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Unit 5-3: EM Wave Propagation in Conductors

Conductors differ from dielectrics in that they have mobile conduction electrons which are not bound to atomic ion
cores, but are free to move throughout the material. This means that we need to include them in the macroscopic
charge density ρ and current density j. The ion cores we will take as being fixed in place in the crystal lattice of the
conductor. We will take the free charge and free current to be zero.

Frequency Dependent Conductivity

Similar to our simple model for a bound electron in a polarizable atom, we can write a simple model for a classical
conduction electron in a metal. This is known as the “Drude Model.” The equation of motion for the conduction
electron is,

mr̈ = −eE(t)− m

τ
ṙ (5.3.1)

Here m is the mass of the electron, E(t) is the time varying external electric field, and the last term on the right is
a damping term, similar to the −mγṙ term we had for the bound electron. For historical reasons, we now call the
damping constant 1/τ instead of γ. Note the important point that the above equation of motion has no restoring
force −mω2

0r like we had for the bound electron, since the conduction electron is not bound to any ionic core.

Drude had in mind that τ , the relaxation time, was the average time between collisions of the electron with the ions
in the crystal lattice, and the damping term modeled the random scattering of the electrons as they collided with the
ions. But we now know from quantum mechanics that a particle in a periodic potential (such as the electric potential
of the crystal lattice of ions) does not necessarily scatter randomly, but can propagate through due to coherent
addition of the scattered waves off of each ion. For a perfectly periodic structure of ions, the Schrodinger equation
will give stationary eigenstates for the electron that can carry a net momentum. We now know that the scattering of
the conduction electrons is not due to collisions with the ions, but rather due to collisions with imperfections in the
ion lattice – these could be either impurities, or due to thermal displacements of the ions from their perfect lattice
positions; when one quantizes those thermal displacements, they are known as phonons.

For an oscillating external electric field, E(t) = Eωe−iωt we will assume an oscillating response for the displacement
of the conduction electron, r(t) = rωe−iωt. Substituting into the equation of motion give,(

−ω2 − iω

τ

)
rω = − e

m
Eω ⇒ rω =

e

m

1

ω2 + iω/τ
Eω (5.3.2)

The contribution of such electrons to the macroscopic current is

j(t) = −enṙ(t) = jωe−iωt ⇒ jω = −en(−iω)rω (5.3.3)

where n is the density of conduction electrons. Substituting in for rω then gives,

jω =
ne2

m

iω

ω2 + iω/τ
Eω =

ne2τ

m

1

1− iωτ
Eω (5.3.4)

This defines the frequency dependent conductivity σ(ω) for the conductor,

jω = σ(ω)Eω ⇒ σ(ω) =
ne2τ

m

1

1− iωτ
=

σ0
1− iωτ

(5.3.5)

where σ0 = σ(0) =
ne2τ

m
is the steady state (“dc”) value of the conductivity.
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The conductivity is a complex valued function of frequency with
real and imaginary parts, σ = σ1 + iσ2,

Re σ ≡ σ1 =
σ0

1 + ω2τ2
(5.3.6)

and

Im σ ≡ σ2 =
σ0 ωτ

1 + ω2τ2
(5.3.7)

The corresponding charge density ρ is obtained by applying the law of charge conservation. For a plane wave with
E(r, t) = Eωei(k·r−ωt), we take similar forms for ρ and j,

ρ = ρωei(k·r−ωt) and j(r, t) = jωei(k·r−ωt) (5.3.8)

Then

∂ρ

∂t
= −∇ · j ⇒ −iωρω = −ik · jω ⇒ ρω =

k · jω
ω

=
σ(ω)k ·Eω

ω
(5.3.9)

Note that for a transverse polarized EM wave, where k ·Eω = 0, then ρω = 0.

Maxwell’s Equations

We will assume a constant magnetic response, µ = constant, a frequency dependent conductivity σ(ω), and a frequency
dependent dielectric function εb(ω) describing the polarization of the bound (non-conduction) electrons that remain
bound to the ionic cores.

Assuming all the fields have the plane wave form, E(r, t) = Eωei(k·r−ωt), we then have,

Bω = µHω, Dω = εb(ω)Eω, jω = σ(ω)Eω, ρω =
σ(ω)

ω
k ·Eω (5.3.10)

Maxwell’s equations then become

1) ∇ ·D = 4πρ ⇒ ik ·Dω = ik · εbEω = 4πρω =
4πσ

ω
k ·Eω ⇒ ik ·Eω

(
εb +

4πiσ

ω

)
= 0 (5.3.11)

2) ∇ ·B = 0 ⇒ iµk ·Hω = 0 (5.3.12)

3) ∇×E = −1

c

∂B

∂t
⇒ ik×Eω =

iω

c
Bω =

iωµ

c
Hω (5.3.13)

4) ∇×H =
4π

c
j +

1

c

∂D

∂t
⇒ ik×Hω =

4π

c
jω −

iω

c
Dω =

4π

c
σEω −

iω

c
εbEω (5.3.14)

