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Unit 5-4: Polarization of EM Waves

In this section we will discuss the polarization of electromagnetic waves. Here polarization refers to the directional
orientation of the E and B fields of the wave (so don’t confuse it with the different meaning of “polarization” when
we are talking about polarizable atoms!).

Consider a transverse plane wave traveling in the n̂ direction, i.e., k = kn̂. We define a right handed coordinate
system as follows:
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ê1 × ê2 = n̂

n̂× ê1 = ê2

ê2 × n̂ = ê1

(5.4.1)

A general solution for Maxwell’s equations for a transverse plane wave is then,

E(r, t) =Re
[
(E1ê1 + E2ê2) ei(k·r−ωt)

]
(5.4.2)

H(r, t) =
c

ωµ
Re
[
kn̂× (E1ê1 + E2ê2) ei(k·r−ωt)

]
=

c

ωµ
Re
[
k(E1ê2 − E2ê1) ei(k·r−ωt)

]
(5.4.3)

In general, k is complex, k = k1 + ik2 = |k|eiδ, with |k| =
√
k21 + k22 and δ = arctan(k2/k1).

So far we implicitly assumed that E1 and E2 were real valued constants. In this case, when we take the real part of
the complex exponential we get,

E(r, t) = Eωe−k2n̂·r cos(k1n̂ · r− ωt) (5.4.4)

H(r, t) = Hωe−k2n̂·r cos(k1n̂ · r− ωt+ δ) (5.4.5)

where Eω = E1ê1 + E2ê2 and Hω =
c|k|
ωµ

(E1ê2 − E2ê1) are fixed constant vectors.

In this case the directions of E and H remain the same at all points in space and at all times, while the amplitudes
oscillate in time and space. Such a plane wave is called a linearly polarized wave.

However there is nothing to prevent one from choosing a solution with E1 and E2 as complex valued numbers,

E1 = |E1|eiχ1 and E2 = |E2|eiχ2 (5.4.6)

In this case one has,

E(r, t) = Re
[
|E1| ê1 ei(k·r−ωt+χ1) + |E2| ê2 ei(k·r−ωt+χ2)

]
(5.4.7)

= e−kzn̂·r
[
|E1| ê1 cos(k1n̂ · r− ωt+ χ1) + |E2| ê2 cos(k1n̂ · r− ωt+ χ2)

]
(5.4.8)

and

H(r, t) =
c|k|
ωµ

Re
[
|E1| ê2 ei(k·r−ωt+δ+χ1) − |E2| ê1 ei(k·r−ωt+δ+χ2)

]
(5.4.9)

=
c|k|
ωµ

e−k2n̂·r
[
|E1| ê2 cos(k1n̂ · r− ωt+ δ + χ1)− |E2| ê1 cos(k1n̂ · r− ωt+ δ + χ2)

]
(5.4.10)

Unless χ1 = χ2 we see that the components of E and H in directions ê1 and ê2 will oscillate out of phase with each
other. Thus, not only will the amplitudes of E and H oscillate in time and space, but also the directions of E and
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H will oscillate in time and space. The directions of E and H are no longer fixed. We will see that this situation in
general corresponds to an elliptically polarized wave.

General Case

E1 and E2 are complex constants. Write

E1ê1 + E2ê2 = Ueiψ where ψ is chosen so that U ·U is real valued. (5.4.11)

One can always do this since

U ·U = (E2
1 + E2

2)e−2iψ so choose 2ψ to be the phase of the complex E2
1 + E2

2 . (5.4.12)

U is a complex valued vector, we can write U = Ua + iUb, where Ua and Ub are real valued vectors. Then

U ·U is real valued ⇒ Im [(Ua + iUb) · (Ua + iUb)] = 0 ⇒ Ua ·Ub = 0 so Ua ⊥ Ub (5.4.13)

Let êa be the unit vector in the direction of Ua, so that Ua = Uaêa where Ua = |Ua|.

Let êb = n̂× êa so that {n̂, êa, êb} form a right handed coordinate system.
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Then Ub = ±Ubêb where Ub = |Ub|, since Ua ⊥ Ub and both Ua and Ub are perpendicular
to n̂.

The sign in Ub = ±Ubêb is (+) if Ub is parallel to êb, and it is (−) if Ub is antiparallel to
êb.

In this representation we have,

E(r, t) = Re
[
Ueiψei(k·r−ωt)

]
= Re

[
(Ua + iUb) ei(k·r−ωt+ψ)

]
(5.4.14)

= e−k2n̂·r Re
[
Ua êa ei(k1n̂·r−ωt+ψ) ± iUb êb ei(k1n̂·r−ωt+ψ)

]
(5.4.15)

= e−k2n̂·r
[
Ua êa cos(Φ + ψ)∓ Ub êb sin(Φ + ψ)

]
where Φ ≡ k1n̂ · r− ωt (5.4.16)

Let us define Ũa ≡ e−k2n̂·r Ua and Ũb ≡ e−k2n̂·r Ub.

Then define Ea and Eb as the components of E in the directions êa and êb, respectively.

Ea = Ũa cos(Φ + ψ) and Eb = ∓Ũb sin(Φ + ψ) (5.4.17)

This then gives,(
Ea

Ũa

)2

+

(
Eb

Ũb

)2

= cos2(Φ + ψ) + sin2(Φ + ψ) = 1 (5.4.18)

which is just the equation for an ellipse with semi-axes of length Ũa and Ũb, oriented in the directions of êa and êb.
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At a fixed position in space r, the tip of the vector E will trace out the ellipse as
the time increases by one period of oscillation, 2π/ω.

For (+), i.e., Ub = +Ubêb, the tip of E goes around the ellipse counterclockwise as
t increases.

For (−), i.e., Ub = −Ubêb, the tip of E goes around the ellipse clockwise as t
increases.
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Such a wave is said to be elliptically polarized.

Special Cases

1) If Ua = 0 or Ub = 0 the wave is linearly polarized. The direction of E stays fixed, while the amplitude of E oscillates.

2) If Ua = Ub then the tip of E traces out a circle as t increases. The wave is said to be circularly polarized. The (+)
case is said to be right handed circularly polarized, while the (−) case is said to be left handed circularly polarized.

One can define circular polarization basis vectors,

ê+ ≡
êa + iêb√

2
and ê− =

êa − iêb√
2

where êa ⊥ êb. (5.4.19)

A wave with complex amplitude Eω = E ê+ is right handed circularly polarizied.

A wave with complex amplitude Eω = E ê− is left handed circularly polarized.

Just as the general case can always be written as a superposition of two orthogonal linearly polarized waves,

Eω = E1ê1 + E2ê2 (5.4.20)

one can also always write the general case as a superposition of a right handed and a left handed circularly polarized
waves,

U = Ua + iUb = Uaêa ± iUbêb =

(
Ua + Ub√

2

)
ê± +

(
Ua − Ub√

2

)
ê∓ (5.4.21)

(substitute in for ê± and expand the expression to see that this is so).

So an elliptically polarized wave can be written as a superposition of circularly polarized waves.

As a special case of the above (if Ua = 0 or Ub = 0), a linearly polarized wave can always be written as a superposition
of a right handed and a left handed circularly polarized wave.


