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Unit 2-4: Electric Multipole Expansion

rejoin where fto
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Ta

We want to find the potential φ for an arbitrary localized distribution
of charge ρ, at a distance r far away from the charge. If the charge is
distributed over a region of length R, and the observer is at r � R, we
want to find an expansion for the potential in R/r.

φ(r) =

∫
d3r′

ρ(r′)

|r− r′|
from the general Coulomb formula (2.4.1)

We now seek an expansion of
1

|r− r′|
in powers of

(
r′

r

)
, where r′ integrates over the localized region of charge.
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View
1

|r− r′|
as the potential at r due to a unit point charge q = 1 located at

position r′. If we take r′ to lie on the ẑ axis, then this problem has rotational
symmetry about the ẑ axis, so φ depends only on the spherical coordinates r and θ,
so we can express it as an expansion in Legendre polynomials.

For r � r′,

φ(r, θ) =
1

|r− r′|
=

∞∑
`=0

(
A`` +

B`
r`+1

)
P`(cos θ) =

1

r

∞∑
`=0

B`
r`
P`(cos θ) (2.4.2)

where all the A` = 0 since we want φ→ 0 as r →∞.

Now consider the case where r is also on the ẑ axis, so θ = 0. We have,

φ(r, θ = 0) =
1

r − r′
=

1

r

1

(1− r′/r)
=

1

r

(
1 +

r′

r
+

(
r′

r

)2

+

(
r′

r

)3

+ . . .

)
(2.4.3)

where here we can take r and r′ as scalar quantities, since when θ = 0, r and r′ are colinear vectors, both along ẑ. In

the last step we used the Taylor expansion,
1

1− ε
= 1 + ε+ ε2 + ε3 + . . . for small ε.

Compare Eq. (2.4.3) to the Legendre expansion of Eq. (2.4.2) evaluated at θ = 0, where P`(1) = 1 for all `. We have

φ(r, θ = 0) =
1

r

∞∑
`=0

B`
r`
P`(1) =

1

r

∞∑
`=0

B`
r`

=
1

r

(
B0 +

B1

r
+
B2

r2
+
B3

r3
+ . . .

)
(2.4.4)

Comparing Eqs (2.4.3) and (2.4.4) we conclude B` = (r′)` .

So for a general position r we then have,

1

|r− r′|
=

1

r

∞∑
`=0

(
r′

r

)`
P`(cos θ) (2.4.5)

Note, this was a somewhat different application of the Legendre polynomial expansion than we saw before. Rather that
a boundary condition on the surface of a sphere of radius r = R being used to determine the expansion coefficients,
here we are using the behavior along the ẑ axis.

With the above result, the potential for an arbitrary distribution ρ(r) is then,

φ(r) =

∫
d3r′

ρ(r′)

|r− r′|
=

∫
d3r′

ρ(r′)

r

∞∑
`=0

(
r′

r

)`
P`(cos θ) =

∞∑
`=0

1

r`+1

∫
d3r′ ρ(r′) (r′)

` P`(cos θ) (2.4.6)

where θ is the angle between the fixed observer at position r and the integration variable r′.
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This is the multipole expansion, which expresses the potential far from a localized source as a power series in (r′/r)`.
It is exact, provided one sums up all the infinite number of terms `. In practice, one generally approximates φ by
summing up only to some finite `.

Note, in doing the integrals

∫
d3r′ ρ(r′)(r′)`P`(cos θ), the angle θ is defined as the angle of r′ with respect to the

observer at r. We therefore in principle have to repeat this integration every time we want to change r.

We can get around this problem two ways:

(i) Looking explicitly at the few lowest order terms, and seeing how to rewrite the integral in a way that moves the r
dependence outside the integral.

(ii) Using a general method involving the spherical harmonics Y`m(θ, ϕ).

