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Unit 4: Electromagnetic Energy and Momentum

In this unit we extend the ideas of energy and momentum to electromagnetic fields, defining the energy density, energy
current (Poynting vector), momentum density, and momentum current (Maxwell stress tensor) of the fields. We will
derive conservation laws by which electromagnetic fields can exchange energy and momentum with mechanical degrees
of freedom.

Unit 4-1: Electromagnetic Energy Density and the Poynting Vector

We will leave the macroscopic Maxwell equations for the present, and in this unit E, B, ρ, and j will refer to the
exact microscopic quantities.

Consider a collection of charged particles, described by the charge density ρ and current density j. The particles are
contained within a volume V .

We define Emech as the total “mechanical” energy of the particles. Emech is the sum of the particles kinetic energy
plus the potential energy of any non-electromagnetic forces.

The particles will exert forces on each other via their electromagnetic interactions, i.e., via the E and B fields that
they create. Define W as the work done on the particles by all electromagnetic forces. Then, by the work-energy
theorem of mechanics,

dEmech

dt
=
dW

dt
(4.1.1)

For a single charge qi, and Fi the Lorentz force on the charge, we have,

dW

dt
= Fi · vi = qiE(ri, t) · vi + qi

(vi
c
×B(ri, t)

)
· vi = qiE(ri, t) · vi (4.1.2)

The term involving the magnetic field vanishes because vi ×B is orthogonal to vi.

For a collection of charges, with current density given by j(r, t) =
∑
i

qiviδ(r− ri(t)), we have,

dW

dt
=
∑
i

qivi ·E(ri, t) =

∫
V

d3r j(r, t) ·E(r, t) (4.1.3)

as can be confirmed by substituting in the expression for j and integrating over the delta functions.

Now from Ampere’s Law, ∇×B =
4π

c
j +

1

c

∂E

∂t
, we can write,

j =
c

4π

[
∇×B− 1

c

∂E

∂t

]
(4.1.4)

Substituting that into the above, we get

dW

dt
=

∫
V

d3r j ·E =

∫
V

d3r
c

4π

[
(∇×B) ·E− 1

c

∂E

∂t
·E
]

(4.1.5)

To rewrite this expression, first note that,

∂E

∂t
·E =

1

2

∂E2

∂t
, with E2 = |E|2 (4.1.6)

Next,

∇ · (E×B) = (∇×E) ·B−E · (∇×B) ⇒ E · (∇×B) = (∇×E) ·B−∇ · (E×B) (4.1.7)
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then using

∇×E = −1

c

∂B

∂t
Faraday’s Law (4.1.8)

we have,

E · (∇×B) = −1

c

∂B

∂t
·B−∇ · (E×B) = − 1

2c

∂B2

∂t
−∇ · (E×B) (4.1.9)

Substituting these into Eq. (4.1.5) we then get

dEmech

∂t
=
dW

dt
=

∫
V

d3r j ·E = − 1

4π

∫
V

d3r

[
1

2

∂E2

∂t
+

1

2

∂B2

∂t
+ c∇ · (E×B)

]
(4.1.10)

Now define,

u ≡ 1

8π

(
E2 +B2

)
electromagnetic energy density

S ≡ c

4π
E×B Poynting vector = electromagnetic energy current

(4.1.11)

Then we can write,

dEmech

dt
= −

∫
V

d3r

[
∂u

∂t
+ ∇ · S

]
⇒ dEmech

dt
+
d

dt

∫
V

d3r u = −
∮
S
da n̂ · S (4.1.12)

where S is the surface bounding V . Then, defining EEM ≡
∫
V
d3r u as the total electromagnetic energy in the volume

V , and applying Gauss’ Theorem to the integral of ∇ · S, we have,

d(Emech + EEM)

dt
= −

∮
S
da n̂ · S (4.1.13)

The above is the reason for our identification of u as the electromagnetic energy density, and S as the electromagnetic
energy current. The above says that the total energy in the volume V has two pieces: the mechanical energy of
the charges Emech, and a new piece EEM that represents the energy of the electromagnetic fields. If this is changing
in time, and assuming that none of the charges are leaving the volume V , it can only be because electromagnetic
energy is leaving the volume V . The right hand side therefore gives the flux of electromagnetic energy flowing out
through the bounding surface S; the minus sign is because a positive energy flux through S means energy is leaving
V . Eq. (4.1.13) thus is the law of conservation of energy, when we include the energy of the electromagnetic fields.

