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Unit 5-5: Reflection and Transmission of EM Waves at Interfaces

Consider an EM wave propagating from medium a into medium b. For simplicity we assume that εa is real and
positive (so medium a is transparent), while εb may be complex. We take µa and µb to be real and constant.
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k0 is the incident wave θ0 is the angle of incidence

k1 is the reflected wave θ1 is the angle of reflection

k2 is the transmitted, or refracted, wave θ2 is the angle of transmission

Snell’s Law

Let each wave be given by

Fn(r, t) = Fnei(k·r−ωt) where Fn can be either En or Hn for the electric or magnetic part of the wave (5.5.1)

We apply the boundary conditions at the interface between medium a and medium b. The tangential component of
E is continuous at the interface at z = 0. If t̂ is any unit vector in the xy plane, and we consider the position r = 0,
then equating the tangential component of E in medium a with the tangential component of E in medium b, this
boundary condition becomes,

t̂ ·E0 e−iω0t + t̂ ·E1 e−iω1t = t̂ ·E2 e−iω2t (5.5.2)

This must hold true for all times t. The only way that can happen is if all terms oscillate at the same frequency, i.e.

ω0 = ω1 = ω2 ≡ ω (5.5.3)

Now consider the same boundary condition for a position vector r⊥ that lies in the xy plane at z = 0. Since all the
ω’s are equal, we can cancel out the common e−iωt factors to get,

t̂ ·E0 eik0·r⊥ + t̂ ·E1 eik1·r⊥ = t̂ ·E2 eik2·r⊥ (5.5.4)

This must hold true for all r⊥ in the xy plane at z = 0. This can only happen if the projections of the kn in the xy
plane are all equal (this boundary condition places no constraint on the z components of the kn since ẑ · r⊥ = 0),

k0x = k1x = k2x k0y = k1y = k2y (5.5.5)

This means that the projections of the kn into the xy plane are all colinear. Choose the coordinate system as in the
diagram above so that all the kn vectors lie in the xz plane (ŷ is pointing out of the page). This plane, in which k0,
k1, and k2 all lie, is called the plane of incidence.

Since εa is by assumption real and positive, k0 and k1 are real valued vectors.

k0x = k1x ⇒ |k0| sin θ0 = |k1| sin θ1 (5.5.6)

since the dispersion relation in medium a gives

k20 =
ω2

c2
µaεa and k21 =

ω2

c2
µaεa (5.5.7)

then |k0| = |k1| and so,

sin θ0 = sin θ1 ⇒ θ0 = θ1 the angle of reflection equals the angle of incidence (5.5.8)
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If εb is also real and positive (medium b is also transparent) then k2 is also a real valued vector and so,

k0x = k2x ⇒ |k0| sin θ0 = |k2| sin θ2 (5.5.9)

From the dispersion relations in the two media,

k20 =
ω2

c2
µaεa and k22 =

ω2

c2
µbεb (5.5.10)

the condition of Eq. (5.5.9) becomes,

√
µaεa sin θ0 =

√
µbεb sin θ2 (5.5.11)

In terms of the index of refraction n ≡ kc

ω
=
ω
√
µε

c

c

ω
=
√
µε we have,

na sin θ0 = nb sin θ2 ⇒ sin θ2
sin θ0

=
na
nb

Snell’s Law (5.5.12)

Both the above laws, (i) angle of incidence = angle of reflection, and (ii) Snell’s Law, hold true for all types of waves,
not just EM waves. This is because any sort of wave will necessarily involve some boundary condition at the interface,
and then the matching of the oscillatory parts of the wave on either side of the interface will lead to these same laws.

If na > nb, then θ2 > θ0. In this case, when θ0 is too large we will have
na
nb

sin θ0 > 1 and there will be no solution

for θ2 ⇒ there will be no transmitted wave. When this happens it is known as total internal reflection. The wave
does not exit medium a.

The critical angle, above which one has total internal reflection, is called the critical angle θc, and is given by,

na
nb

sin θc = 1 ⇒ θc = arcsin

(
nb
na

)
(5.5.13)

Since n =
√
µε and ε ≈ 1 + 4πNα (where N is the density of polarizable atoms), then the index of refraction n

increases as the density of the material increases. One usually has total internal reflection when one goes from a
denser to a less dense medium.