We will do (i), and then at the end I will tell you about (ii).

monopole: the ` = 0 term

Using P0(cos θ) = 1, we get,

φ(0)(r) =
1

r

∫
d3r′ ρ(r′) =

q

r
where q ≡

∫
d3r′ρ(r′) is the total charge in the distribution (2.4.7)

dipole: the ` = 1 term

φ(1)(r) =
1

r2

∫
d3r′ ρ(r′)r′ P1(cos θ) =

1

r2

∫
d3r′ ρ(r′)r′ cos θ (2.4.8)

Now use r · r′ = rr′ cos θ ⇒ r̂ · r′ = r′ cos θ. Use that in the integral above to get,

φ(1)(r) =
1

r2
r̂ ·
∫
d3r′ ρ(r′)r′ =

r̂ · p
r2

where p ≡
∫
d3r′ ρ(r′)r′ is the electric dipole moment (2.4.9)

Note, for a set of point charges qi at positions ri, the dipole moment is p =
∑
i qiri.

quadrupole: the ` = 2 term

φ(2)(r) =
1

r3

∫
d3r′ ρ(r′) (r′)2P2(cos θ) =

1

r3

∫
d3r′ ρ(r′) (r′)2

1

2

(
3 cos2 θ − 1

)
(2.4.10)

Now use r′ cos θ = r′ · r̂ to write,

φ(2)(r) =
1

r3

∫
d3r′ ρ(r′)

1

2

(
3(r′ · r̂)2 − (r′)2

)
=

1

r3
r̂ ·
[∫

d3r′ ρ(r′)
1

2

(
r′r′ − (r′)2 I

↔)]
· r̂ (2.4.11)

Here I
↔

is the second rank identity tensor, such that for any two vectors v and u, we have u · I
↔
· v = u · v. And r′r′

is the second rank tensor such that for any two vectors v and u, we have u · [r′r′] · v = (u · r′)(r′ · v). A second rank
tensor is an object such that one gets a scalar when one takes the dot product on both sides with a vector; one gets
a vector if one takes the dot product of only one side with a vector. When writing down in a coordinate system, a
second rank tensor can be written as a matrix.

We can now define the quadrupole tensor tensor as,

↔
Q ≡

∫
d3r′ ρ(r′)

(
3r′r′ − (r′)2 I

↔)
(2.4.12)

and then write,

φ(2)(r) =
r̂ ·
↔
Q · r̂

2r3
(2.4.13)
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So, to these lowest three terms, the multipole expansion gives,

φ(r) =
q

r
+

p · r̂
r2

+
r̂ ·
↔
Q · r̂

2r3
+ . . . (2.4.14)

defined in terms of the zeroth, first, and second order moments of the charge distribution, q, p, and
↔
Q.

Note the important point that q, p, and
↔
Q do not depend on the location of the observation point r – we can calculate

these moments once, and then use them to compute φ(r) at all values of r.

monopole: q =
∫
d3r ρ(r) is a scalar integral.

dipole: p =
∫
d3r ρ(r)r is a vector integral.

If we pick a coordinate system, we have to do 3 integrations to get the three components of the dipole moment,
px = x̂ · p =

∫
d3r ρ(r)x, and similarly for py and pz.

quadrupole:
↔
Q =

∫
d3r ρ(r)

(
3rr− r2 I

↔)
is a tensor integral

If we pick a coordinate system, we have in principle to do 9 integrations to get the 9 components of the 3× 3 matrix

representing the tensor
↔
Q. For example,

Qxx = x̂ ·
↔
Q · x̂ =

∫
d3r ρ(r)

(
3x2 − r2

)
and Qxy = x̂ ·

↔
Q · ŷ =

∫
d3r ρ(r) (3xy) (2.4.15)

and similarly for the other components to get the 3× 3 matrix

↔
Q =

 Qxx Qxy Qxz
Qyx Qyy Qyz
Qzx Qzy Qzz

 (2.4.16)

Note, however that
↔
Q is a symmetric tensor, so that Qxy = Qyx and similarly for other non-diagonal components,

and so there are only 6 independent elements of
↔
Q that one has to compute.

Note also that the trace of
↔
Q vanishes!

Tr[
↔
Q] = Qxx +Qyy +Qzz =

∫
d3r ρ(r)

[
(3x2 − r2) + (3y2 − r2) + (3z2 − r2)

]
= 0 (2.4.17)

since 3x2 + 3y2 + 3z2 = 3r2. So really there are only 5 independent components one has to compute. If one has
computed Qxx and Qyy, then one knows that Qzz = −Qxx −Qyy.

General Method

We will continue the discussion of q, p, and
↔
Q soon. But first we make an aside to discuss the more general method.

z

.

x

In our expression,

φ(r) =

∞∑
`=0

1

r`+1

∫
d3r′ ρ(r′)(r′)`P`(cos θ) (2.4.18)

the angle θ is the angle between r and r′. If we think of this θ as the spherical coordinate
θ, this is like choosing r to be on the ẑ axis. We would like a representation in which r is
positioned arbitrarily with respect to the axes used in describing ρ.
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it:
To do this, we can use the addition theorem for spherical harmonics (see Jackson section
3.6 for a discussion and proof).