We can also write the energy conservation law in differential form. If we define the mechanical energy density umech

as the local mechanical energy per unit volume, so that Emech =
∫
V
d3r umec, then we can write,

∂(umech + u)

∂t
+ ∇ · S = 0 (4.1.14)

Note the similarity in form to the law of local charge conservation, ∂ρ/∂t+ ∇ · j = 0.

Under certain simplifying conditions, we can derive a similar conservation law for the Macroscopic Maxwell Equations.

If we take j as the current density of the free charged particles, and E and B as the macroscopic electric and magnetic
fields, then repeating the above steps we get,∫

V

d3r j ·E =
c

4π

∫
V

d3r

[
∇×H− 1

c

∂D

∂t

]
·E (4.1.15)

Writing

∇ · (E×H) = H · (∇×E)−E · (∇×H) = −1

c
H · ∂B

∂t
−E · (∇×H) (4.1.16)
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we then get∫
V

d3r j ·E = − 1

4π

∫
V

d3r

[
c∇ · (E×H) + E · ∂D

∂t
+ H · ∂B

∂t

]
(4.1.17)

If the medium is linear, and we have quasistatic conditions, so that

D(t) = εE(t) and H(t) =
1

µ
B(t) with ε and µ constants, (4.1.18)

then we can write,

E · ∂D
∂t

= εE · ∂E
∂t

=
ε

2

∂E2

∂t
=

1

2

∂(E ·D)

∂t
(4.1.19)

and similarly,

H · ∂B
∂t

=
1

µ
B · ∂B

∂t
=

1

2µ

∂B2

∂t
=

1

2

∂(B ·H)

∂t
(4.1.20)

to get

dEmech

dt
=

∫
V

d3r j ·E = − d

dt

∫
V

d3r u−
∮
S
da n̂ · S (4.1.21)

where Emech is the mechanical energy of the free charges, and,

u =
1

8π
(E ·D + B ·H) is the electromagnetic energy density

S =
c

4π
E×H is the macroscopic Poynting vector

(4.1.22)

Thus
1

8π
E ·D is the electrostatic energy density, and

1

8π
B ·H is the magnetostatic energy density.

Note, we said that the above result for the Macroscopic Maxwell Equations hold only under quasistatic conditions, i.e.,
when the fields are varying sufficiently slowly in time that ε and µ can be regarded as constants. This limitation arises
because, as we will soon see, the dielectric “constant” ε is really not a constant at all, but will vary with frequency
ω. As a consequence, we will see that D(t) and E(t) are not in general locally related in time, i.e., D(t) 6= εE(t), but
rather D(t) =

∫
dt′ ε̃(t− t′)E(t′). Only when E is varying slowly in time, so that E only has Fourier components at

small frequencies ω where ε(ω) ≈ constant, will we have the simpler D(t) ≈ εE(t).

Electrostatic Energy

Returning to the microscopic fields and charges, let’s review the electrostatic energy as you may have first seen it in
an earlier course. From the above, we have for the total electrostatic energy,

E =
1

8π

∫
V

d3r E2 (4.1.23)

Now use E = −∇φ in electrostatics to get,

E = − 1

8π

∫
V

d3r (∇φ) ·E (4.1.24)

Use ∇ · (φE) = φ∇ ·E + (∇φ) ·E to get

E = − 1

8π

∫
V

d3r [∇ · (φE)− φ∇ ·E] (4.1.25)

Now use ∇ ·E = 4πρ, and Gauss’ Theorem, to get

E = − 1

8π

∮
S
da n̂ · φE +

1

2

∫
V

d3r ρφ (4.1.26)
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If the volume V expands to fill all space, so that the surface S → ∞, then we expect for localized charges that φ ∼ 1/r
and E ∼ 1/r2, and since the surface area grows as ∼ r2, we have that the surface integral ∼ r2/r3 → 0 as the length
of the volume r →∞. We thus have,