Examples:

Diamonds sparkle due to total internal reflection! Diamonds have large n and so a small θc. When cut properly, the
light inside bounces around inside having many total internal reflections before it can escape.

You can also see total internal reflection directly for yourself if you go swimming under water. When you look up, if
the angle of your gaze with respect the the surface is θ0 < θc, then you will see out of the pool towards the ceiling.
But if the angle of your gaze is at θ0 = θc, your gaze will run along the surface of the water. And if the angle of your
gaze is at θ0 > θc, you won’t see outside the water at all – your gaze will be reflected downwards back into the water.

7 Ooh Oc

EYE >

,
Eoe

w 1/11/11 ona

swimmer



3

Snell’s Law for a Non-Transparent Medium

Now we consider the more general case where
√
εb can be complex valued, so k2 is a complex valued vector. We can

write,

k2 = k′2 + ik′′2 k′2 and k′′2 are real valued, and k′2 ≡ |k′2| and k′′2 = |k′′2 | (5.5.14)

Note, the real part k′2 and the imaginary part k′′2 do not need to be in the same direction!

Using the condition k0x = k2x, and noting that k0x is real valued while k2x is complex valued, we equate the real and
imaginary parts to get,

k0x = k′2x and 0 = k′′2x (5.5.15)
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If θ′2 is the angle that k′2 makes with respect to ẑ, and θ′′2 is the angle that k′′2
makes with respect to ẑ, then the above gives,

k0 sin θ0 = k′2 sin θ′2 and 0 = k′′2 sin θ′′2 ⇒ θ′′2 = 0 (5.5.16)

So θ′′2 = 0 and k′′2 = k′′2 ẑ. The attenuation factor of the transmitted wave is

e−k
′′
2 ·r = e−k

′′
2 z (5.5.17)

Thus we see that the planes of constant amplitude of the transmitted wave are always parallel to the plane of the
interface, no matter what the angle of incidence θ0 is. In contrast, the planes of constant phase of the transmitted
wave will be orthogonal to k′2.

Having found θ′′2 there are still three quantities we must solve for in order to characterize the transmitted wave. These
are θ′2, and the amplitudes k′2 and k′′2 .

To solve for these we will need three equations. The first is:

1) k0 sin θ0 = k′2 sin θ′2 from the boundary condition (5.5.18)

The other two come from equating the real and imaginary parts of the dispersion relation in medium b.

k22 =
ω2

c2
µbεb =

ω2

c2
µb(εb1 + iεb2) (5.5.19)

Now,

k22 = (k′2 + ik′′2) · (k′2 + ik′′2) = (k′2)2 − (k′′2 )2 + 2ik′2 · k′′2 = (k′2)2 − (k′′2 )2 + 2ik′2k
′′
2 cos θ′2 (5.5.20)

Use this to equate the real and imaginary parts of Eq. (5.5.19) and get,

2) (k′2)2 − (k′′2 )2 =
ω2

c2
µbεb1 (5.5.21)

3) 2k′2k
′′
2 =

ω2

c2
µbεb2 cos θ′2 (5.5.22)

We will use (2) and (3) to solve for k′2 and k′′2 in terms of θ′2.

2) ⇒ (k′2)2 = (k′′2 )2 +
ω2

c2
µbεb1 (5.5.23)

3) ⇒ k′′2 =
ω2

c2
µbεb2

2k′2 cos θ′2
(5.5.24)
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Plug Eq. (5.5.24) into (5.5.23) to get

(k′2)2 =

(
ω2

c2
µbεb2

2k′2 cos θ′2

)2

+
ω2

c2
µbεb1 (5.5.25)

⇒ (k′2)4 − ω2

c2
µbεb1(k′2)2 − ω4

c4
µ2
bε

2
b2

4 cos2 θ′2
= 0 (5.5.26)

This is just a quadratic equation for (k′2)2. We can solve using the quadratic formula.