P`(cos γ) =
4π

2`+ 1

∑̀
m=−`

Y ∗`m(θ′, ϕ′)Y`m(θ, ϕ) (2.4.19)

where (θ, ϕ) are the angles of the observer’s direction r̂, and (θ′, ϕ′) are the angles of the
direction of the integration variable r̂′, and γ is the angle between r̂ and r̂′, so cos θ = ẑ · r̂,
cos θ′ = ẑ · r̂′, and cos γ = r̂ · r̂′,

We can then write,

φ(r) =

∞∑
`=0

1

r`+1

4π

2`+ 1

∑̀
m=−`

∫
d3r′ ρ(r′)(r′)` Y ∗`m(θ′, ϕ′)Y`m(θ, ϕ) (2.4.20)

Define the moment,

q`m =

∫
d3r′ ρ(r′)(r′)` Y ∗`m(θ′, ϕ′) which is independent of the observation point r (2.4.21)

and then,

φ(r) = 4π

∞∑
`=0

∑̀
m=−`

q`mY`m(θ, ϕ)

(2`+ 1)r`+1
(2.4.22)

see Jackson Eqs. (4.4) – (4.6) to relate the q`m to q, p, and
↔
Q.

Electric Field

Back to the monopole, dipole, and quadrupole moments.

φ(r) =
q

r
+

p · r̂
r2

+
r̂ ·
↔
Q · r̂

2r3
+ . . . (2.4.23)

The electric field is given by

E = −∇φ = −∂φ
∂r

r̂− 1

r

∂φ

∂θ
θ̂ − 1

r sin θ

∂φ

∂ϕ
ϕ̂ (2.4.24)

For the monopole term,

E =
q

r
r̂ (2.4.25)

For the dipole term, for convenience we choose p to lie along the ẑ axis. Then,

φ(r) =
p cos θ

r2
(2.4.26)

E =
2p cos θ

r3
r̂ +

p sin θ

r3
θ̂ =

p

r3

(
2 cos θ r̂ + sin θ θ̂

)
(2.4.27)

Note, the above expressions for φ and E are the same as we found earlier outside a sphere with surface charge density
σ(θ) = k cos θ, i.e. the uniformly polarized sphere. So now we see that that field is just the same as the electric dipole
field.

It would be nice to have an expression for the dipole E that does not make reference to any special direction (i.e.
does not assume that p is along ẑ).
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To get such an expression, note,

p cos θ r̂ = (p · r̂) r̂ and p sin θ θ̂ = −(p · θ̂) θ̂ (2.4.28)

Now,

p = (p · r̂) r̂ + (p · θ̂) θ̂ so − (p · θ̂) θ̂ = (p · r̂) r̂− p (2.4.29)

We can now substitute these results into Eq. (2.4.27) to get,

E =
1

r3
[2(p · r̂) r̂ + (p · r̂) r̂ − p] =

1

r3
[3(p · r̂) r̂ − p] (2.4.30)

So,

E =
3(p · r̂) r̂ − p

r3
expresses the dipole electric field in a coordinate free form (i.e. no reference to θ) (2.4.31)

Origin of the Coordinates

There is one point we have glossed over. The definition of the multipole moments depends on the choice of the origin
of the coordinates. Clearly we have in mind to put the origin somewhere in the middle of the charge distribution ρ,
but is there a best place to put it?

¥¥÷.
Suppose we have a coordinate system (x, y, z), and we transform to a new coordinate
system (x̃, ỹ, z̃) by translating the origin of the coordinates by d, so that r̃ = r − d (so
that the origin 0̃ of the (x̃, ỹ, z̃) coordinate system is at the position d in the (x, y, z)
coordinate system). How do the multipole moments computed in the (x̃, ỹ, z̃) system
compare with those computed in the (x, y, z) system?

monopole:

q̃ =

∫
d3r̃ ρ =

∫
d3r ρ = q, so the monopole moment does not depend on the choice of the origin. (2.4.32)

dipole:

p̃ =

∫
d3r̃ ρ r̃ =

∫
d3r ρ (r− d) =

∫
d3r ρ r− d

∫
d3r ρ = p− qd So p̃ = p only if q = 0 ! (2.4.33)

