Unit 5-2: Transparent Propagation, Resonant Absorption, Total Reflection

In this section we will take our model for e¢(w) of the previous Notes 5-1, and see what are the consequences for EM
wave propagation in a dielectric. We use

e(w) =1+ 4mxe(w) = 1+ 4mna(w) (5.2.1)

where n is the density of polarizable atoms (or molecules) in the material (and not the index of refraction!), and «(w)
is from our simple model of a polarizable atom of Eq. (5.1.17). We then have,
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The factor that appears in these terms, 4mne?/m, has the units of frequency squared. We define
wp = 47;262 the plasma frequency (5.2.5)

We will discuss the various physical significances of the plasma frequency in the following.

We plot €;(w) and ez(w) below. These curves have the typical shape of a resonance.
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(at the end of these notes is the algebra that determines the above)

Now since € = €1 + i€y is complex valued, then so is the wavenumber k = ki + iks. We have from the dispersion
relation k = (w/c) /1€,
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k= ky +iko = %\/ﬁ\/q Ties = k=K% — k2 + 2ikiko = %u(q +ies) (5.2.7)

Note, in the above we squared k, we did not take its absolute value squared!



We can now equate the real parts and the imaginary parts on both sides of the above equation. This gives two
equations for the two unknowns, k; and k3. We can then solve for k; and ks to get,
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Regions of Different Behavior

Using Eq. (5.2.8) we can classify wave propagation in a dielectric into four different regions of behavior, as indicated
in the plot above.

Regions (1) and (4): ’61 >0 and € > e = Transparent Propagation

In these regions we have €; > 0 and €; > €3. Because of the latter condition, we can expand the square roots in
Eq. (5.2.8) in small €z/€;. Using v1+ 9 ~ 1+ 6/2 we get,
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So in regions (1) and (4) we have | ko < k; | Since the wave goes as e *2e(#12=%!) ithin one wavelength A = 27 /k;

of propagation, the amplitude of the wave has decayed by a factor e~ 27h2/k1 (1 — 27mka/kq), and so there is very
little attenuation — the amplitude of wave decays very little for each wavelength of propagation into the material. We
say that the medium is transparent (we can see through it!).

c
= , where n = /€7 is the index of refraction.
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Assuming p ~ 1 for a dielectric with only a weak magnetic response, then in region (1) where e1 > 1 = v, <¢, but
in region (2) where ¢; <1 = v, > ¢. But we will always have that the group velocity obeys v, < c.

Note, in these regions the phase velocity v, =

Also note that in regions (1) and (4) we have de;/dw > 0 = dn/dw > 0, and so these are regions of normal
dispersion. As one crosses from region (1) into region (2), but does not go far so that we still have es < €1, we have
de;/dw < 0 = dn/dw < 0, and so this is a region of anomalous dispersion.

Region (2): ’w ~wy = Resonant Absorption‘
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In region (2) we are near the peak of €3, and s0 €3 ~ —2- = (;;) (O> > 1, for a sharp resonance with v < wy
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(and generally we also have wy < wy).

In this region we have €; ~ O(1), and so in region (2) we have . We can proceed similarly to what we did



for regions (1) and (4), only now expanding the square roots of Eq. (5.2.8) for small €; /es. We get,
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And so in region (2) we have .

We could have gotten this more simply by saying that in region (2), since €; < €3, then to lowest order we can take
e1 ~ 0, and s0 € = iez. Then k = (w/c)/e = (w/e)v/pies = (w/c)\/fez\/i. Using Vi = (1 +14)/+v/2 then gives
k1 = ko = (w/c)+/11€2/2. The above, more involved, calculation lets one compute the corrections to this leading order
result.

Since k1 ~ ko, within one wavelength of propagation into the material the wave amplitude has decayed by a factor
e~ 2mk2/k1 o 627 2 0.002. The wave is very strongly attenuated.

Physically what is happening is the following. The wave excites atoms near their resonant frequency wp, which leads
to large atomic displacements, which leads to large absorption of energy by the atomic damping force. The wave loses
energy to the material and so the wave amplitude decays rapidly as the wave propagates into the material. Region
(2) is the region of strong attenuation, or equivalently the region of resonant absorption. You should recall the same
type of behavior from mechanics when you studied the damped harmonic oscillator. When the damped harmonic
oscillator is driven by a force oscillating near the oscillator’s natural frequency, then the amplitude of oscillation is
largest, the phase of the displacement is 7/2 out of phase with the force, and the absorption of energy is the greatest.

Region (3): ’61 <0 and |e1] > e = Total Reﬂection‘

The width of region (3) is w1 —wp = /Wi + wg —wp ~ wp ~ /n, where n is the density of atoms in the dielectric.

This follows since generally wy < wp. Thus the width of this region increases as the material gets denser.