(k′2)2 =
ω2µbεb1

2c2
+

√
ω4µ2

bε
2
b1

4c4
+

ω4µ2
bε

2
b2

4c4 cos2 θ′2
(5.5.27)

where we take the (+) sign in the quadratic formula since (k′2)2 must be positive.

(k′2)2 =
ω2µb

c2

[
εb1
2

+
1

2

√
ε2b1 +

ε2b2
cos2 θ′2

]
(5.5.28)

So finally,

k′2 =
ω

c

√
µb

[
εb1
2

+
1

2

√
ε2b1 +

ε2b2
cos2 θ′2

]1/2
(5.5.29)

and then we can get k′′2 from Eq. (5.5.24),

k′′2 =
ω

c

√
µb

[
−εb1

2
+

1

2

√
ε2b1 +

ε2b2
cos2 θ′2

]1/2
(5.5.30)

Note, these reduce to Eq. (5.2.8) that we found earlier for a plane wave in a medium with complex ε, if we take θ′2 = 0.
We will have θ′2 = 0 for normal incidence θ0 = 0.

Both k′2 and k′′2 in Eqs. (5.5.29) and (5.5.30) above still depend on the angle of refraction θ′2 We close the set of
equations by adding in the first equation (1),

k0 sin θ0 = k′2 sin θ′2 or
ω

c
na sin θ0 = k′2 sin θ′2 (5.5.31)

where we used na =
k0c

ω
=
√
µaεa. Since the pair of equations (5.5.29) and (5.5.31) involve only the unknowns k′2

and θ′2, we can use them to eliminate k′2 and get a final single equation that determines θ′2 in terms of the angle of
incidence θ0.

Define the index of refraction of medium b as,

nb ≡
√
µbεb1 (5.5.32)

Then from Eqs. (5.5.29) and (5.5.31) we get,

ω

c
na sin θ0 =

ω

c
nb

[
1

2
+

1

2

√
1 +

ε2b2
ε2b1 cos2 θ′2

]1/2
sin θ′2 (5.5.33)

or

na sin θ0 = nb

[
1

2
+

1

2

√
1 +

ε2b2
ε2b1 cos2 θ′2

]1/2
sin θ′2 (5.5.34)
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This is the analog of Snell’s Law for wave propagation into a non-transparent medium.

Consider two cases:

1) For a nearly transparent material, with εb2 � εb1 we can expand in εb2/εb1 to get,

na sin θ0 ≈ nb sin θ′2

[
1 +

ε2b2
4ε2b1 cos2 θ′2

]1/2
≈ nb sin θ′2

[
1 +

ε2b2
8ε2b1 cos2 θ′2

]
(5.5.35)

The second term in the square brackets is then a small correction to the familiar Snell’s Law.

For εb2 � εb1 we can solve the above iteratively.

To zeroth order: na sin θ0 = nb sin θ′2 ⇒ cos2 θ′2 = 1− sin2 θ′2 = 1−
(
na
nb

sin θ0

)2

.

Insert that in the left hand term of Eq. (5.5.35) to get the first order correction:

na sin θ0 ≈ nb sin θ′2

1 +
ε2b2

8ε2b1

(
1− n2a

n2b
sin2 θ0

)
 (5.5.36)

or

sin θ′2 =
na
nb

sin θ0

1 +
ε2b2

8ε2b1

(
1− n2a

n2b
sin2 θ0

)

−1

≈ na
nb

sin θ0

1− ε2b2

8ε2b1

(
1− n2a

n2b
sin2 θ0

)
 (5.5.37)

So

sin θ′2 <
na
nb

sin θ0 (5.5.38)

The result is that θ′2 is smaller than the simple Snell’s Law would predict.

2) For a good conductor, or absorbing region of a dielectric, where εb2 � εb1, we can expand in εb1/εb2. To lowest
order, Eq. (5.5.34) gives,

na sin θ0 =
√
µbεb1

[
εb2

2εb1 cos θ′2

]1/2
sin θ′2 =

√
µbεb2

2

sin θ′2√
cos θ′2

(5.5.39)

This result is completely different from Snell’s Law!