If q 6= 0, then p̃ 6= p. In this case, one can always choose an origin of the coordinates for which the dipole moment
will vanish! Proof: If one is working in coordinates (x, y, z) in which p 6= 0, then all one has to do is to transform to
new coordinates (x̃, ỹ, z̃) defined by r̃ = r−d where the displacement is given by d = p/q. In that coordinate system
p̃ = 0. This then is the best place to put the origin since, in making the expansion,

φ(r) =
q

r
+

p · r̂
r2

+
r̂ ·
↔
Q · r̂

2r3
+ . . . (2.4.34)

this choice for the origin of the coordinates will make the dipole term vanish. The leading term in φ will always be
q/r. For a general location of the origin, the next to leading term will be ∼ 1/r2. But if we compute the moments
about the origin 0̃, then the next to leading term will be ∼ 1/r3, and our approximation is therefore more accurate!

If q = 0, then it does not matter where we put the coordinate origin, the value of the dipole moment p will stay the
same.

When q 6= 0, how did we accomplish this trick of picking an origin so that p vanished? It is because there are 3
components of p = (px, py, pz). When we make a translation of the origin by d = (dx, dy, dz) we have 3 degrees of
freedom that we can adjust, exactly the right number so as to eliminate the 3 components of p.
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quadrupole:

↔̃
Q =

∫
d3r̃ ρ

[
3r̃r̃− r̃2 I

↔]
=

∫
d3r ρ

[
3(r− d)(r− d)− |r− d|2 I

↔]
(2.4.35)

=

∫
d3r ρ

[
3rr− 3rd− 3dr + 3dd− (r2 + d2 − 2r · d) I

↔]
(2.4.36)

=

∫
d3r ρ

[
3rr− r2 I

↔]
− 3

[∫
d3r ρ r

]
d− 3d

[∫
d3r ρ r

]
(2.4.37)

+ 3dd

[∫
d3r ρ

]
− d2 I

↔
[∫

d3r ρ

]
+ 2

[∫
d3r ρ r

]
· dI
↔

(2.4.38)

=
↔
Q− 3pd− 3dp + 3ddq −

[
d2q − 2p · d

]
I
↔

(2.4.39)

We see that
↔
Q is independent of the choice of the origin of the coordinates only when both q and p vanish. When this

happens, the quadrupole term is the leading term in the multipole expansion.

In general, the leading term in the multipole expansion will be independent of the origin of the coordinates.

Discussion Question 2.4

We saw that when q 6= 0, it was possible to choose the coordinate origin so that p = 0. Now suppose q = 0

but p 6= 0, is it possible to choose the coordinate origin so that
↔
Q = 0?

We saw that
↔
Q is symmetric and traceless, so it has 5 independent elements. If we translate the origin of

the coordinate system, that gives 3 degrees of freedom to adjust. It would seem that we can not make 5
elements vanish with only 3 degrees of freedom to adjust. But what if we also consider a rotation of the

coordinate system? That is 3 more degrees of freedom to adjust! Put another way, since
↔
Q is symmetric,

we know that by rotating the coordinate system appropriately we can make
↔
Q diagonal – so only Qxx, Qyy,

and Qzz are non-zero, and now there are only 3 components of
↔
Q. Also, if

↔
Q is traceless in one coordinate

system, it is traceless in all coordinate systems, so Qxx+Qyy +Qzz = 0, and now it would appear that there

are only 2 independent matrix elements to
↔
Q. Can one now make these 2 elements vanish by translating the

origin, so that
↔
Q = 0 in the new coordinate system?

Example

Gi

ri k

•
E 7g z

Suppose there are two charges, q1 at r1 and q2 at r2, and q1 + q2 = q 6= 0. Find the first
three multipole moments.

monopole: q = q1 + q2

dipole: p = q1r1 + q2r2

quadrupole:
↔
Q = (3r1r1 − r21 I

↔
)q1 + (3r2r2 − r22 I

↔
)q2

We can make the dipole moment vanish by shifting to a new coordinate system r′ = r− d, where d = p/q.

⇒ r′ = r− q1r1 + q2r2
q1 + q2

=
q1(r− r1) + q2(r− r2)

q1 + q2
(2.4.40)
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In this new coordinate system, the positions of q1 and q2 are,

r′1 =
q2

q1 + q2
(r1 − r2) and r′2 =

−q1
q1 + q2

(r1 − r2) (2.4.41)

The origin of the new coordinate system is at

r′ = 0 ⇒ r =
q1r1 + q2r2
q1 + q2

this is the “center of charge” – it lies along the vector from r1 to r2 (2.4.42)

For many charges qi at positions ri, the origin that makes the dipole vanish is the center of charge, r =

∑
i qiri∑
i qi

.

