Unit 4-3: Capacitance and Inductance

The capacitance and inductance matrices are useful ways to compute the electrostatic and magnetostatic energies in
static or quasistatic configurations

Capacitance

Consider a set of conductors with potentials ¢(r) = V; fixed on conductor i. If the system is not enclosed in a box,
we will also assume ¢ — 0 as r — co.
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2 From the uniqueness theorem we know that specifying V; on each conductor is enough
4 Y to uniquely determine the potential ¢(r) everywhere in the system. We can therefore
) write this potential in the following form:
2

Let ¢ (r) be the solution to the boundary value problem
‘ ‘ 1 if r is on the surface of conductor i
V2 (r) =0 and ¢9(r) = (4.3.1)
0 if r is on the surface of any other conductor j # i

Then, by superposition, the solution to the boundary value problem V2¢ = 0 with ¢ = V; on conductor i is,
— Z Vio®(r) (4.3.2)
The surface charge density at r on the surface of conductor i is,

, 1 9¢( ¢ (r
o@D (r) = - o ‘;n = Z ¢ ¢ (4.3.3)

where 0¢/0n = (V¢) - 1 is the derivative in the direction normal to the surface at point r.

The total charge on conductor ¢ is then

/daa = 47TZV/ da 8¢(7) (4.3.4)

where S; is the surface of conductor i. If we define the capacitance matrix,

1 dpl7)
= 4.3.
Cij i s, da o (4.3.5)

Then we have,

=Y Cy;V; (4.3.6)
J

The charge on the conductor i is a linear function of the potentials V; on all the conductors j. Note, the Cj;
are determined solely by the geometry of the conductors, and not by the values of the potential or charge on the
conductors.

Since we know that specifying the @; on each conductor will also uniquely determine ¢(r), and hence the potentials
on the conductors V;, this implies that the capacitance matrix C is invertible, and

Vi = Z paey where C™! is the inverse matrix of C (4.3.7)



The electrostatic energy of the conductors is then

1 1 1 1
€= §/d37“f’¢= 5 @Vi=52 CyViVi=5> [CT],; @iQ; (4.3.8)
J N
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We can compare this to the commonly defined capacitance of two conductors with equal and opposite charge. If
conductor 1 has charge @, and conductor 2 has charge —@, and V; — V5 is the potential difference from conductor 1
to conductor 2, then the usual definition for the capacitance C' is,

Q
C = 4.3.9
Vi—V, ( )
We can determine this C' in terms of the elements of the 2 x 2 capacitance matrix C;; defined above.
Q =CnuVi+ CpaVy
= Vo=-— (M) 1% (4.3.10)
—Q =CnVi+ CuVs 12+ 22
Which gives
Ci1+ Coyy
=|C —C B Vi 4.3.11
“ [ H . <012+022>} ! ( )
and
Ci1+Cxn
Vi—Vo=|1 B Vi 4.3.12
P { +(Clz—i—czzﬂ ! ( )
so that
Ci1 + 021)
Ci1 —C —_—
C _ Q _ 1 12 (CIQ + 022 (4 3 13)
i =V, 1+(011+C21> o
Cha + Cao
or
C11Ca2 — C1209
= 4.3.14
Cll + Cl2 + 021 + C22 ( )

The capacitance can also be defined when the space between the conductors is filled with a dielectric material with
dielectric constant e. In this case, if @; is the free charge on conductor i, then Q;/¢ is the effective total charge on
the conductor, to use in computing ¢, since the charge @); is screened by the bound charge in the dielectric to give a
net total charge of @;/e on the conductor.

We then have,

Qi (0)
?1 = Z C;v; (4.3.15)
J
where Ci(jo ) is the capacitance matrix appropriate to a vacuum between the conductors. This then gives,

J

Q=Y cCPV;=3"CyV, (4.3.16)
J

where C;; = eCf;)) is the capacitance matrix with the dielectric filling. Adding the dielectric material between the
conductors thus increases the capacitance by a factor of e.



Inductance
Consider a set of current carrying loops C; with currents 1.
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In the Coulomb gauge, we can write the magnetic vector potential A from these current loops as,
1 i) I de’
A(r)=- [ & = ijf 4.3.17
() / e 2 o (43.17)

where the integration variable r’ goes over the current carrying loops C;.

The magnetic flux through loop ¢ is then,

@i:/ daﬁ~B:/ daﬁ-VxAsz de- A (4.3.18)
Si S C;

where S; is the surface bounded by the loop C;. We take the direction i of the normal to S; according to the direction
we integrate around the loop, so as to be consistent with the right hand rule.

Substituting in the result of Eq. (4.3.17) for A, we get,

I de - de
P, = g i —_— 4.3.19
—c ]i ?{Cj |r — 1’| ( )

Defining the mutual inductance matrix,

1 de-de
¢ Je, Joj v —r|

we then have,

J

Note, the mutual inductance matrix M;; is determined solely by the geometry of the current loops, and not by the
values of the currents flowing in them. The inductance matrix is also symmetric, M;; = Mj;.

The diagonal element L; = M;; is called the self inductance of loop i, and gives the magnetic flux through loop i that
is due to the current flowing in the loop 7 itself.

The magnetostatic energy of the current loops can now be written in terms of the inductance matrix,

1 1 1 1
E=—[drj- A== I dt-A=_—-> &, ;==Y M;LI 4.3.22
20/ " QC; f{c 2c2i: 22; 9784 (4.3.22)