We could square the above to get,

n2a sin2 θ0 =
µbεb2

2

sin2 θ′2
cos θ′2

=
µbεb2

2

1− cos2 θ′2
cos θ′2

(5.5.40)

which we could rewrite as a quadratic equation to solve for cos θ′2,

cos2 θ′2 +

(
2

µbεb2

)(
n2a sin2 θ20

)
cos θ′2 − 1 = 0 (5.5.41)

The conclusion is that Snell’s Law only holds if both media are transparent. If medium b is nearly transparent, Snell’s
Law will hold with a small correction that decreases the angle of transmission θ′2. If medium b is highly absorbing,
then the law for θ′2 bears no resemblance to Snell’s Law.

Having found θ′2, one could then substitute into Eqs. (5.5.29) and (5.5.30) to determine k′2 and k′′2 .
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Reflection Coefficients

The results of the preceding sections all dealt with the issue of the frequency and wavevector of the reflected and
transmitted waves. Here we will consider their amplitudes – how much of the incident wave is reflected, vs how much
of it is transmitted into medium b. We will use the boundary conditions (b.c.) at the interface to determine this.

We will consider two cases: (1) where E0 is orthogonal to the plane of incidence, and (2) where E0 lies within the
plane of incidence. Recall, the plane of incidence is the plane spanned by the wavevector k0 and the normal to the
interface; in our calculation it is the xz plane.

We will do the calculation of these two cases in parallel. The results on the left will be case (1), the results on the
right will be case (2)

(1) E0 ⊥ plane of incidence (2) E0 lies in the plane of incidence
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⇒ H0 is in plane of incidence ⇒ E0 is in plane of incidence

b.c.: tangential components of E are continuous b.c.: tangential components of H are continuous (since j = 0)

all E’s are in ŷ direction; we can add them like scalars all H’s are in ŷ direction; we can add them like scalars

(i) E0 + E1 = E2 (i) H0 +H1 = H2

b.c.: tangential components of H are continuous (since j = 0) b.c.: tangential components of E are continuous

(∗) H0x +H1x = H2x (∗) E0x + E1x = E2x

Faraday:
iµω

c
H = ik×E ⇒ Hx =

kzc

ωµ
Ey Ampere: −ωε

c
E = ik×H ⇒ Ex = −kzc

ωε
Hy

substitute into (∗) to write Hx in terms of E substitute into (∗) to write Ex in terms of H

(ii) ⇒ k0z
µa

(E0 − E1) =
k2a
µb

E2 (ii) ⇒ k0z
εa

(H0 −H1) =
k2z
εb
H2

solve (i) and (ii) for E1 and E2 in terms of E0 solve (i) and (ii) for H1 and H2 in terms of H0

E1 =
µb k0z − µa k2z
µb k0z + µa k2z

E0 H1 =
εb k0z − εa k2z
εb k0z + εa k2z

H0

E2 =
2µb k0z

µa k2z + µb k0z
E0 H2 =

2εb k0z
εb k2z + εb k0z

H0

We now define the reflection coefficient in terms of the transported energy,

R =
|E1|2

|E0|2
=
|H1|2

|H0|2
=

reflected energy current

incident energy current
(5.5.42)
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Then, for case (1) where E0 ⊥ the plane of incidence, we have

R⊥ =
|E1|2

|E0|2
=

∣∣∣∣µb k0z − µa k2z
µb k0z + µa k2z

∣∣∣∣2 (5.5.43)

For case (2) where E0 ‖ the plane of incidence, we have

R‖ =
|H1|2

|H0|2
=

∣∣∣∣εb k0z − εa k2zεb k0z + εa k2z

∣∣∣∣2 (5.5.44)

Note, the above R⊥ and R‖ are correct for an arbitrary medium b (transparent, absorbing, reflecting).

Total Reflection

Consider now when medium b is in what we called the region of total reflection (this was denoted as region (3) in
Notes 5-2).