⇒ ik×Hω =
−iω
c

(
εb +

4πiσ

ω

)
Eω (5.3.15)

Note: all the above equations (1) – (4) look exactly like what we had for the dielectric material, provided we define

ε(ω) = εb(ω) +
4πiσ(ω)

ω
(5.3.16)

So all our results for the dielectric case carry over to conductors, provided we make the above definition of ε(ω), so
as to include the effects of both bound electrons (via εb) and free mobile conduction electrons (via σ).
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Discussion Question 5.3

Suppose that, instead of thinking of the conduction electrons as being “free” charges and so giving rise to a
macroscopic j, we treated them the same way we treated bound electrons, and computed their electric dipole
moment pω = −erω, with rω as above. We could then define the polarizability αc(ω) for a conduction electron
by pω = αc(ω)Eω. The total electric susceptibility of the material would then be χe = nbαb +nαc, where nb
is the density of the bound (non-conduction) electrons and αb their atomic polarizability, and n is the density
of the conduction electrons. The dielectric function of the material would then be ε(ω) = 1+4πχe(ω). Show
that this approach gives the same result as given by Eq. (5.3.16).

In particular, the dispersion relation for transverse waves in the conductor is

k2 =
ω2

c2
µε(ω) (5.3.17)

The main difference between wave propagation in dielectrics vs conductors has to do with the contribution that the
term 4πiσ/ω makes to the real and imaginary parts of ε(ω).

Recall, for our simple Drude model, σ(ω) =
σ0

1− iωτ
with σ0 =

ne2τ

m
.

We now consider different regions of behavior.

Low frequencies: ω � 1/τ and ω � ω0 where ω0 is the resonant frequency of the bound electrons.

In this limit,

εb(ω) ≈ εb(0), a real valued constant.

σ(ω) ≈ σ0, a real valued constant.

⇒ ε(ω) ≈ εb(0) +
4πiσ0
ω

(5.3.18)

The contribution from the conductivity term will give a large contribution to the imaginary part of ε at low frequencies
as ω → 0. This gives rise to strong dissipation at low frequencies.

We will write ε = ε1 + iε2, where ε1 = Re [ε] and ε2 = Im [ε] are real valued.

When

ε2
ε1

=
4πσ0
ωεb(0)

� 1 we call this regime a good conductor. (5.3.19)

The conduction electrons dominate the response. This is similar to the region of resonant absorption of a dielectric.
Waves are strongly attenuated.

When

ε2
ε1

=
4πσ0
ωεb(0)

� 1 we call this regime a poor conductor. (5.3.20)

There is little absorption of energy by the conduction electrons and waves propagate with little attenuation.

Because of the factor of ω in denominator, one always enters the good conductor region when ω gets sufficiently small.
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From the dispersion relation, k =
ω

c

√
µε, we have the following.

for a good conductor where ε2 � ε1,

ε ≈ iε2 =
4πiσ0
ω

⇒ k = k1 + ik2 =
ω

c

√
4πµσ0
ω

i (5.3.21)

Since
√
i = (1 + i)/

√
2 we have,

k1 = k2 =
ω

c

√
4πµσ0

2ω
=

1

c

√
2πµσ0ω (5.3.22)

Since the field is E = Eωei(kz−ωt) = Eωe−k2zei(k1z−ωt) one defines,

δ ≡ 1

k2
=

c√
2πµσ0ω

∼ 1√
ω

the skin depth (5.3.23)

The skin depth determines the distance the wave can propagate into the conductor before the amplitude significantly
decays. Since δ ∼ 1/

√
ω, the skin depth increases as the frequency decreases.

The phase shift between the oscillations of E and H is

φ = arctan(k2/k1) ≈ arctan(1) = 45◦ (5.3.24)

Since |k| =
√
k21 + k22 =

√
2k1, the amplitude ratio is

|Hω|
|Eω|

=
c|k|
ωµ

=

√
2ck1
ωµ

=

√
2c

ωµ

1

c

√
2πµσ0ω =

√
4πσ0
ωµ

∼ 1√
ω

(5.3.25)

As ω → 0, most of the energy of the wave is carried by the magnetic field part.

High frequencies: ω � 1/τ and ω � ω0

In this limit

εb(ω) ≈ 1 (5.3.26)

σ(ω) ≈ σ0
−iωτ

=
ine2τ

mωτ
=
ine2

mω
using σ0 =

ne2τ

m
(5.3.27)

Note, σ is now pure imaginary and independent of τ . That it is independent of τ can be understood, because when
ω � 1/τ , the electric field has many oscillations in between two successive collisions of the conduction electron, so
the collisions are not effecting the response.

