the A` are not necessarily zero here since φ does not vanish as r → ∞.
But applying the boundary condition as r →∞ we see that all A` = 0 except

A1 = −E0 , since P1(cos θ) = cos θ. So

φ(r, θ) = −E0r cos θ +
∞∑
`=0

B`
r`+1

P`(cos θ) (2.3.85)

Now apply the boundary condition on the surface, φ(R, θ) = 0 to get,

0 = −E0R cos θ +

∞∑
`=0

B`
R`+1

P`(cos θ) (2.3.86)

From which we see that all B` = 0 except for ` = 1. For ` = 1 we have
B1

R2
= E0R ⇒ B1 = E0R

3 .

(If two Legendre polynomial series are equal, then the coefficients of each term ` in the series must be equal. Since
the first term in the above has only an ` = 1 piece with coefficient −E0R, then only the ` = 1 piece in the second
term can be non-zero.)

So we get,

φ(r, θ) = −E0

(
r − R3

r2

)
cos θ (2.3.87)



12

The first term is just the potential −E0r cos θ of the uniform applied electric field. The second term is the potential
due to the induced surface charge on the surface of the sphere. We see it is a dipole field!

We can compute the induced charge density of the surface of the sphere,

4πσ(θ) = − ∂φ

∂r

∣∣∣∣
r=R

= E0

(
1 + 2

R3

R3

)
cos θ = 3E0 cos θ (2.3.88)

So

σ(θ) =
3

4π
E0 cos θ (2.3.89)

Looks just like a uniformly polarized sphere with k =
3E0

4π
= P. From the previous example we know that the field

inside the sphere due to this σ(θ) is just

−4

3
πk ẑ = −4

3
π

3E0

4π
ẑ = −E0 ẑ (2.3.90)

But that is just what we should have expected! The total field inside the conducting sphere must be zero. So the
field created by the induced σ is just exactly the right amount to cancel out the applied field E0ẑ.

One can also check that just outside the surface of the sphere, the total electric field E = −∇φ is perpendicular to
the surface, as it must be. I leave that to you as an exercise.