E =
1

2

∫
d3r ρφ (4.1.27)

One can then also use the Coulomb solution, φ(r) =

∫
d3r′

ρ(r′)

|r− r′|
, to write

E =
1

2

∫
d3r

∫
d3r′

ρ(r)ρ(r′)

|r− r′|
(4.1.28)

Note, Eq. (4.1.28) suggests the interpretation that E is due to an action-at-a-distance interaction between the charges.
Eq. (4.1.27) suggests the interpretation that E is due to the potential energy of the charges ρ in the electrostatic
potential φ, which suggests that the energy is stored in space at the locations where the charges are (since there is no
contribution from regions where ρ = 0). In contrast, Eq. (4.1.23) suggests that the energy is stored in the electric field,
and is located in space wherever E 6= 0. These are all quite different interpretations. For example, for a uniformly
charged sphere, Eq. (4.1.27) suggests that the energy is stored in the sphere, while Eq. (4.1.23) suggests the energy is
stored throughout all space since E 6= 0 everywhere.

Within electrostatics, there is no way to resolve which of these interpretations is correct, because they are all mathe-
matically equivalent. We cannot ask where the energy is stored in a static situation – we can only ask such a question
in a dynamic situation, when we can see how energy is transferred in time from one location to another. The derivation
in the main part of this section thus shows that the correct equation for the electric energy, that holds in dynamic
as well as static situations, is Eq. (4.1.23). The expressions of Eqs. (4.1.27) and (4.1.28) only hold in statics, but not
more generally. Thus we conclude that the energy is stored in the electric field.

Magnetostatic Energy

We can do a similar analysis for the energy in magnetostatics. For the microscopic fields and currents, the total
magnetostatic energy is,

E =
1

8π

∫
V

d3r B2 (4.1.29)

Now use B = ∇×A to write,

E =
1

8π

∫
V

d3rB · (∇×A) (4.1.30)

Use ∇ · (B×A) = A · (∇×B)−B · (∇×A) to get,

E =
1

8π

∫
V

d3r [A · (∇×B)−∇ · (B×A)] (4.1.31)

And then use the static Ampere’s Law, ∇×B = 4π
c j, and Gauss’ Theorem, to get,

E =
1

2c

∫
V

d3r j ·A− 1

8π

∮
S
da n̂ · (B×A) (4.1.32)

As we take V to fill all space, S → ∞, and for localized currents the surface integral will vanish. We are then left
with,

E =
1

2c

∫
d3r j ·A (4.1.33)

In the Coulomb gauge ∇ · A = 0, we have −∇2A =
4π

c
j and the solution A(r) =

1

c

∫
d3r′

j(r′)

|r− r′|
, and so

substituting into the above we get,

E =
1

2c2

∫
d3r

∫
d3r′

j(r) · j(r′)
|r− r′|

(4.1.34)
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Eq. (4.1.34) gives the interpretation that the magnetostic energy is an action-at-a-distance interaction between cur-
rents. Eq. (4.1.33) gives the interpretation that the energy is stored where the current is, because there is no contri-
bution from regions where j = 0. Eq. (4.1.29) gives the interpretation that the energy is stored where the magnetic
field is. As with the electrostatic energy, there is no way within statics to resolve which of these interpretations is
correct. But by considering the more general dynamic situation, we see that it is Eq. (4.1.29) that remains correct in
general, and hence the correct interpretation is that the magnetic energy is stored in the magnetic field.

Discussion Question 4.1

To derive Eq. (4.1.34) from Eq. (4.1.33) we explicitly used the Coulomb gauge for A. Suppose we were not
in the Coulomb gauge, i.e. ∇ ·A 6= 0. Would Eq. (4.1.34) continue to hold or not? Rather than just arguing
in words, show mathematically that the value of the integral in Eq. (4.1.33) is independent of the choice of
the gauge for A, and hence Eq. (4.1.34) does not depend on our use of the Coulomb gauge.