In this primed coordinate system,

p′ = q1r
′
1 + q2r

′
2 =

q1q2
q1 + q2

(r1 − r2) − q2q2
q1 + q2

(r1 − r2) = 0 as it must be! (2.4.43)

We now compute the quadrupole moment in the primed coordinate system.

↔
Q′ =

[
3r′1r

′
2 − (r′1)2 I

↔]
q1 +

[
3r′2r

′
2 − (r′2)2 I

↔]
q2 (2.4.44)

no

go%¥÷.
I

Go

Let us choose spherical coordinates with the origin at O′ and ẑ axis aligned along r1 − r2
so that r1 − r2 = sẑ, where s = |r1 − r2| is the separation between the charges. Then,

r′1 =
q2

q1 + q2
sẑ and r′2 =

−q1
q1 + q2

sẑ (2.4.45)

and

↔
Q′ =

(
q2

q1 + q2

)2

q1

[
3s2ẑẑ − s2 I

↔]
+

(
−q1

q1 + q2

)2

q2

[
3s2ẑẑ − s2 I

↔]
(2.4.46)

=
q22q1 + q21q

2

(q1 + q2)2
s2
[
3ẑẑ− I

↔]
=

q1q2
q1 + q2

s2

 −1 0 0
0 −1 0
0 0 2

 (2.4.47)

The last result in matrix form follows because in the xyz coordinate system, ẑẑ =

 0 0 0
0 0 0
0 0 1

, while I
↔

=

 1 0 0
0 1 0
0 0 1


To clarify, if we denote ê1 = x̂, ê2 = ŷ, and ê3 = ẑ, then the ij matrix element of any tensor

↔
M is, Mij = êi ·

↔
M · êj .

As a check (it is always good to make checks of one’s calculations!) we see that
↔
Q is symmetric and that the trace of

↔
Q is zero.

The contribution of the quadrupole to the electrostatic potential φ is then

φquad(r) =
r̂ ·
↔
Q · r̂

2r3
(2.4.48)

Let us evaluate in spherical coordinates (we will drop the primes from the coordinate variables to make the notation
simpler – but we are still talking about the coordinate system in which p = 0). With r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)
in spherical coordinates we have,

φquad(r) =
s2

2r3
q1q2
q1 + q2

(
sin θ cosϕ, sin θ sinϕ, cos θ

) −1 0 0
0 −1 0
0 0 2

 sin θ cosϕ
sin θ sinϕ

cos θ

 (2.4.49)
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Do the matrix multiplications to get,

φquad(r) =
s2

2r3
q1q2
q1 + q2

(
2 cos2 θ − sin2 θ

)
(2.4.50)

We see that φquad is independent of the azimuthal angle ϕ, as it must be due to the rotational symmetry about the
ẑ axis.

We can rewrite this in a simpler form using sin2 θ = 1 − cos2 θ ⇒ 2 cos2 θ − sin2 θ = 3 cos2 θ − 1 and cos2 θ =
(1 + cos 2θ)/2 ⇒ 3 cos2 θ − 1 = (1 + 3 cos 2θ)/2. So then,

φquad =
s2

2r3
q1q2
q1 + q2

1 + 3 cos 2θ

2
as compared to the dipole term φdipole =

p cos θ

r2
(2.4.51)

We plot these forms vs θ below. We see that the angular distribution of the quadrupole term is more complex than
that of the dipole term.

0.0
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120

150
180
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240

330

cos θ

(1+3cos2θ)/2

Note, if we compute the average of φ, averaging over the angle θ, then we find,

[φdipole]ave ∝
∫ π

0

dθ sin θ cos θ =

[
−1

2
cos2 θ

]π
0

= 0 (2.4.52)

[φquad]ave ∝
∫ π

0

dθ sin θ (3 cos2 θ − 1) =
[
− cos3 θ + cos θ

]π
0

= 0 (2.4.53)

So the moments higher than the monopole vanish when averaging over the orientation of r̂. We will soon see that
this holds in general, not just for the specific example considered here.