In this region we had, from Notes 5-2, that Im [εb] = εb2 ≈ 0, while Re [εb] = εb1 < 0. This led to k2 = iκ2, where κ2

is real valued, i.e., k2 is purely imagingary. Then,

R⊥ =

∣∣∣∣µb k0z − iµa κ2z
µb k0z + iµa κ2z

∣∣∣∣2 and R‖ =

∣∣∣∣εb k0z − iεa κ2zεb k0z + iεa κ2z

∣∣∣∣2 (5.5.45)

Both these are of the form

∣∣∣∣a− iba+ ib

∣∣∣∣2 where a and b are real valued. But in that case

∣∣∣∣a− iba+ ib

∣∣∣∣2 = 1 ⇒ R⊥ = R‖ = 1.

So this confirms that this region is indeed completely reflecting!

Medium b is Transparent

Next we consider the case when medium b is transparent. In this case εb is real and εb > 0. Then we have,

k0z =
ω

c

√
µaεa cos θ0 =

ω

c
na cos θ0 and k2z =

ω

c

√
µbεb cos θ2 =

ω

c
nb cos θ2 (5.5.46)

Snell’s Law holds and so na sin θ0 = nb sin θ2. We can then write R⊥ and R‖ as functions of θ0. For simplicity we will
take µa = µb = 1. Then,

1) E0 ⊥ plane of incidence,

R⊥ =

(
na cos θ0 − nb cos θ2
na cos θ0 + nb cos θ2

)2

(5.5.47)

For normal incidence, θ0 = 0, then by Snell’s Law we also have θ2 = 0, and so

R⊥ =

(
na − nb
na + nb

)2

if na = nb then R⊥ = 0, so no reflection, as would be expected (5.5.48)

More generally, using Snell’s Law to write nb = na

(
sin θ0
sin θ2

)
, we have,

R⊥ =

cos θ0 −
(

sin θ0
sin θ2

)
cos θ2

cos θ0 +

(
sin θ0
sin θ2

)
cos θ2


2

=

(
sin θ2 cos θ0 − sin θ0 cos θ2
sin θ2 cos θ0 + sin θ0 sin θ2

)2

=

(
sin(θ0 − θ2)

sin(θ0 + θ2)

)2

(5.5.49)

2) E0 ‖ plane of incidence,

R‖ =

(
εb na cos θ0 − εa nb cos θ2
εb na cos θ0 + εa nb cos θ2

)2

(5.5.50)
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Now use nb =
√
εb when µb = 1, and na =

√
εa when µa = 1 to get,

R‖ =

(
nb cos θ0 − na cos θ2
nb cos θ0 + na cos θ2

)2

(5.5.51)

For normal incidence θ0 = θ2 we again find,

R‖ =

(
nb − na
nb + na

)2

= R⊥ (5.5.52)

This is as it must be, since when θ0 = 0, then there is no difference between the parallel and perpendicular cases since
there is no plane of incidence as all k0, k1, and k2 are colinear.

More generally, using nb = na

(
sin θ0
sin θ2

)2

from Snell’s Law, we have,

R‖ =

cos θ0 −
(

sin θ2
sin θ0

)
cos θ2

cos θ0 +

(
sin θ2
sin θ0

)
cos θ2


2

=

(
sin θ0 cos θ0 − sin θ2 cos θ2
sin θ0 cos θ0 + sin θ2 cos θ2

)2

=

(
tan(θ0 − θ2)

tan(θ0 + θ2)

)2

(5.5.53)

The last step follows after quite a bit of algebra – I haven’t found a simple way to show this!

Now if θ0 + θ2 = π/2, then tan(θ0 + θ2)→∞, and R‖ = 0.

This occurs at an angle of incidence known as Brewster’s angle θ0 = θB . The condition determining θB is obtained
from Snell’s Law,

na sin θB = nb sin θ2 = nb sin(π/2− θB) = nb cos θB ⇒ θB = arctan

(
nb
na

)
(5.5.54)

For an incident wave at θB , the reflected wave always has E1 perpendicular to the plane of incidence, since R‖ = 0.
If the incoming wave has E0 ‖ to the plane of incidence, then there is no reflected wave and the wave is completely
transmitted. If E0 is in some general direction, then the reflected wave is always linearly polarized with E1 ⊥ the
plane of incidence. This is one method to create a polarized light wave.


