Unit 2-6: Symmetry Under Parity Transformation: vector vs pseudovector

Right Handed Left Handed
coordinate systems
A Parity transformation inverts all the Cartesian axes, and takes one from a right handed to a left handed coordinate system. Under a parity transformation, the coordinates of the position vector change sign,

$$
\begin{equation*}
\mathbf{r}=(x, y, z) \quad \Rightarrow \quad(-x,-y .-z) \tag{2.6.1}
\end{equation*}
$$

If \mathbb{P} is the parity operator, we can write $\mathbb{P}(\mathbf{r})=-\mathbf{r}$, and we say that \mathbf{r} is odd under parity (i.e. it changes sign).
Any vector-like quantity that is odd under a parity transformation we will call a vector.
examples of vectors:
position \mathbf{r}
velocity $\mathbf{v}=\frac{d \mathbf{r}}{d t}, \quad$ since \mathbf{r} is vector and t is a scalar under parity, $\mathbb{P}(t)=t$
acceleration $\mathbf{a}=\frac{d \mathbf{v}}{d t}, \quad$ since \mathbf{v} is a vector and t is a scalar
Force $\mathbf{F}=m \mathbf{a}, \quad$ since \mathbf{a} is a vector and m is a scalar
momentum $\mathbf{p}=m \mathbf{v}, \quad$ since \mathbf{v} is a vector and m is a scalar
electric field $\mathbf{E}=\mathbf{F} / q, \quad$ since \mathbf{F} is a vector and q is a scalar
current $\mathbf{j}=\sum_{i} q_{i} \mathbf{v}_{i} \delta\left(\mathbf{r}-\mathbf{r}_{i}\right), \quad$ since \mathbf{v}_{i} is a vector and q_{i} and $\delta(\mathbf{r})$ are scalars
In contrast, any vector-like quantity that is even (i.e. does not change sign) under parity is called a pseudovector.
angular momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$, since under parity $\mathbf{r} \rightarrow-\mathbf{r}$ and $\mathbf{p} \rightarrow-\mathbf{p}$, then $\mathbf{L} \rightarrow \mathbf{L}$ under parity. \mathbf{L} is even under parity, so \mathbf{L} is a pseudovector!
magnetic field $\mathbf{F}=q \frac{\mathbf{v}}{c} \times \mathbf{B}, \quad$ since \mathbf{F} and \mathbf{v} are vectors, and q is a scalar, \mathbf{B} must be a pseudovector.
A cross product of any two vectors is a pseudovector. A cross product of any vector with a pseudovector is a vector.
When solving for \mathbf{E}, it can only be made up of other vectors that exist in the problem.
When solving for \mathbf{B}, it can only be made up of other pseudovectors that exist in the problem.

For a charged plane, the only direction in the problem is the normal $\hat{\mathbf{n}}$, which is a vector $\Rightarrow \mathbf{E} \propto \hat{\mathbf{n}}$

For a planar surface current, the only directions in the problem are the vectors $\hat{\mathbf{n}}$ and \mathbf{K}. But \mathbf{B} is a pseudovector and can only be made up of pseudovectors $\Rightarrow \quad \mathbf{B} \propto(\mathbf{K} \times \hat{\mathbf{n}})$

