Unit 2-6: Symmetry Under Parity Transformation: vector vs pseudovector

led coordinate systems

A Parity transformation inverts all the Cartesian axes, and takes one from a right handed to a left handed coordinate system. Under a parity transformation, the coordinates of the position vector change sign,

$$\mathbf{r} = (x, y, z) \qquad \Rightarrow \qquad (-x, -y, -z) \tag{2.6.1}$$

If \mathbb{P} is the parity operator, we can write $\mathbb{P}(\mathbf{r}) = -\mathbf{r}$, and we say that \mathbf{r} is *odd* under parity (i.e. it changes sign).

Any vector-like quantity that is odd under a parity transformation we will call a vector.

examples of vectors:

position \mathbf{r}

velocity
$$\mathbf{v} = \frac{d\mathbf{r}}{dt}$$
, since \mathbf{r} is vector and t is a scalar under parity, $\mathbb{P}(t) = t$

acceleration $\mathbf{a} = \frac{d\mathbf{v}}{dt}$, since \mathbf{v} is a vector and t is a scalar

Force $\mathbf{F} = m\mathbf{a}$, since \mathbf{a} is a vector and m is a scalar

momentum $\mathbf{p} = m\mathbf{v}$, since \mathbf{v} is a vector and m is a scalar

electric field $\mathbf{E} = \mathbf{F}/q$, since \mathbf{F} is a vector and q is a scalar

current $\mathbf{j} = \sum_{i} q_i \mathbf{v}_i \delta(\mathbf{r} - \mathbf{r}_i)$, since \mathbf{v}_i is a vector and q_i and $\delta(\mathbf{r})$ are scalars

In contrast, any vector-like quantity that is even (i.e. does not change sign) under parity is called a pseudovector.

angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, since under parity $\mathbf{r} \to -\mathbf{r}$ and $\mathbf{p} \to -\mathbf{p}$, then $\mathbf{L} \to \mathbf{L}$ under parity. \mathbf{L} is even under parity, so \mathbf{L} is a pseudovector!

magnetic field $\mathbf{F} = q \frac{\mathbf{v}}{c} \times \mathbf{B}$, since \mathbf{F} and \mathbf{v} are vectors, and q is a scalar, \mathbf{B} must be a pseudovector.

A cross product of any two vectors is a pseudovector. A cross product of any vector with a pseudovector is a vector.

When solving for \mathbf{E} , it can only be made up of other <u>vectors</u> that exist in the problem.

When solving for \mathbf{B} , it can only be made up of other pseudovectors that exist in the problem.

For a charged plane, the only direction in the problem is the normal \hat{n} , which is a <u>vector</u> $\Rightarrow \mathbf{E} \propto \hat{n}$

For a planar surface current, the only directions in the problem are the vectors $\hat{\mathbf{n}}$ and \mathbf{K} . But \mathbf{B} is a pseudovector and can only be made up of pseudovectors $\Rightarrow \mathbf{B} \propto (\mathbf{K} \times \hat{\mathbf{n}})$