We can now compute k; and ks with similar expressions as we used in regions (1) and (4), only now we need to use
|e1| when we factor it out of a square root. We have,
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Similarly,
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In one wavelength of propagation into the material the amplitude decays by a factor e~27%2/*1 which becomes essen-

tially zero when ks > ko. The wave decays much more rapidly than in the region (2) of resonant absorption.

We could have gotten this result more simply by saying that, since e < |e;| in region (3), then to lowest order ez & 0
and € = €; = —|e1|. Then the dispersion relation gives k = (w/c),/1€ = (w/c)\/—ple1| = i(w/c)/ple1]. Thus k is pure
imaginary, and the wave decays without any oscillations! The above more detailed calculation gives the corrections
to this leading order behavior.

Since region (3) is well above the region of resonant absorption near wy, there is little energy being transferred from
the wave to the material. Yet the amplitude of the wave decays dramatically as the wave tries to propagate into the
material. This strong attenuation of the wave is due to the destructive interference between the wave and the induced
fields of the polarized atoms, which are oscillating 7 out of phase with the driving electric field of the wave. We will
see later that this corresponds to a total reflection of the wave.

More Realistic Materials

Our simple model for a polarizable atom had only a single resonance at wy. A more realistic model for molecule will
have many bands of resonances due to the rotational, vibrational, and electronic modes of excitation of the molecule.
In general we have,
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where the hw; are the spacings between the energy levels of the molecule with allowed electric dipole transitions, and
the f; are related to the matrix elements associated with those transitions.
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The Plasma Frequency
In the above notes we have commented that typically wy < w,,. Here we explore this claim.

We have

4 2
wp =\ =44 x 10—16\/T sec™! (5.2.24)
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where n is the density of polarizable atoms/molecules, m is the mass of the electron, and ng4 = 6 x 10%3/cm? is
Avogadro’s number of particles per cubic centimeter.

The corresponding energy is

hw, = 185, | — eV (5.2.25)
na

For water HyO,

L N005 = hw,~40eV (5.2.26)
na

For a typical metal,

L ~01 = hw,~58eV (5.2.27)
na

Compare that to the typical energy of electron level spacings,
hwo = O(1) eV (5.2.28)
So indeed we generally have wy < wy.
Summary
To summarize the results for transverse wave propagation:
When €¢; > 0 and €3 < €1, we are in a region of transparent propagation with ko < k.
When €5 > |€1], we are in a region of resonant absorption with kq & ko.

When €1 < 0 and €3 < |e1|, we are in a region of total reflection with ko > ky.



Notes for €; and €3 in our simple model

Behavior of €1 (w)

location of maximum and minimum of €,

w2 w2 *(.()2
With e; = 1+ b (<0 )

the maximum and minimum are located b
(w3 — w?)2 + w2y2’ s

d€1

= 0 = —2w[(w?—w?)?+wy?] — (W2 — w?)[2(wE — w?)(—2w) + 2wy?] =0 (5.2.29)

Multiply out the terms to get

—2w(wh — w?)? — 2w3y? + dw(wd — w?)? — (Wi — w?)2wy? =0 (5.2.30)

2w(wa — w?)? — 2w3y? — 2wkwy? + 2342 =0 (5.2.31)

The 2nd and 4th terms cancel, then divide each term by 2w to get,

Wi —wh?—wiy =0 = wi-w=4wyy = w=wlFwy (5.2.32)
So

w = yJwd Fwoy = woy/1F wlo ~ wo (1 T 22}(3) for a sharp resonance with v/wy < 1 (5.2.33)
So

w=uwyF % give the locations of the minimum and maximum of ¢; (5.2.34)

location of the zeros of €

The zeros of €; are determined by,

e=0 = (w%—w2)2+w272+w§(wg—w2):0 (5.2.35)
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We can solve the quadratic equation to get,
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Consider the zero at the larger wy shown in the figure. This is the (+) root. When v <« wy, this is far from wy on the
scale of v, so to leading order we can ignore all the terms involving . We then get
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For the zero between the maximum and minimum, we take the (—) root and keep the lowest terms ~ O(v?). We get,
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So the zero is shifted upwards a bit from wy, as is obvious in the figure. Since v < wp, and usually wy < wp, this
shift is very small.

Behavior of ez (w)

location of the peak

: whwy :
With e; = B = 2y the peak is located by,
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For a sharp resonance with v < wp, we can neglect the (7/wg)* term in the square root compared to the (7y/wg)?
term, and then expand the square root to lowest order to get
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height of the peak
The peak value of €5 is then
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width of the peak

The frequency w* where the peak in €5 drops to half its height is when
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For v < wy, we can take to lowest order, @ ~ w* ~ wy, to write (W} — w*?) = (wo — w*)(wo + w*) ~ Aw(2wp), with
Aw = wg — w*. Then
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So the peak in ey has a width at half height of ~.