Quadrupole Term More Generally

Now we consider the quadrupole term more generally,

φquad(r) =
r̂ ·
↔
Q · r̂

2r3
(2.4.54)

Since
↔
Q is a symmetric tensor, we can always rotate to a coordinate system in which it is diagonal. Let us work in

that coordinate system, where

↔
Q =

 Qx 0 0
0 Qy 0
0 0 Qz

 (2.4.55)
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In this coordinate system, r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). Then,

r̂ ·
↔
Q · r̂ = Qx sin2 θ cos2 ϕ+Qy sin2 θ sin2 ϕ+Qz cos2 θ (2.4.56)

Since
↔
Q is traceless, we can also write Qz = −(Qx + Qy). So finally the most general angular distribution from the

quadrupole term is,

φquad =
1

2r3
[
Qx sin2 θ cos2 ϕ+Qy sin2 θ sin2 ϕ− (Qx +Qy) cos2 θ

]
(2.4.57)

=
1

2r3
[
Qx
(
sin2 θ cos2 ϕ− cos2 θ

)
+Qy

(
sin2 θ sin2 ϕ− cos2 θ

)]
(2.4.58)

In general, φquad can depend on both angles θ and ϕ. However, if there is rotational symmetry about the ẑ axis, then
we will have Qx = Qy, and then the above angular form simplifies to (sin2 θ− 2 cos2 θ), just as we found in our simple
example above consisting of two charges.

Angular Averaging

The multipole expansion is,

φ(r) =
q

r
+

p · r̂
r2

+
r̂ ·
↔
Q · r̂

2r3
+ . . . (2.4.59)

Note, in each term the dependence on the distance from the charge source r = |r| is only in the denominator. The
numerators depend on the orientation of r via r̂ = r/|r|. So we can write,

φ(r) =
q

r
+

∞∑
n=2

fn(θ, ϕ)

rn
(2.4.60)

where fn(θ, ϕ) gives the dependence of the potential on the orientation r̂.

Now we will show that the angular average of fn(θ, ϕ) must always vanish, i.e.
∫ π
0
dθ sin θ

∫ 2π

0
dϕ fn(θ, ϕ) = 0.

Consider the corresponding electric field E = −∇φ,

E =
qr̂

r2
−
∞∑
n=2

∇
(
fn(θ, ϕ)

rn

)
(2.4.61)

Consider a sphere of radius R centered on the charge distribution. Let S be the surface
of this sphere. We know from Gauss’ Law that,∮

S

da n̂ ·E = 4πQencl = 4πq with q the monopole moment (2.4.62)

Since ∮
S

da n̂ · qr̂
r2

=

∮
S

da
q

r2
since n̂ = r̂ on the surface S (2.4.63)

=

∫ π

0

dθR2 sin θ

∫ 2π

0

dϕ
q

R2
= 4πq (2.4.64)

we see that the monopole term gives all the flux of E flowing through the surface, and so the flux from the sum of the
higher terms in the multipole expansion must therefore give zero. Since this must be true for a sphere of any radius
R, it can only be true if each of the higher terms individually gives zero flux. Thus,

−
∮
S

da r̂ ·∇
(
fn(θ, ϕ)

rn

)
= 0 (2.4.65)
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But r̂ ·∇ =
∂

∂r
is the radial directional derivative. So the above is,

−
∮
S

da
∂

∂r

(
fn(θ, ϕ)

rn

)
= n

∮
S

da
fn(θ, ϕ)

rn+1
=

n

Rn+1

∮
S

da fn(θ, ϕ) (2.4.66)

=
n

Rn+1

∫ π

0

dθR2 sin θ

∫ 2π

0

dϕfn(θ, ϕ) = 0 (2.4.67)

And we have demonstrated that the n-th moment contribution to the potential, φ(n)(r) =
fn(θ, ϕ)

rn
vanishes if we

take an angular average.

Sample Charge Distributions

We end our discussion of the electric multipole expansion by illustrating some charge configurations that give rise to
different terms in the expansion.

• q

E
←•

+f - g

too

.

-&

-B
-g too

÷K¥E¥T:*
+E

⇒ monopole is the leading term

⇒ monopole = 0 ⇒ dipole is the leading term, p is independent of the location of the
coordinate origin.

⇒ monopole = 0, the total dipole is the sum of oppositely oriented dipoles and so is
zero, the quadrupole is the leading term.

⇒ monopole and dipole both = 0, total quadrupole is the sum of oppositely charged
quadrupoles and so sum to zero, the octapole is the leading term.


