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Unit 4-3: Capacitance and Inductance

The capacitance and inductance matrices are useful ways to compute the electrostatic and magnetostatic energies in
static or quasistatic configurations

Capacitance

Consider a set of conductors with potentials φ(r) = Vi fixed on conductor i. If the system is not enclosed in a box,
we will also assume φ→ 0 as r →∞.

"

From the uniqueness theorem we know that specifying Vi on each conductor is enough
to uniquely determine the potential φ(r) everywhere in the system. We can therefore
write this potential in the following form:

Let φ(i)(r) be the solution to the boundary value problem

∇2φ(i)(r) = 0 and φ(i)(r) =

 1 if r is on the surface of conductor i

0 if r is on the surface of any other conductor j 6= i
(4.3.1)

Then, by superposition, the solution to the boundary value problem ∇2φ = 0 with φ = Vi on conductor i is,

φ(r) =
∑
i

Vi φ
(i)(r) (4.3.2)

The surface charge density at r on the surface of conductor i is,

σ(i)(r) = − 1

4π

∂φ(r)

∂n
= − 1

4π

∑
j

Vj
∂φ(j)(r)

∂n
(4.3.3)

where ∂φ/∂n = (∇φ) · n̂ is the derivative in the direction normal to the surface at point r.

The total charge on conductor i is then

Qi =

∫
Si
da σ(i)(r) = − 1

4π

∑
j

Vj

∫
Si
da

∂φ(j)

∂n
(4.3.4)

where Si is the surface of conductor i. If we define the capacitance matrix,

Cij ≡ −
1

4π

∫
Si
da

∂φ(j)

∂n
(4.3.5)

Then we have,

Qi =
∑
j

Cij Vj (4.3.6)

The charge on the conductor i is a linear function of the potentials Vj on all the conductors j. Note, the Cij

are determined solely by the geometry of the conductors, and not by the values of the potential or charge on the
conductors.

Since we know that specifying the Qi on each conductor will also uniquely determine φ(r), and hence the potentials
on the conductors Vi, this implies that the capacitance matrix C is invertible, and

Vi =
∑
j

[
C−1

]
ij
Qj where C−1 is the inverse matrix of C (4.3.7)
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The electrostatic energy of the conductors is then

E =
1

2

∫
d3r ρ φ =

1

2

∑
j

Qj Vj =
1

2

∑
i,j

Cij Vi Vj =
1

2

∑
i,j

[
C−1

]
ij
QiQj (4.3.8)

We can compare this to the commonly defined capacitance of two conductors with equal and opposite charge. If
conductor 1 has charge Q, and conductor 2 has charge −Q, and V1 − V2 is the potential difference from conductor 1
to conductor 2, then the usual definition for the capacitance C is,

C =
Q

Vi − V2
(4.3.9)

We can determine this C in terms of the elements of the 2× 2 capacitance matrix Cij defined above.

Q = C11V1 + C12V2

−Q = C21V1 + C22V2

 ⇒ V2 = −
(
C11 + C21

C12 + C22

)
V1 (4.3.10)

Which gives

Q =

[
C11 − C12

(
C11 + C21

C12 + C22

)]
V1 (4.3.11)

and

V1 − V2 =

[
1 +

(
C11 + C21

C12 + C22

)]
V1 (4.3.12)

so that

C =
Q

V1 − V2
=

C11 − C12

(
C11 + C21

C12 + C22

)
1 +

(
C11 + C21

C12 + C22

) (4.3.13)

or

C =
C11C22 − C12C21

C11 + C12 + C21 + C22
(4.3.14)

The capacitance can also be defined when the space between the conductors is filled with a dielectric material with
dielectric constant ε. In this case, if Qi is the free charge on conductor i, then Qi/ε is the effective total charge on
the conductor, to use in computing φ, since the charge Qi is screened by the bound charge in the dielectric to give a
net total charge of Qi/ε on the conductor.

We then have,

Qi

ε
=
∑
j

C
(0)
ij Vj (4.3.15)

where C
(0)
ij is the capacitance matrix appropriate to a vacuum between the conductors. This then gives,

Qi =
∑
j

εC
(0)
ij Vj =

∑
j

Cij Vj (4.3.16)

where Cij ≡ εC
(0)
ij is the capacitance matrix with the dielectric filling. Adding the dielectric material between the

conductors thus increases the capacitance by a factor of ε.
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Inductance

Consider a set of current carrying loops Ci with currents Ii.

I

In the Coulomb gauge, we can write the magnetic vector potential A from these current loops as,

A(r) =
1

c

∫
d3r′

j(r′)

|r− r′|
=
∑
i

Ii
c

∮
Ci

d`′

|r− r′|
(4.3.17)

where the integration variable r′ goes over the current carrying loops Ci.

The magnetic flux through loop i is then,

Φi =

∫
Si

da n̂ ·B =

∫
Si

da n̂ ·∇×A =

∮
Ci

d` ·A (4.3.18)

where Si is the surface bounded by the loop Ci. We take the direction n̂ of the normal to Si according to the direction
we integrate around the loop, so as to be consistent with the right hand rule.

Substituting in the result of Eq. (4.3.17) for A, we get,

Φi =
∑
j

Ij
c

∮
Ci

∮
Cj

d` · d`′

|r− r′|
(4.3.19)

Defining the mutual inductance matrix,

Mij ≡
1

c2

∮
Ci

∮
Cj

d` · d`′

|r− r′|
(4.3.20)

we then have,

Φi = c
∑
j

MijIj (4.3.21)

Note, the mutual inductance matrix Mij is determined solely by the geometry of the current loops, and not by the
values of the currents flowing in them. The inductance matrix is also symmetric, Mij = Mji.

The diagonal element Li ≡Mii is called the self inductance of loop i, and gives the magnetic flux through loop i that
is due to the current flowing in the loop i itself.

The magnetostatic energy of the current loops can now be written in terms of the inductance matrix,

E =
1

2c

∫
d3r j ·A =

1

2c

∑
i

Ii

∮
Ci

d` ·A =
1

2c

∑
i

Φi Ii =
1

2

∑
i,j

Mij Ii Ij (4.3.22)