Then,

ε(ω) = εb +
4πiσ

ω
≈ 1− 4πne2

mω2
(5.3.28)

If we define ωp =

√
4πne2

m
as the plasma frequency of the conduction electrons (n is the density of the conduction

electrons), then we have,

ε(ω) = 1−
ω2
p

ω2
and ε(ω) is real valued. (5.3.29)

There are now two cases to consider. Considering the dispersion relation k = (ω/c)
√
µε we have,
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1) If ω > ωp then ε > 0. Then k is purely real valued, and so this is then a region of transparent propagation.

k = k1 =
ω

c

√
µε and k2 = 0 (5.3.30)

2) If ω < ωp then ε < 0. Then k is purely imaginary, and so this is then a region of total reflection!

k = ik2 where k2 =
ω

c

√
µ|ε| and k1 = 0 (5.3.31)

The plasma frequency ωp thus gives the crossover frequency where one transitions from a region of total reflection to
a region of transparent propagation.

For typical metals τ ∼ 10−14 sec, ωp ∼ 1016 sec−1, λp =
2πc

ωp
∼ 3 × 103Å, which is just short of the visible spectrum

where λ ∼ 5 × 103Å. The crossover from reflecting to transparent thus occurs at frequencies somewhat higher than
the visible range.

Example

There is one effect of ωp that you may have experienced for yourself. You may have notice when you listen to the
radio (the old fashioned way with an antenna, not online!) that you can usually only pick up local FM stations, while
(particularly at night) you can sometimes pick up AM stations from far away. The reason is the plasma frequency!

The earth is surrounded by the ionosphere, which is a layer of charged gas. In many respects the charged particles in
the ionosphere behave like the conduction electrons in a metal. The plasma frequency of the ionosphere is such that
for AM radio frequencies, ωAM < ωp, but for FM radio frequencies, ωFM > ωp. When the antenna of the radio station
broadcasts its signal, the ionosphere is transparent to the FM signal which passes through and goes out into space.
However, the ionosphere is reflective to the AM signal, which then reflects back to earth. At night the ionosphere
moves in closer to the earth and the reflection is enhanced. When you hear in Rochester an AM station from Chicago
or Boston, you are hearing the signal reflected from the ionosphere.

Longitudinal Modes

The above discussion was for transverse EM waves in a conductor, where E and H are perpendicular to k. Here we
want to ask if Maxwell’s equations allow for any longitudinal modes, where E or H can be parallel to k.

Consider first the magnetic field.

∇ ·B = 0 ⇒ iµk ·Hω = 0 ⇒ Hω ⊥ k is transverse, or k = 0 (5.3.32)

The case k = 0 corresponds to a spatially uniform H. Now if k = 0, then Faraday’s law gives,

ik×Eω =
iωµ

c
Hω = 0 ⇒ ω = 0 if we are to have a non zero Hω (5.3.33)

So the only possible longitudinal H is a spatially uniform, constant in time, magnetic field.

Now let’s consider the electric field.

Using Eq. (5.3.11) we have,

∇ ·D = 4πρ ⇒ iε(ω)k ·Eω = 0 ⇒ Eω ⊥ k is transverse, or ε(ω) = 0 (5.3.34)

So if Eω‖k but ε(ω) = 0, then we can satisfy all the other Maxwell’s equations, as we see below.

Faraday: ik×Eω =
iωµ

c
Hω = 0 ⇒ is satisfied if Hω = 0 (5.3.35)
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Ampere: ik×Hω =
−iωε(ω)

c
Eω is satisfied since Hω = 0 and ε(ω) = 0 (5.3.36)

So we can have a longitudinal electric field at frequencies such that ε(ω) = 0.

At low frequencies, ω � 1/τ and ω � ω0, we had

ε(ω) = εb(0) +
4πiσ0
ω

so ε = 0 when ω = −4πiσ0
εb(0)

(5.3.37)

Since E(r, t) = Eωei(k·r−ωt) then E(r, t) = Eωe
− 4πσ0
εb(0)

t
eik·r

So if we set up a longitudinal E field in a conductor, it will decay to zero exponentially with a decay time εb(0)/4πσ0.
This is consistent with our assumption back in unit 2 that E = 0 inside a conductor for electrostatics. Note,
electrostatic fields obey E = −∇φ so for φ = φkeik·r, then E = −ikφkeik·r is longitudinal.

At high frequencies, ω � 1/τ and ω � ω0, we had,

ε(ω) = 1−
ω2
p

ω2
so ε = 0 when ω = ωp (5.3.38)

So we have an oscillating longitudinal E only when ω = ωp, independent of k,

E(r, t) = Eωeik·reiωpt (5.3.39)

This is called a plasma oscillation. When one quantizes this oscillating mode it is called a plasmon. This oscillating
longitudinal E is accompanied by an oscillating charge density,

∇ ·E = 4πρ ⇒ ρ =
ik ·Eω

4π
eik·re−iωpt (5.3.40)

So the plasma oscillation is a charge density oscillation (recall, for a transverse mode where k · Eω = 0, the charge
density vanishes).


